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On the choice of parameters for a model of small window
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Scattering of plane waves and Gaussian beams by a screen with small opening is considered. The asymptotics far from the obstacle is obtained.
The results can be useful for description of perforated nanolayers and for fitting the model based on the operator extensions theory.
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1. Introduction

Wave scattering by perforated screens was studied over a long period [1]. Nevertheless, last decade, one observe
an intensive discussion of the problem related to nanoscience, e.g., to studying of perforated nanolayers and nanofilms
(see, e.g., [2, 3]). Several mathematical models were suggested for the process description, particularly, a model of
point-like windows based the theory of self-adjoint extensions of symmetric operators [4–6]. The model is explicitly
solvable. It is an evident advantage. Unfortunately, fitting of the model is not simple. One should consider the
asymptotics of the solution for the realistic problem if the window is small (see, e.g., [7–9]) and choose the proper
values of the model parameters ensuring good approximation of the realistic solution by the model one. For this
purpose, it is possible to consider a benchmark problem with simpler geometry [10]. In our case, we can deal with
a plane with an orifice. In the present paper we consider the scattering problem for the plane z = 0 in R3 with the
Cartesian coordinates (x, y, z).

2. Scattering

Let the incoming plane wave is in the upper half-space z > 0. Correspondingly, the reflected wave is also in this
half-space. Consider the scattered wave U in the lower half-space. Function U(r) (where r = {r, θ, ϕ} in spherical
coordinates or r = {x, y, z} in Cartesian coordinates) can be written in the following form:

U(r) =

∫∫
D

∂

∂n′
G (r, r′, k)ψin (r′) dr′, (1)

whereD is a window (aperture), ψin is the incoming wave,G is the Green function, k is the wave number. Here vector
r′ can be also presented in spherical or Cartesian coordinates with following notations: r′ = {r′, θ′, ϕ′} (in spherical
coordinates), r′ = {x′, y′, z′} (in Cartesian coordinates).

Let one examine integrand functions from (1) separately. Firstly, consider the normal derivative of Green’s func-
tion. It can be presented as follows:

∂

∂n′
G (r, r′, k) =

1

4π

∂

∂n′

(
eik|r−r′|

|r− r′|
− eik|r−r′?|

|r− r′?|

)
. (2)

It is clear that in our case the normal derivative ∂/∂ n′ is equal to the derivative with respect to theZ ′-axis (in Cartesian
coordinates).

One can obtain:
∂

∂n′
G (r, r′, k) = − z

2π

eik|r−r′|

|r− r′|

(
ik

|r− r′|
− 1

|r− r′|2

)
. (3)

Now we can examine the second integrand function ψin (r′). In upper half-plane it can presented as a following
sum:

ψin (r′) = eikin·r′ + eikref ·r′ ,

where vectors kin, kref and r′ can be described as follows:

kin = kvin, kref = kvref , r′ = r′v′; |vin| = |vref | = |v′| = 1;
vin = {1;ϕin; θin} , vref = {1;ϕref ; θref} = {1;ϕin;π − θin} , v′ = {1;ϕ′; θ′} .
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Let us consider the solution in the lower half-plane where the reflected plane wave is absent:

ψin (r′) = eikin·r′ = eikr′vin·v′ ,

Since we are mostly interested in asymptotic behavior of function U (r) when r tends to infinity, we can express
function U (r) from (1) in the following asymptotic form:

U (r, θ, ϕ) ≈ A (θ, ϕ)
ikeikr

r
for r →∞, (4)

and then examine only the coefficient A (θ, ϕ). To meet this goal we have to single out the factor ikeikr/r from the
formula (1).

First of all, we can properly approximate expression for the normal derivative of Green’s function (3). We will
do it in several steps. In the first step, we can approximate the expression for the modulus of the difference of radius
vectors r and r′:

|r− r′| =
√
r2 + (r′)

2 − 2rr′ cos
(

ˆr, r′
)

= r

√
1 +

(r′)
2

r2
− 2

r′

r
cos
(

ˆr, r′
)
≈

≈ r − r′ cos
(

ˆr, r′
)

for r →∞. (5)

In the second step, one can find an approximation for the second factor in the expression (3) as follows:

eik|r−r′|

|r− r′|
≈ eikre−ikr′ cos( ˆr,r′)

r
(

1 + 1
2

(
(r′)2

r2 − 2 r
′

r cos
(

ˆr, r′
))) ≈

≈ eikr

r
e−ikr′ cos( ˆr,r′)

(
1− 1

2

(
(r′)

2

r2
− 2

r′

r
cos
(

ˆr, r′
)))

≈

≈ eikr

r
e−ikr′ cos( ˆr,r′)

(
1 +

r′

r
cos
(

ˆr, r′
))

for r →∞. (6)

In the next step, one can easily find approximations for the terms in the third factor in the expression (3):

ik
|r− r′|

≈ ik
r

(
1 +

r′

r
cos
(

ˆr, r′
))

for r →∞; (7)

1

|r− r′|2
=

1

r2
(

1 + (r′)2

r2 − 2 r
′

r cos
(

ˆr, r′
)) ≈ 1

r2
for r →∞. (8)

And finally, by substituting expressions (5)–(8) into formula (3) we derive an approximate expression for the normal
derivative of Green’s function in the following form:

∂

∂n′
G (r, r′, k) = − z

2π

eik|r−r′|

|r− r′|

(
ik

|r− r′|
− 1

|r− r′|2

)
≈ −cos θ

2π

ikeikr

r
e−ikr′ cos( ˆr,r′) for r →∞. (9)

Secondly, by matching expressions (1), (9) with asymptotic formula (4), one can obtain the following form of the
coefficient A (θ, ϕ):

A (θ, ϕ) = −cos θ

2π

∫∫
D

e−ikr′ cos( ˆr,r′)eikr′vin·v′ dr′. (10)

And due to the last formula one can examine the asymptotic behaviour of the function U (r) for every specific do-
main D.

3. A round domain D

In this section we will discuss the case when the domain D is a circle in the plane z = 0 of radius R:

D =
{

(x′, y′) : (x′)
2

+ (y′)
2 ≤ R2

}
or D =

{
(r′, ϕ′) : 0 ≤ r′ ≤ R2, ϕ′ ∈ [0; 2π)

}
For such domain D we can find the coefficient A (θ, ϕ) in non-integral form. To do this we should investigate the
integrand function from (10) at first and after few simplifications integrate it.



On the choice of parameters for a model of small window 153

Let examine function e−ikr′ cos( ˆr,r′)eikr′vin·v′ . Firstly, we can present cos
(

ˆr, r′
)

as a function of angles θ, ϕ and
ϕ′:

cos
(

ˆr, r′
)

=
r · r′

rr′
= (cosϕ cosϕ′ + sinϕ sinϕ′) sin θ = cos (ϕ− ϕ′) sin θ.

Secondly, we can examine scalar products from eikr′vin·v′ :

vin · v′ = cosϕin sin θin cosϕ′ sin θ′ + sinϕin sin θin sinϕ′ sin θ′ + cos θin cos θ′ =

= (cosϕin cosϕ′ + sinϕin sinϕ′) sin θin = cos (ϕin − ϕ′) sin θin. (11)

From (11), it follows:

eikr′vin·v′ = eikr′ cos(ϕin−ϕ′) sin θin . (12)

And finally, (3) and (12) yield us the following result about the integrand function being under discussion:

e−ikr′ cos( ˆr,r′)eikr′vin·v′ = eikr′(cos(ϕin−ϕ′) sin θin−cos(ϕ−ϕ′) sin θ). (13)

It remains only to integrate expression (10) using the form (13) of integrand function:

A (θ, ϕ) = −cos θ

2π

∫∫
D

e−ikr′ cos( ˆr,r′)eikr′vin·v′ dr′ =

= −cos θ

2π

R∫
0

r′

 2π∫
0

exp (ikr′ (cos (ϕin − ϕ′) sin θin − cos (ϕ− ϕ′) sin θ)) dϕ′

 dr′. (14)

Firstly, one can calculate the inner integral from (14):

2π∫
0

exp (ikr′ (cos (ϕin − ϕ′) sin θin − cos (ϕ− ϕ′) sin θ)) dϕ′ =

2π∫
0

exp (ikr′ (c1 cosϕ′ + c2 sinϕ′)) dϕ′ = 2πI0

(√
− (kr′c1)

2 − (kr′c2)
2

)
=

= 2πI0

(
ik
√
c21 + c22 r

′
)

= 2πI0 (ikΘ (θin, ϕin; θ, ϕ) r′) ,

Θ (θin, ϕin; θ, ϕ)
def
=

√
sin2 θin − 2 cos (ϕin − ϕ) sin θin sin θ + sin2 θ.

where I0 (z) is the modified Bessel function of the first kind of the 0-th order. Secondly, one can calculate the outer
integral from (17) excluding constant terms:

R∫
0

r′I0 (ikΘ (θin, ϕin; θ, ϕ) r′) dr′ =
RJ1 (kΘ (θin, ϕin; θ, ϕ)R)

kΘ (θin, ϕin; θ, ϕ)
,

where J1 (z) is the Bessel function of the first kind of the 1-st order. Thus, one can obtain coefficient A (θ, ϕ) as
follows:

A (θ, ϕ) = −cos θ

π
π
RJ1 (kΘ (θin, ϕin; θ, ϕ)R)

kΘ (θin, ϕin; θ, ϕ)
= − R cos θ

Θ (θin, ϕin; θ, ϕ)

J1 (kΘ (θin, ϕin; θ, ϕ)R)

k
.

For further discussions we can rewrite the obtained expression in more convenient for us form:

A (θ, ϕ) = −R2 cos θ
J1 (Θ (θin, ϕin; θ, ϕ) kR)

Θ (θin, ϕin; θ, ϕ) kR
. (15)
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4. A round domain D: discussions.

First of all, one can note that in the case of normal wave incident function Θ (θin, ϕin; θ, ϕ) is very simple and
does not depend on ϕin and ϕ:

Θ (θin, ϕin; θ, ϕ) = |θin = π| = Θnorm (θ) = |sin θ| .
Secondly, in the case with kR� 1 one can easily obtain the following approximation:

A (θ, ϕ) ≈ −R2 cos θ
Θ (θin, ϕin; θ, ϕ) kR/2

Θ (θin, ϕin; θ, ϕ) kR
= −R

2

2
cos θ for kR� 1.

Id est, in this case coefficient A (θ, ϕ) does not depend on ϕ and is proportional to cos θ. In other cases we have a
non-trivial dependence of this coefficient on ϕ.

As for the model of point-like window in the screen, it looks like the following one. Let us consider the Laplace
operators in L2(Ω+) and L2(Ω−) with Neumann boundary conditions on ∂Ω± (here Ω± is upper (lower) half-plane),
namely

∂f

∂n

∣∣∣∣
∂Ω±

= 0,

where n denotes the external unit normal vector to ∂Ω±, i.e. n = (0, 0,±1).
Let us construct a point-like window at point x0 ∈ ∂Ω±. If we restrict the considered operators onto the set

of smooth functions that vanish in the neighbourhood of x0, it is well known that the closures ∆+
0 and ∆−0 of the

considered operators are symmetric operators with deficiency indices (1, 1). Thus, the operator

∆0 = ∆+
0 ⊕∆−0

is symmetric and has deficiency indices (2, 2). As long as the deficiency indices are equal, we may conclude that the
considered operator does have self-adjoint extensions. This operator gives one the model in question.

However, if we impose the Dirichlet boundary conditions

u|∂Ω± = 0,

we immediately face the following problem: the operator obtained via restriction onto the set of smooth functions
that vanish in the vicinity of x0 ∈ ∂Ω is essentially self-adjoint. There is no element in the L2 space which can be
taken as a deficiency element. All candidates have too strong singularities. Respectively, constructing of the model
is based on the extension of the initial space up to a so-called Pontryagin space (with indefinite inner product). The
version of the model for the Dirichlet case based on the theory of self-adjoint operator extensions in Pontryagin space
was suggested in [6, 11, 12]. It is important to choose the extension parameters in such a way that the model solution
coincides with the main term of the asymptotics (in the window width) of the realistic solution, corresponding to small
windows [5, 6]. It can be made by comparison of the asymptotics of the scattering problem described above and the
model solution ( [6]).

One more application of the result is atmospheric quantum communication description. For quantum channel
through turbulent atmosphere, the main reason for error is a shift in the Gaussian beam with respect to the input
aperture of the receiver [13, 14]. For calculation of this error, one can use the obtained formulas with the replacement
of plane waves by the Gaussian beam [15], e.g., such as:

ψ =
w0

w
exp (−ik(L− z) + iφ− (

ik

2b
+

1

w2
)(x2 + y2)),

where w,w0, φ, b are parameters of the Gaussian beam, L is the distance from the sender, x, y, z are the Cartesian
coordinates. One can also take higher modes of the Gaussian beam.
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