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Domain wall evolution at nanowires in terms of 3D LLG equation initial-boundary problem
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A theory of a domain wall creation and propagation is built on a linearized version of the transformed Landau–Lifshitz–Gilbert equation. The
Lakshmanan–Nakamura stereo-graphic transform, after extra exponential transformation, and, next – linerization partially save information of
the original nonlinearity that allows one to keep the domain wall dynamics, form and properties. For cylindrical-symmetric wire geometry, the
conventional orthonormal Bessel basis, combined with projecting operators technique applied to subspaces of directed propagation of domain walls
is constructed. The physically significant problems of the dynamics switching at points far and close from a wire ends are formulated and its
solutions are presented in the frame of the Fourier method. Stationary solutions are found and the wall structure along the wire and propagation
plots are drawn.
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1. Introduction

The problem of domain wall (DW) creation and propagation was studied in many sources theoretically, e.g. in [1],
and experimentally [1–5]. Historically, starting from the seminal Brown paper [6]: ”striking success of micromag-
netics has been its contribution to the theory of single-domain particles.” The concept goes back to the 1930 paper of
Frenkel–Dorfman [7], where they concluded from energy considerations that “if a particle is sufficiently small, it will
not break up into domains but will be uniformly magnetized”.

Brown equations [6] has a direct link to Landau–Lifshitz ones [8], see, e.g. [9]. Touching the DW creation
and dynamics paradigm, that in its minimal 1D version relates the one-domain case, we have a simple stationary
problem solution [10]. In more complicated cases the Landau–Lifshitz–Gilbert (LLG) equation can describe the
dynamics of a DW in the magnetic core of circular cross-section at amorphous nanowires and glass-coated bistable
microwires [11, 12]. The DW propagation is characterized by high velocity propagation [13] and, therefore, there
are several important applications [14, 15]. Numerous applications are realized for magnetoelectric effects that are
observed in special structures [16]. For a general exposition of the field, look [17]. The 1D-2D-3D LLG equations
may be derived from Heisenberg chain equation by transition to continuous description and Gilbert term account [18].
The anisotropy term may also be added as phenomenological.

The Landau–Lifshitz equation, by Lakshmanan–Nakamura stereographic projection of the unit sphere of spin
onto a complex plane [19], with extra exponential map [20] is transformed to nonlinear complex equation, convenient
for further DW dynamics investigations [11]. In [19] it is shown that the effect of the Gilbert damping term is a
mere rescaling of time by a complex constant. There are important results obtained for the complete LLG equations,
including exact solutions, for example, ones, built by the Hirota method [21] and by a direct method [20]. These
solutions, however do not satisfy the boundary conditions, that follow from general electrodynamics. Let us mention
that a presence of stress field in amorphous medium influence the DW dynamics [24] so as defects influence implies a
modification of the LLG equation to account the magnetic inhomogeneities that manifests in a DW acceleration [25].

We consider a DW creation as Barkhausen jump [9, 22] example at nano- or microwire either far from end by
pulse, or switching action of constant external magnetic field by the wires’ end. These two problems are formulated
on base of the transformed 3DLLG equation and, next, linearized the result. The isotropic matter version of the LLG
equation parameters are chosen as independent on coordinates; for this case of physics, review [11]. Such a choice
of the equations’ approximation allows one to choose the correct boundary conditions in the context of the mentioned
matter electrodynamics [23].

List the content by sections, in
• Sec. 2. We start with nonlinear LLG Lakshmanan–Nakamura-exponential transform, writing the resulting

equation in cylindrical coordinates, convenient for circular cross-section wires geometry account.
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• Sec. 3. Derivation of boundary conditions at surfaces of the cylindrical wire.
• Sec. 4. We write the problem solution in terms of cylindrical functions series by Fourier method (division

of variables). We also derive and study the dispersion relations and build projecting operators on dispersion
branches subspaces, related to DW propagation direction.

• Sec. 5. Two physically significant problems of a DW creation are formulated. The first is related to DW
generation by a local pulse, by a few-turn coil, far from ends and, the second, study a DW generation at ends
by homogeneous field switching on. For the first case, we formulate and solve a Cauchy problem with initial
δ-distribution of magnetization.

• Sec. 6 is devoted to the stationary solution and magnetization vector presentation for a DW translation’s mode.
The result is illustrated by figures of the magnetization z-profiles.

2. 3DLLG for unit magnetization vector density

2.1. From Heisenberg chain equation to LLG

Starting from Heisenberg chain equations, with anisotropy and Gilbert terms account, we go to continuous de-
scription [18, 23], i.e. introduce the spin density field, re-scaled as ~S → ~m, to unit magnetization vector field, having:

−∂ ~m
∂t

= J ~m×∇2 ~m+K(~m · ~n)~m× ~n+ γ ~m× ~H − α~m× ∂ ~m

∂t
, (1)

where γ = µgµB is gyromagnetic ratio, the product of the magnetic permeability µ, Landé g-factor and Bohr magne-
ton µB ; α� 1 is the damping Gilbert parameter, J > 0 is the isotropic exchange energy coupling constant, K is the
strength of an effective easy-axis anisotropy, ~H = (0, 0, H) – applied longitudinal magnetic field, ~n is the unit vector
along z, see, e.g. [11].

2.2. Transformations of 3DLLG (1)

Following [11, 19] it is useful to introduce a complex variable Ω(~r, t) such that:

exp(Ω) =
mx + imy

1 +mz
. (2)

The structure of magnetization field then is defined mainly by the mentioned form of (2), while (1) transforms as:

(i+ α)Ωt + J∇2Ω +
(
K − J (∇Ω)

2
)

tanh

(
Ω + Ω∗

2

)
= γH. (3)

Such form yields a possibility to obtain interesting, physically reasonable particular solutions [11, 20]. Generally,
the variable Ω is convenient to formulate an initial-boundary problem of a DW evolution, via an inversion of the
transform (2). It opens the way to particular (in relation to LLG) linearization of the problem, that we study in this
work.

Cylindrical variables for the Laplacian yields:

∇2 = ∆⊥ +
∂2

∂z2
, (4)

where:

∆⊥ = ∆ρ +
1

ρ2
∂2

∂ϕ2
, (5)

in which:

∆ρ =
1

ρ

∂

∂ρ
ρ
∂

∂ρ
. (6)

The linearization of the equation (3) gives:

(α+ i)Ωt + J∇2Ω +K<Ω = γH. (7)

Let us conventionally split the general solution Ωl = Ω′ + Ωi : to the general one Ω′ for homogeneous equation:

(α+ i)Ω′t + J∇2Ω′ +K<Ω′ = 0, (8)

and a particular solution for the inhomogeneous one:

(α+ i)Ωit + J∇2Ωi +K<Ωi = γH. (9)
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3. On statement of problem. Boundary conditions. Transverse modes

3.1. Real/Imaginary parts division

3.1.1. Homogeneous equation and magnetization field. Let the solution of the homogeneous equation is presented
as:

Ω′ = R+ iS, (10)

using the inverse to (2) relations we write:

<Ω′ = R = ln

(
1−mz

1 +mz

)
= ln (1−mz)− ln (1 +mz) , (11)

exp[2i=Ω′] = exp[2iS] =
mx + imy

mx − imy
.

3.1.2. Boundary conditions for real and imaginary parts of Ω′. Let us take a body of a magnetic surrounded by
dielectric. The magnetization vector ~M is introduced as:

~B = ~H + 4π ~M. (12)

The continuity of the normal component of the vector ~B yields:

Hni + 4πMni = Hne + 4πMne, (13)

index ”i” marks internal, ”e” – external vectors with respect to an interface under consideration. Suppose the magne-
tization of the (external) medium, that is labeled by e, is zero, then:

Hni + 4πMni = Hne. (14)

Similarly, from the continuity of the tangent component of the vector ~H we derive that:

Hti = Bti − 4πMti = Hte = Bte. (15)

For an isotropic paramagnetic inside the body ~Bi = µi ~Hi, while for the external one ~B = ~H , hence:

µiHti − 4πMti = Hte = Hte, (16)

therefore:
4π

µi − 1
Mti = Hti = Hte, (17)

Mti =
µi − 1

4π
Hte. (18)

For the normal component, similarly:

Bne = Bni = Hni + 4πMni = µiHni = Hne, (19)

Mni = (µi − 1)Hni =
µi − 1

4πµi
Hne. (20)

The relations (21) and (20) pave the way to a boundary conditions for magnetic moment formulation.
A ferromagnetic boundary vicinity is characterized by ”incomplete” number of nearest neighbours and, hence,

lower exchange forces sum. It is hence have properties of a paramagnetic layer [23].
For the case of a wire lying along z-axis in a solenoid with the magnetic field ~H||z, co-axially, the normal

component of ~M is zero. Hence:
mρ|ρ=ρ0 = 0.

The tangential components mz,mφ are proportional to external (solenoid) magnetic field. If the field is strictly paral-
lel z,

mφ|ρ=ρ0 = 0.

If, however, on the basis of:

Mti =
µi − 1

4π
Hte, (21)

taking µi − 1 ≈ 0 into account, by (11), we suppose:

<Ω′(ϕ, ρ, z, t)|ρ=ρ0 = R(ϕ, ρ0, z, t) = 0, (22)

where ρ0 is the wire radius. Note, that nonzero condition may also be incorporated into the statement of problem.
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4. Fourier method application

4.1. Division of variables

The basic system for the Re/Im, or R,S parts of the complex field Ω′ reads:

αRt +KR+ J∇2R = St, (23)

Rt + αSt + J∇2S = 0. (24)

It allows the division of variables, put R = Rd + c.c., same for S,:

Rd(ϕ, ρ, z, t) = exp[iνϕ]Σ (ρ)Z (z, t) , Sd = exp[iνϕ]Σ (ρ)W (z, t) , (25)

which gives for (24):

ΣZt + αΣWt + J

(
W∆ρΣ−W

ν2

ρ2
Σ +

∂2W

∂z2
Σ

)
= 0.

Next step, after division by ΣZ is:

Zt
Z

+ α
Wt

W
+ J

(
∆ρΣ

Σ
− ν2

ρ2
+
Wzz

W

)
= 0. (26)

The equation (23) transforms similarly.

4.2. Spectral problem

Conventionally, we put:
∆ρΣ

Σ
− ν2

ρ2
= −λ,

or, rewriting it as:

∆ρΣ−
ν2

ρ2
Σ = −λΣ, (27)

we arrive at the Bessel equation. We should add zero boundary conditions for Z at ρ0, see (22), having:

Σ(ρ0) = 0. (28)

Also, adding the finite-value condition at ρ = 0, we have the Bessel basis.
Otherwise, the standard manipulations yields:

ρ2
∂2Σ

∂ρ2
+ ρ

∂Σ

∂ρ
− ν2Σ + λρ2Σ = 0, (29)

denoting: λρ2 = r2, one goes to the Bessel equation for:

Jν(r) = Jν(
√
λρ). (30)

If
√
λ = β

ρ0∫
0

Jν(βν,nρ)Jν(βν,mρ)dρ = Nνnδnm (31)

the spectrum βν,m(ρ0), for each ν is determined by the equation:

Jν(βρ0) = 0, βν,m(ρ0)ρ0 = εm(ν), (32)

therefore:

λν,m = β2
ν,m =

ε2m(ν)

ρ20
. (33)

So, εm(ν) are the zeros of the Bessel functions. In the case of ν = 0, ε1(0) ≈ 2.4, hence λ0,1 =
(2.4)2

ρ20
. Taking ρ0 =

100nm = 10−7m, we get λ0,1 =
(2.4)2

10−14
≈ 5.8 × 1014. A method of the zeros evaluation for Jν is suggested [26],

where the values are also listed.
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4.3. Unit expansion

Let us write the unit expansion, that is necessary for in-homogeneous (with nonzero rhs) equation (9) solution,
using the Bessel function J0(r) as example. For the function f(r), r ∈ [0, 1], for ν = 0, the following expansion is
valid:

f(r) =

∞∑
m=1

amJ0(εm(0)r), (34)

with the coefficients, defined by:

an =
1

N0n

1∫
0

f(r)J0(εn(0)r)rdr. (35)

If f(ρ) = 1, ρ ≤ ρ0, one has:

an =
1

N0n

1∫
0

J0(εn(0)r)rdr. (36)

By the textbook formula:
a∫

0

J0(r)rdr = aJ1(a), (37)

for εn(0) = κ:
a∫

0

J0(κr)rdr =
1

κ2

a/κ∫
0

J0(r)rdr =
a

κ3
J1(a/κ). (38)

For a = 1 :
1∫

0

J0(κr)rdr =
1

κ3
J1(1/κ) =

J1( 1
εn(0)

)

ε3n(0)
, (39)

plugging it in (36) gives the expression for an
Generally, orthonormal basis consists of the functions:

Σν(ρ) =
1√
N01

Jν(
√
λν,mρ) =

1√
N01

Jν(
εm(ν)

ρ0
ρ). (40)

For the equation (26), the relation (29) account yields:

Zt + αWt + J (− λW +Wzz) = 0. (41)

Next, similarly, (23) reads:
αZt +KZ + J (−λZ + Zzz) = Wt. (42)

Multiplying (41) by α and subtracting, we have:

α2Wt + Jα (− λW +Wzz)−KZ − J (−λZ + Zzz) = −Wt.

Next, multiplying (42) by α and adding, gives:(
1 + α2

)
Zt + J (− λW +Wzz) + αKZ + αJ (−λZ + Zzz) = 0.

Finally, we arrive at the system:

Zt =
JλW −KZα− JWzz − JαZzz + JZαλ

1 + α2
, Wt =

JZzz +KZ − JZλ− JαWzz + JαλW

1 + α2
, (43)

which constitutes the mode evolution system. In matrix form it reads: Z

W


t

=

J

1 + α2

 −KJ α− α∂zz + αλ λ− ∂zz

∂zz +
K

J
− λ −α∂zz + αλ


 Z

W

 .

(44)
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After Fourier transformation by z, in k-representation Z → Z̃, ..., the evolution in k-domain is described by: Z̃

W̃


t

=
J

1 + α2

 −wα+ αk2 + αλ λ+ k2

−k2 + w − λ αk2 + αλ

 Z̃

W̃

 , (45)

where it is denoted: w =
K

J
.

4.4. On dispersion/attenuation

4.4.1. Dispersion equation. The dispersion equation reads:

det

 −wα+ αk2 + αλ− iω λ+ k2

−k2 + w − λ αk2 + αλ− iω

 = 0. (46)

Let us denote λ+ k2 = µ, αµ− iω = κ, having:

det

 −wα+ κ µ

−µ+ w κ

 = 0. (47)

Solving the equation (47) with respect to ω, gives dispersion branches ω±.

4.4.2. Dispersion branches. The roots of the quadratic Eq. (47) are expressed as:

ω± = ± i
2

√
4w (k2 + λ) + w2α2 − 4 (k2 + λ)

2 − 1

2
iα
(
k2 − w + λ

)
. (48)

If 4w
(
k2 + λ

)
+ w2α2 − 4

(
k2 + λ

)2
> 0, the solution oscillates. The ω± are complex if:

4w
(
k2 + λ

)
+ w2α2 − 4

(
k2 + λ

)2
< 0, (49)

which gives damping contributions, eventual cut of guide propagation. Otherwise, the borders of the range are defined
by:

4w
(
k2 + λ

)
+ w2α2 − 4

(
k2 + λ

)2
= 0,

the condition (49) holds if either

k2 <
w

2

(
1−

√
α2 + 1

)
− λ < 0,

which is impossible for real k, or:

k2 >
w

2

(
1 +

√
α2 + 1

)
− λ. (50)

4.5. Dynamical projectors

4.5.1. Evolution operator in k-domain. Returning to original form of the evolution operator:

Lk =
J

1 + α2

 −KJ α+ αk2 + αλ λ+ k2

−k2 +
K

J
− λ αk2 + αλ

 ,

denoting, as before, w =
K

J
, λ + k2 = µ, we arrive to more compact form, omitting the constant factor, that do not

contribute in the projectors ( to eigen subspaces of Lk) expressions. We write:

L′k =

 −wα+ αµ µ

w − λ αµ

 , (51)

that enters the algorithm below, see the key formula (57).
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4.5.2. Eigenvector matrix. The eigenvectors of (51) with unit lower component are evaluated as:
1

2µ− 2w

(
wα+

√
w2α2 + 4wµ− 4µ2

)
1

↔ αµ− 1

2
wα− 1

2

√
w2α2 + 4wµ− 4µ2,


1

2µ− 2w

(
wα−

√
w2α2 + 4wµ− 4µ2

)
1

↔ αµ− 1

2
wα+

1

2

√
w2α2 + 4wµ− 4µ2.

Denoting:

q2 = 4w
(
k2 + λ

)
+ w2α2 − 4

(
k2 + λ

)2
, p = 2µ− 2w, (52)

we write the eigenmatrix as:

Ψ =

 1

p
(wα+ q)

1

p
(wα− q)

1 1

 . (53)

4.5.3. Algorithm of projectors construction. Denoting Λ̃ = diag{λi} the diagonal eigenvalue matrix, Ψ - eigenma-
trix, we transform the eigenproblem in k-domain:

L̃Ψ = ΨΛ̃, (54)

that is, by the way, the definition of Ψ, too:
L̃ = ΨΛ̃Ψ−1, (55)

or, in components, it gives the spectral decomposition of the matrix L̃:

L̃ij = ΨikΛ̃klΨ
−1
lj = ΨikλkΨ−1kj =

∑
k

λkΨikΨ−1kj =
∑
s

λs(P̃
s)ij . (56)

Where P̃ s are the k-transforms of the dynamic projecting operators [27]:

(P̃ s)ij = ΨisΨ
−1
sj , (57)

with the inverse to (53):

Ψ−1 =


1

2

p

q

1

2q
(q − wα)

−1

2

p

q

1

2q
(q + wα)

 .

Reading the relation (57), let us do the first step of the first projector construction in the form:

P 1 =

 wα+ q

p

1

( 1

2

p

q

1

2q
(q − wα)

)
=


1

2q
(q + wα)

1

2pq
(q + wα) (q − wα)

1

2

p

q

1

2q
(q − wα)

 .

Acting by the projector P 1 to the basic vector gives:
1

2q
(q + wα)

1

2pq
(q + wα) (q − wα)

1

2

p

q

1

2q
(q − wα)


 Z

W

 =


1

2

Z

q
(q + wα) +

1

2pq
W (q + wα) (q − wα)

1

2
Z
p

q
+

1

2q
W (q − wα)

 =

 (q + wα)

p
Π

Π

 ,

where the notation for the new field Π is introduced:

Π =
p

2q
Z +

q − wα
2q

W. (58)
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Going to the second step, in the direct analogy, we have:

P 2 =

 wα− q
p

1

( −1

2

p

q

1

2q
(q + wα)

)
=


1

2q
(q − wα) − 1

2pq
(q + wα) (q − wα)

−1

2

p

q

1

2q
(q + wα)

 ,

acting by the projector P 2 to the basic vector gives:
1

2q
(q − wα) − 1

2pq
(q + wα) (q − wα)

−1

2

p

q

1

2q
(q + wα)


 Z

W

 =


1

2

Z

q
(q − wα)− 1

2pq
W (q + wα) (q − wα)

q + wα

2q
W − 1

2
Z
p

q

 =

 (q − wα)

p
Λ

Λ

 ,

where the second field:
Λ =

q + wα

2q
W − p

2q
Z. (59)

is introduced. The inverse to (58,59) reads as:
W = Π + Λ, (60)

Z =
1

p
(−qΛ + qΠ + wαΛ + wαΠ) . (61)

4.5.4. Evolution dynamics splitting. Returning to the complete form of the evolution operator:

Lk =
J

1 + α2

 −wα+ αµ µ

−µ+ w αµ

 ,

we define the evolution vector as:

φ =

 Z

W

 ,

having:
φt = Lkφ. (62)

To split the problem, let us act by operators P 1,2 to Eq. (62), that commute with Lk. Hence. on a way to the variable
Π we obtain:

P sφt = LkP
sφ,

while the right side for s = 1 gives:

LkP
1φ =

J

1 + α2

 −wα+ αµ µ

−µ+ w αµ


 (q + wα)

p
Π

Π

 =

J

1 + α2

 µΠ− 1

p
Π (wα− αµ) (q + wα)

αµΠ +
1

p
Π (w − µ) (q + wα)

 .

Reading the second line, we see, that:

Πt =
J

1 + α2

−qµ+ w2α+ qw + pαµ− wαµ
p

Π = βΠ, (63)

where:

p = 2k2 − 2w + 2λ, µ = λ+ k2, β = J
−qµ+ w2α+ qw + pαµ− wαµ

p(1 + α2)
.

Finally, the function:
Π = C exp (βt) (64)
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solves the equation (63). Similar, for Λ-state, we evaluate:

LkP
2φ =

J

1 + α2

 −wα+ αµ µ

−µ+ w αµ


 − (q − wα)

p
Λ

Λ

 =

 JΛ
µ

α2 + 1
+ JΛ (wα− αµ)

q − wα
α2 + 1

JαΛ
µ

α2 + 1
− J

p
Λ (w − µ)

q − wα
α2 + 1

 ,

which gives:

JαΛ
µ

α2 + 1
− J

p
Λ (w − µ)

q − wα
α2 + 1

=
J

p

(q + pα)µ+ w(αw − q − αµ)

α2 + 1
Λ,

arriving at the equation:

Λt =
J

p

(q + pα)µ+ w(αw − q − αµ)

α2 + 1
Λ = ηΛ,

and its solution:
Λ = D exp (ηt) ,

where:

η = J
(q + pα)µ+ w(αw − q − αµ)

p(α2 + 1)
.

4.6. The solution of (45) pick up

4.6.1. One-term Ω′. For the reader’s convenience, we reproduce the result of Fourier one-term contribution via: (25):

Σ(ρ) = N−1/2ν,m Jν(
εm(ν)

ρ0
ρ), Ω′ = R+ iS. We further skip the normalizing factor and c.c. term, having

R(ϕ, ρ, z, t) = exp[iνϕ]Jν(
εm(ν)

ρ0
ρ)Z (z, t) , S = exp[iνϕ]Jν(

εm(ν)

ρ0
ρ)W (z, t) ,

adding results yields:

Ω′νm(k) = R+ iS = exp[iνϕ]Jν(εm(ν)
ρ

ρ0
) (Z + iW ) . (65)

Going to the Π,Λ variables, we transform:

Z + iW =

(
q + wα

p
+ i

)
C exp (βt) +

(
−q + wα

p
+ i

)
D exp (ηt) . (66)

4.6.2. Final expression. Taking the expressions for parameters (52), we rewrite:

q =

√
w2α2 + 4k2w − 4k4 − 4

ε4m
ρ40

+ 4w
ε2m
ρ20
− 8k2

ε2m
ρ20
, (67)

p = 2k2 − 2w + 2λ = 2k2 − 2w + 2
ε2m(ν)

ρ20
, (68)

which should be plugged in:

β = J
µ(pα− q − wα) + w2α+ qv

p(1 + α2)
,

η = J
µ(pα+ q − wα) + w2α− qw

p(1 + α2)
.

(69)

For the one-(transversal)-mode solution at z-domain we obtain:
Ω′νm(z, t) =

N−1/2ν,m Jν(εm(ν)
ρ

ρ0
)eiνφ

∫
dke−ikz

((
wα+ q

p
+ i

)
Ceβt +

(
wα− q
p

+ i

)
Deηt

)
+ c.c. (70)
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5. Two problems

5.1. Initiation of DW in experiment

A comprehensive review on nanowires and nanotubes physics was published recently [28, 29]. It contains a
description of the synthesis, magnetic properties and applications of magnetic cylindrical nanowires and nanotubes,
including single domain wall statics and dynamics, with very rich set of references. By ”nano” the authors conven-
tionally consider diameters reasonably smaller than a micrometer. One possibility to govern magnetoresistence by
light is studied theoretically in [30]. In a real experiments a DW creation is realized either in the vicinity of a distant
point from the ends [5] or at the end point vicinity [31]. In the first case, the DW is excited by a few-turns coin, the
measurement of its velocity is performed by similar coins shifted left and right, that pick up Faraday pulses. A similar
approach is used to measure the velocity in the second case as well, as it allows one to estimate the DW length via the
coin voltage form [31], The measurements of DW velocity exhibits conventionally a linear dependence on magnetic
field [32], however the presence of magnetic inhomogeneities forces a DW acceleration [5, 25].

A statement of problem at a vicinity of a wire end implies account of so-called ”stray field” [23].

5.2. Cauchy problem for a DW excitation far from ends

Let us consider the simplest case of complete cylindrical symmetry of solution, i.e. φ−independent solution, that
fixes the case ν = 0, taking the first Bessel mode, which determines the radial dependence.

As an initial condition, let us choose the delta-impulse posed at the z = 0 point, chosen far from a wire ends.
It mimics the excitation of the DW pair by a current pulse at a few-turn coin. Omitting the Bessel function factor
J0(ε1(0)

ρ

ρ0
) at (70), we impose the following condition:

Ω′′01(z, 0) =

∫
dk exp[−ikz]

((
q + wα

p
+ i

)
C +

(
−q + wα

p
+ i

)
D

)
= δ(z).

It yields:∫
dz exp[ik′z]

∫
dk exp[−ikz]

((
q + wα

p
+ i

)
C +

(
−q + wα

p
+ i

)
D

)
=

∫
dz exp[ik′z]δ(z) = 1,((

q(k) + wα

p(k)
+ i

)
C +

(
−q(k) + wα

p(k)
+ i

)
D

)
= 1.

It gives the following relations:

1. Zero imaginary part, that gives D = −C.

2. The real one reads: C
2q(k)

p(k)
= 1, or C(k) =

p(k)

2q(k)
.

Then, plugging the results into the relation (70), we arrive at:

Ω′′01(z, t) =
1

2

∫
dk exp[−ikz]

[(
q + wα

q
+ i

p

q

)
exp (βt)−

(
−q + wα

q
+ i

p

q

)
exp (ηt)

]
.

Let us introduce new parameters: A =
Jα

1 + α2

µ(p− w) + w2

p
, B =

Jq

1 + α2

−µα+ w

p
, having:

β = A+B, η = A−B.
Finally, in new notations,

Ω′′01(z, t) =
1

2

∫
dk exp[−ikz +At]

[(
wα

q
+ 1 + i

p

q

)
exp (Bt)−

(
wα

q
− 1 + i

p

q

)
exp (−Bt)

]
.

The parameters in the approximation α� 1, simplify as:

q = w

√
α2 + 4

k2

w
− 4(

k2

w
)2,

µ = k2 + λ0,1,
p

2w
=
k2

w
+
λ0.1
w
− 1,

A ≈ Jα (k2 + λ0,1)(2k2 − 3w + 2λ0.1) + w2

2k2 − 2w + 2λ0.1
,

B ≈ Jq−µα+ w

p
.

The linearity of the equations allows one to build more general solution as the mode superposition.
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5.3. DW dynamics, forced by magnetic field

5.3.1. Inhomogeneous system. Basic linear complex in-homogeneous equation is written as:

LΩl = (α+ i)Ωlt + J∇2Ωl +K<Ωl = γH, (71)

where: Ωl = Rl + iSl, that, adding and subtracting results for real and imaginary parts, yields:(
α+

1

α

)
Slt + J∇2Sl − 1

α
KRl +

J

α
∇2Rl = −γ

α
H,(

α+
1

α

)
Rlt +KRl + J∇2Rl +

1

α
J∇2Sl = γH.

Simplifying for the case of small relaxation term, α� 1, we arrive at the system:

Rlt + αKRl + αJ∇2Rl + J∇2Sl = αγH,

Slt + αJ∇2Sl −KRl − J∇2Rl = −γH.
Next, let us conventionally transform it to the matrix notation: Rl

Sl


t

+

 αK + αJ∇2 J∇2

−K − J∇2 αJ∇2

 Rl

Sl

 =

 αγH

−γH

 .

The general solution of the inhomogeneous system (c.c. and normalizing factor omitted) is given by two equalities:

Rl(ϕ, ρ, z, t) =
∑
ν,m

exp[iνϕ]Jν(εm(ν)r)Zlmν (z, t) , (72)

Sl =
∑
ν,m

exp[iνϕ]Jν(εm(ν)r)W l
mν (z, t) . (73)

Putting unit expansion at r.h.s., for example, for a given ν:

H(z, t) =
∑
m=1

amν(z, t)Jν(εm(ν)r) exp[iνϕ], (74)

we arrive at the two-component inhomogeneous system, transformed to matrix form. For such a transverse mode, the
system reads:

 Zlmν (z, t)

W l
mν (z, t)


t

+ αJ

 w − λmν + ∂zz
1

α
(−λmν + ∂zz)

λmν − ∂zz −
w

α
−λmν + ∂zz

 Zlmν (z, t)

W l
mν (z, t)

 =

 αγamν(z, t)

−γamν(z, t)

 .

5.3.2. Inhomogeneous system projecting. Now, it is convenient to apply projecting operators, in k-domain, putting:

amν(z, t) =

∫
dk exp[−ikz]ãmν(k, t), (75)

and, similar to homogeneous case, it is written: Z̃lmν (k, t)

W̃ l
mν (k, t)


t

+ αJ

 w − λmν − k2
1

α

(
−λmν − k2

)
λmν + k2 − w

α
−λmν − k2

 Z̃lmν (k, t)

W̃ l
mν (k, t)

 =

 αγãmν(k, t)

−γãmν(k, t)

 .

(76)

Denoting again, λmν + k2 = µ, we simplify the evolution operator for the approximate system as:

L = αJ

 w − µ − µ

α

µ− w

α
−µ

 . (77)

Let us show Maple-made eigenvectors and eigenvalues:
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 −
wα−

√
w2α2 + 4wµ− 4αµ2

2w − 2αµ

1

↔ 1

2α2

(
wα2 − 2α2µ

)
− 1

2α

√
w2α2 + 4wµ− 4αµ2,

 −
wα+

√
w2α2 + 4wµ− 4αµ2

2w − 2αµ

1

↔ 1

2α

√
w2α2 + 4wµ− 4αµ2 +

1

2α2

(
wα2 − 2α2µ

)
.

Going to the more compact form, we denote:

− wα

2w − 2αµ

(
1−

√
1 +

4µ

wα2
− 4µ2

w2α

)
= r (1− s) ,

where:

r = − wα

2w − 2αµ
, s =

√
1 +

4µ

wα2
− 4µ2

w2α
. (78)

5.3.3. The projectors and its application. The projector matrices are built by formula: (57) on base of the eigenma-
trix of the evolution operator L, see (77)

Ψ =

 r (1− s) r (1 + s)

1 1

 ,

and its inverse:  − 1

2rs

1

2s
(s+ 1)

1

2rs

1

2s
(s− 1)

 .

We write both projecting matrices as:

π1 =

 r (1− s)

1

( − 1

2rs

1

2s
(s+ 1)

)
=

 1

2s
(s− 1) −1

2

r

s

(
s2 − 1

)
− 1

2rs

1

2s
(s+ 1)

 ,

π2 =

 r (1− s)

1

( 1

2rs

1

2s
(s− 1)

)
=

 − 1

2s
(s− 1) −1

2

r

s
(s− 1)

2

1

2rs

1

2s
(s− 1)

 .

The action of π1,2 to the matrix equation (76), using the shorthand for the evolution vector: Z̃

W̃

 ,

gives:

αJ

 w − µ − µ

α

µ− w

α
−µ


 1

2s
(s− 1) −1

2

r

s

(
s2 − 1

)
− 1

2rs

1

2s
(s+ 1)


 Z̃

W̃

 =

 1

2s
Z̃ (s− 1)− 1

2

r

s
W̃
(
s2 − 1

)
1

2s
W̃ (s+ 1)− 1

2rs
Z̃

 .

The conventional notation:
(s+ 1)

2s
W̃ − 1

2rs
Z̃ = π, (79)

gives for the upper component, proportional to π: − (s− 1) rπ. The projecting operator at z-domain is the integral
operator with the kernel, that is expressed via r, s, as well as the formula for π is built as integral transform [27].
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Approximate equations for long wave range (small k) is obtained by expansion the matrix elements of π in k- power
series.

5.4. Relaxation equation in k-domain

The result in terms of the new variable π, see (79), we obtain, introducing the shorthand ãmν(k, t) = a, whence
the equation (76) projection reads as:

αJ

 w − µ − µ

α

µ− w

α
−µ

 − (s− 1) rπ

π

 =

 −πJµ− πJrα (w − µ) (s− 1)

−πJαµ− πJrα
(
µ− w

α

)
(s− 1)

 =

 1

2s
(s− 1) −1

2

r

s
(s− 1) (s+ 1)

− 1

2rs

1

2s
(s+ 1)


 αγa

−γa

 =

 1

2

a

q
αγ (s− 1) +

1

2
a
r

s
γ (s− 1) (s+ 1)

−1

2

a

s
γ (s+ 1)− 1

2

a

rs
αγ

 .

Plugging the expression for π (79) one arrives at the relaxation equation:

πt + J (−αµ− sw + sαµ+ rsw − rsαµ)π = −1

2
γ
r + α+ rs

sr
a.

Denoting:

o = J (−αµ− sw + sαµ+ rsw − rsαµ) , h = −1

2
γ
r + α+ rs

rs
a, (80)

where h is proportional to magnetic field, see (74). We transform:

πt + oπ = h, e−ot
(
πeot

)
t

= h,

having the solution for time-dependent homogeneous magnetic field switching at k-domain:

πeot =

t∫
0

h(τ)eoτdτ, π = e−ot
t∫

0

h(τ)eoτdτ.

For the constant magnetic field h(τ) = hθ(τ) and the zero initial condition gives:

π = e−ot
t∫

0

heoτdτ =
h

o

(
1− e−ot

)
, (81)

then, for a real o, o−1 is relaxation time of k-mode.

5.4.1. Back to the z-domain. The inverse Fourier transform gives:

Πmν(z, t) =
h

2π

∫
dk exp[−ikz]

(
1− e−o(k)t

)
o(k)

.

Plugging r = − wα

2w − 2αµ
, µ = λmν + k2 into o, we obtain the frequency:

o = −1

2
Jα
(
−w + 2λmν + sw + 2k2

)
. (82)

The dependence of o on k2 for real s is presented at Fig. 1, and, at the range of imaginary s at Fig. 2. The ”left”
variable is introduced in similar way via the projecting by π2.
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FIG. 1. The dependence of o/K on k2/w (black) is presented at range of real root expression
(green) for the values of parameters ν = 0,m = 1.

FIG. 2. The dependence of the real part of o/K on k2/w (black) and its imaginary part (red) is
presented at range of imaginary root expression for the same parameters values.

6. Stationary solution

6.1. Homogeneous equation

Stationary solutions for α� 1 of the system:

Zt = JλW −KZα− JWzz − JαZzz + JZαλ,

Wt = JZzz +KZ − JZλ− JαWzz + JαλW,

is conventionally expressed in terms of the coordinate ξ = z − ct. We write: Zt = −cZξ, Zzz = Zξξ, and get

−cZξ = JλW −KZα− JWξξ − JαZξξ + JZαλ,

−cWξ = JZξξ +KZ − JZλ− JαWξξ + JαλW,

which is the system of linear ODE. Its solution is searched by plugging the functions: Z = A exp (bξ) , W =
B exp (bξ) into the system, having:

−cbA = JλB −KAα− Jb2B − Jαb2A+ JAαλ, (83)
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and:
−cbB = Jb2A+KA− JλA− Jαb2B + JαλB. (84)

Solving the: equation (83) with respect to B, gives for b2 6= λ:

B =
1

Jλ− Jb2
(
AKα−Abc−AJαλ+AJb2α

)
.

Next, if, −Jλ+ Ja2 6= 0, plugging B in (84) yields:

J2b4α2 + J2b4 − 2J2b2α2λ− 2J2b2λ+ J2α2λ2 + J2λ2 − 2Jb3cα+KJb2α2+

KJb2 + 2Jbcαλ−KJα2λ−KJλ+ b2c2 −Kbcα = 0.

From this equation it follows the relation, that determine link between the velocity of the k-mode c and b. Solving it
with respect to c we write:

c =
1

2b

(
Kα− 2Jαλ+ 2Jb2α±

√
−4J2λ2 +K2α2 − 4J2b4 + 8J2b2λ+ 4JKλ− 4JKb2

)
.

Plugging Z,W into the expression for Ω, we write the transverse mode term as:

Z + iW = A exp (bξ)

[
1 +

i

Jλ− Jb2
(
Kα− bc− Jαλ+ Jb2α

)]
. (85)

We denote the roots of the under-square-root bi-quadratic expression as:

1

2

(
λ−

√
λ2 − 2Jλ2 + J2λ2 +K2 +

K2α2

J
+ 2Kλ− 2JKλ+ Jλ−K

)
= d1, (86)

1

2

(
λ+

√
λ2 − 2Jλ2 + J2λ2 +K2 +

K2α2

J
+ 2Kλ− 2JKλ+ Jλ−K

)
= d2, (87)

arriving at:

c = − 1

2b

(
Kα−

√
−4J (b2 − d1) (b2 − d2)− 2Jαλ+ 2Jb2α

)
.

We see, that the rhs is real, if b2 lies between the roots d1,2. If the roots are both positive, the case takes place for a
real b, otherwise b may be as real for b2 > 0, as imaginary, if b2 < 0. For a convenience of plotting, we rearrange the
formula for the velocity as:

c

b
= − d1

2b2

(
Kα

d1
−

√
4J

(
b2

d1
− 1

)(
d2
d1
− b2

d1

)
− 2Jαλ

d1
+ 2Jα

b2

d1

)
. (88)

The plot of
c

b
as the function of

b2

d1
∈ [0, 1], or b ∈ [0,

√
d1], is presented at the Fig. 3 for the following parameters

choice: K = 7.77 × 106, J = 1.5 × 10−11 in SI units and α = 0.016, see, e.g. [11]; next, we take: λ0,1 =
(2.4)2

ρ20
.

For estimation we choose ρ0 = 100 nm = 10−7 m, hence we get λ0,1 ≈ 5.8×1014. It results in d1 = −8.2121×106,
d2 = 5.8× 1014.

6.1.1. Inhomogeneous equation. The rhs of mode evolution equation (76) in the case of constant magnetic field may

be written as a shorthand

 αγãmν(k, t)

−γãmν(k, t)

 =

 αγa

−γa

, where ãmν is defined by (74). Its particular solution,

determined by constants Z = A, W = B satisfies the system:

JλB −KAα+ JAαλ+ αγa = 0,

KA− JAλ+ JαλB − γa = 0.
(89)

From the first equation of (89), we have:

B =
1

Jαλ
(aγ −AK +AJλ) .

Plugging it to the second one yields:
1

α
(aγ −AK +AJλ)−AKα+ aαγ +AJαλ = 0,
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FIG. 3. The dependence of the DW velocity c on b2/d1 within the range of real c, for b > 0, for the
chosen parameters values.

which gives:

A = a
γ

K − Jλ
, B = 0.

The general solution of an initial-boundary problem for (71) is, as was mentioned, the sum of general solution,
see (72,73), of homogeneous equation and the particular solution, defined by (89).

6.2. Magnetization vector

6.2.1. The magnetization vector components, general relations. In Cartesian coordinates the components of the
magnetization vector are expressed in terms of complex field Ω as follows:

mz =
exp(−<Ω)− exp(<Ω)

exp(<Ω) + exp(−<Ω)
,

mx =
exp(Ω) + exp(Ω∗)

1 + exp[2<Ω]
,

my = −iexp(Ω)− exp(Ω∗)

1 + exp[2<Ω]
.

(90)

In cylindrical coordinates, the components appear as combinations of the Cartesian ones as:

mz = mz,

mρ = mx cosφ+my sinφ,

mφ = mx sinφ+my cosφ,

(91)

for the geometry, see Fig. 4.

6.2.2. The domain wall. In approximations that were described through the presented text:

mz ' 1− exp(2<Ω′)

exp(2<Ω′) + 1
=

exp(−R)− exp(R)

exp(R) + exp(−R)
= tanhR,

where:

R(ϕ, ρ, z, t) =
∑
ν,m

exp[iνϕ]Jν(εm(ν)
ρ

ρ0
)Zlmν (z, t) + c.c.

The stationary solution motion is depicted at the Fig. 5, it shows the change of direction of magnetization to the
opposite one at asymptotic ”right” and ”left” sides of a DW center (ρ = 0).
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FIG. 4. Geometry. Vector ~m components in cylindrical coordinates, ρ < ρ0

FIG. 5. The stationary wall motion plot at bξ = −1 (green), 0 (black), 1 (red) for mz(ξ), ν = 0,
n = 1, ρ = 0

7. Conclusion

A detailed scheme for a DW creation dynamics, in terms of boundary-initial problems for zero and nonzero
external magnetic fields, is proposed. The solutions of the problems are presented in the form of a combination of
projections onto eigen subspaces of the evolution operators in k- and x-domains in respect to Fourier transformation.
The problem may be reformulated within the proposed scheme for anisotropy coefficient depending on ρ, φ, as well
as for coordinate-dependent external magnetic field.
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