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Weak polarization-optical responses of diluted magnetic nanofluid probed
by laser radiation with polarization modulation
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A sensitive laser registration of weak polarization-optical responses was used for the investigations of dilute magnetic nanofluids. Criteria for weak
and strong signals for probing of sample by laser radiation with deep modulation of polarization were considered. The magneto-optical responses
of a kerosene-based fluid with magnetite nanoparticles were investigated over a wide (five orders of magnitude) range of concentrations. Weak
polarization responses for this nanofluid were observed at record low volume concentrations of nanoparticles up to 10−7.
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1. Introduction

Magnetic nanofluids have attracted the attention of researchers to this day, and the particular interest in them is
associated with the emergence of a number of new proposals for their application in optoelectronics, biomedicine,
and other areas [1]. The main properties of these materials were established several decades ago [1–5], however they
cannot be considered quite definitively studied. At present, magnetic nanofluids continue to be investigated from
different points of view and by different methods, among which, optical analyses take an important place [1–5].

Approaches based on the use of light polarization are very informative and successfully complement magneto-
metric experiments [2–5]. In particular, the use of polarization modulation seems to be promising [6], and this has
already been demonstrated in the study of different objects [7–12], although as applied to magnetic nanofluids the
advantages of this method were not widely used.

Nonstationary laser polarization-optical probing in the original combination with a differential photodetection
scheme allows one to achieve a very high sensitivity of optical measurements up to a threshold that is limited only
by natural (quantum, photonic) noise of radiation [13–15]. Earlier, by the methodology developed on this basis, we
investigated the polarization characteristics of various objects, including optical elements with a high degree of optical
and structural homogeneity [16], magnetically ordered materials [17], and perfect optical crystals, including those
with a modified crystal structure [15]. A preliminary polarization-optical diagnostics of magnetic fluids was also
performed [18]. This paper presents the results of a study of weak polarization responses obtained for a wide range of
concentrations in experiments with magnetic nanofluid probing by laser radiation with polarization modulation.

2. Experimental details

2.1. Setup

A simplified diagram of the experimental setup adapted for the study of magnetic nanofluids is shown in Fig. 1
(see also [16–18]). Probing laser radiation (λ = 0.63µ) passes through a polarization modulator, a cuvette with a
magnetic nanofluid, and enters a polarization analyzer, where polarization-sensitive optical detection and preliminary
processing of the photosignal performed, and then the signal enters the registration system and the computer. A cuvette
with a magnetic fluid is placed in a transverse magnetic field H , which is created by solenoids. This field is linearly
swept at values ranging from −45 to +45 Oe.

The analytical signal of the experimental setup, i.e., the observed polarization-optical response ϕ can be rep-
resented as follows: ϕ = ϕ0 sin ∆. Here, ϕ0 is a scale factor that takes into account, in particular, the degree of
polarization modulation; ∆ is the phase difference of two orthogonal linearly polarized components of the probing



Weak polarization-optical responses of diluted magnetic nanofluid... 61

FIG. 1. Experimental setup

light arising as a result of passing through the object under study. Thus, the measured quantity is birefringence (linear
optical anisotropy) of the magnetic fluid induced by an external magnetic field [16–18]. Further, we assume that the
scale of the output signals is calibrated in units of the measured anisotropy (in our case, in angular minutes). A detailed
description of the measurement and calibration procedures is given in [16–18].

2.2. Weak polarization responses

In a number of practical cases it is important to investigate samples with small optical anisotropy [16–19]. Our
proposed natural criterion for the smallness of anisotropy is based on the inequality ∆ � 1 rad [14]. When it is so,
sin ∆ ∼ ∆ and the dependence ϕ(∆) becomes linear. The degree of linearity of the function ϕ(∆) depends on how
well this inequality is fulfilled. In the opposite case, when ∆ > 1 rad, the anisotropy under study should be considered
strong.

Polarization responses ϕ corresponding to weak anisotropy ∆ might also be called weak signals (weak responses),
in spite of this, the output signals can be quite large in absolute terms. Except to linearity, the region of weak signals
has another very useful property – the additivity of responses: the total response of a system of samples ϕΣ is equal
to the sum of their individual responses ϕi: ϕΣ = Σiϕi [16].

The threshold value of the measured birefringence ∆th, determined by the natural noise of the photo registration
process, is rather small and, according to the criterion considered above, is in the area of weak responses. Thus, for the
power of the used laser is on the order of 1 mW, the value of ∆th is about 1.5 · 10−4 ang. min. (respectively, the value
of ϕth is also about 1.5 · 10−4 ang. min.) [13, 14, 19, 20]. In practice, the minimum value of the recorded response
can often be limited, for example, by fluctuations of the laser radiation parameters used and other instrumental factors,
which requires careful organization of the measuring procedure [17, 18, 21].

To register weak polarization responses, we have provided the ability of precise adjustment of the transmission
coefficient of the optoelectronic path in the range of more than three orders of magnitude with retention the calibration.
Also, the accumulation of the signal during the implementation of series of multiple, up to twenty times, scanning of
the magnetic field was provided.

2.3. Samples

The investigation was carried out on the kerosene-based magnetite solutions, prepared by the technique, described
in [22] (the samples were the same as was used in [18, 23]). The solid phase, dispersed in carrying fluid consisted
of Fe3O4 particles with a characteristic size of about 10 nm, coated by a surfactant (oleic acid). It is well known
that at such sizes, ferrimagnetically ordered magnetite particles are single-domain and, in total, represent a system of
independent magnetic moments that can be affected by an external magnetic field [1, 3]. Thus, this two-component
liquid (solid phase and solvent) is a nanostructure with magnetic properties. An important manifestation of the latter
is that under the field action, this magnetic nanostructure takes on an optical anisotropy. This phenomenon of forming
the optically anisotropic medium becomes possible due to the fact that magnetic particles themselves have a shape
anisotropy and they can also accumulate into elongated agglomerates [2–4].

The material was a colloid synthesized by hydrolysis of iron chloride and sulfate solutions with ammonia followed
by extraction of magnetite nanoparticles with a solution of oleic acid. This technology makes it possible to obtain a
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ferrofluid containing particles with a surface covered with a layer of surfactant (the thickness of which is much less
than the diameter of their magnetic core) and an easily determined volume concentration of the solid phase [22].

Our experiments on observing field-induced birefringence started from the sample with concentration of 1 · 10−2

(which ensured sufficient transparency of the nanofluid in a 1 cm-thick cuvette), with its further successive dilutions
up to 1 · 10−7.

3. Experimental results

In Fig. 2 the dots show the measured polarization response vs H , for the nanofluid with initial concentration. To
obtain a quantitative estimate of its value, a parabolic approximation was applied, which is shown in figure by the solid
line. As one can see, it gives a fairly good agreement with the experiment, although there are some minor deviations.
(A more detailed analysis of the similarity of the observed functions ϕ(H), as well as a comparative analysis of their
analytical approximations over a range of three orders of magnitude on concentration were carried out in [18,24,25].)
Fig. 3 depicts the similar dependencies for the sample with minimal investigated concentration.

FIG. 2. Polarization responses for the concentration of 1 · 10−2

The scatter of experimental data in this case can be explained by instrumental factors and, probably, by intrinsic
fluctuations in the studied nanofluid.

FIG. 3. Polarization responses for the concentration of 1 · 10−7

From the obtained results, it is obvious that the value of parabolic fitting function taken at some fixed H can be
regarded as magnitude of the response ϕ (further we usedH = 43 Oe). In Fig. 4 the dependence of ϕ on concentration
is shown; the figure also shows it is a linear approximation. Note that the measurement at the end of the range with
minimal concentration indicates a very high sensitivity of the method used.
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FIG. 4. Polarization response versus concentration of magnetic nanoparticles (H = 43 Oe)

4. Discussion

The similarity of ϕ(H) functions over a very wide range suggests the physical mechanism of birefringence in
a magnetic nanofluid to be generally the same for both relatively large (10−2) and very small (10−7) concentrations
of solid phase. At low concentrations, the nature of polarization responses cannot be entirely determined by the
aggregates of nanoparticles induced by the field (we do not exclude, however, that this effect to some extent is present).
This means, that for large concentrations, this mechanism may not be the only one. (In more detail, this fact is
discussed in [18, 24, 25]).

Frequently used model for the birefringence in magnetic nanofluids is based on the idea of the orientation of
individual nanoparticles in magnetic field [1–4]. In the theory developed in [2, 4] the total anisotropy of the fluid is
determined by the sum of contributions from individual non-spherical particles, taking into account their orientation
with respect to the field direction. Such a model results in linear dependence of ∆ on the number of magnetic particles.

This concept is in accordance with the linearity of the experimentally observed dependence ϕ(∆) and with ad-
ditivity of weak polarization responses for magnetic nanofluid under study (see also [18, 24, 25]). It is possible that
up to those concentrations that in this work are considered as high, the influence of aggregates is still small. Further
clarification of the proportion between contributions from aggregates and individual particles can probably be obtained
by studying the dynamic characteristics of the investigated medium.

5. Conclusion

Our experiments have demonstrated a very high potency of the probing a magnetic nanofluid by laser radiation
with polarization modulation. This way made it possible to detect the optical responses for a record low concentration
of the solid phase (10−7).

It was found that over a very wide range of changes in the concentrations of the solid phase in nanofluids, at
low magnetic fields (H < 45 Oe), birefringence is determined by one dominant mechanism, which is most likely
associated with the anisotropy of the particle’s shape.

In our opinion, the approach used in this work can be extended further, for example, to magnetic fluids modified
by different additives, to impurity centers and defects in solids, biological tissues and others.

This work was performed in the framework of State tasks 075-01073-20-00 on the topic No. 0074-2019-0007 of
the Ministry of Science and Higher Education of the Russian Federation.
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