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Analysis of the spectrum of a 2× 2 operator matrix. Discrete spectrum asymptotics
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We consider a 2 × 2 operator matrix Aµ, µ > 0 related with the lattice systems describing two identical bosons and one particle, another nature
in interactions, without conservation of the number of particles. We obtain an analog of the Faddeev equation and its symmetric version for the
eigenfunctions ofAµ. We describe the new branches of the essential spectrum ofAµ via the spectrum of a family of generalized Friedrichs models.
It is established that the essential spectrum of Aµ consists the union of at most three bounded closed intervals and their location is studied. For
the critical value µ0 of the coupling constant µ we establish the existence of infinitely many eigenvalues, which are located in the both sides of the
essential spectrum ofAµ. In this case, an asymptotic formula for the discrete spectrum ofAµ is found.
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1. Introduction and statement of the problem

It is well-known that [1], ifH is a bounded linear operator in a Hilbert spaceH and a decompositionH = H1⊕H2

into two Hilbert spacesH1,H2 is given, then H always admits a block operator matrix representation

H =

 H11 H12

H21 H22


with bounded linear operators Hij : Hj → Hi, i, j = 1, 2. In addition, H = H∗ if and only if Hii = H∗ii, i = 1, 2
and H21 = H∗12. Such operator matrices often arise in mathematical physics, e.g., in quantum field theory, condensed
matter physics, fluid mechanics, magnetohydrodynamics and quantum mechanics. One of the special class of 2 × 2
block operator matrices is the Hamiltonians acting in the one- and two-particle subspaces of a Fock space. It is related
with a system describing three-particles in interaction without conservation of the number of particles in Fock space.
Here, off-diagonal entries of such block operator matrices are annihilation and creation operators.

Operator matrices of this form play a key role for the study of the energy operator of the spin-boson Hamiltonian
with two bosons on the torus. In fact, the latter is a 6 × 6 operator matrix which is unitarily equivalent to a 2 × 2
block diagonal operator with two copies of a particular case of H on the diagonal, see e.g. [2]. Consequently, the
location of the essential spectrum and finiteness of discrete eigenvalues of the spin-boson Hamiltonian are determined
by the corresponding spectral information on the operator matrix H . We recall that the spin-boson model is a well-
known quantum-mechanical model which describes the interaction between a two-level atom and a photon field. We
refer to [3] and [4] for excellent reviews from physical and mathematical perspectives, respectively. Independently
of whether the underlying domain is a torus Td or the whole space Rd, the full spin-boson Hamiltonian is an infinite
operator matrix in Fock space for which rigorous results are very hard to obtain. One line of attack is to consider the
compression to the truncated Fock space with a finite number N of bosons, and in fact most of the existing literature
concentrates on the case N ≤ 2. For the case of Rd there are some exceptions, e.g. [5,6] for arbitrary finite N and [7]
for N = 3, where a rigorous scattering theory was developed for small coupling constants.

For the case when the underlying domain is a torus, the spectral properties of some versions ofH were investigated
in [8–11]. An important problem of the spectral theory of such matrix operators is the infiniteness of the number
of eigenvalues located outside the essential spectrum. We mention that, the infiniteness of the discrete eigenvalues
below the bottom of the essential spectrum of the Hamiltonian in Fock space, which has a block operator matrix
representation, and corresponding eigenvalue asymptotics were discussed in [8]. These results were obtained using
the machinery developed in [12] by Sobolev.

In the present paper we consider a 2×2 operator matrixAµ, (µ > 0 is a coupling constant) related with the lattice
systems describing two identical bosons and one particle, another nature in interactions, without conservation of the
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number of particles. This operator acts in the direct sum of one- and two-particle subspaces of the bosonic Fock space
and it is related with the lattice spin-boson Hamiltonian [2, 13]. We find the critical value µ0 of the coupling constant
µ, to establish the existence of infinitely many eigenvalues lying in both sides of essential spectrum of Aµ0 and to
obtain an asymptotics for the number of these eigenvalues.

We point out that the latter assertion seems to be quite new for the discrete models and similar result have not
been obtained yet for the three-particle discrete Schrödinger operators and operator matrices in Fock space. In all
papers devoted to the infiniteness of the number of eigenvalues (Efimov’s effects), the situation on the neighborhood
of the left edge of essential spectrum are discussed, see for example [8–10, 14–16]. Since the essential spectrum
of the three-particle continuous Schrödinger operators [12, 17, 18] and standard spin-boson model with at most two
photons [19, 20] coincides with half-axis [κ; +∞), the main results of the present paper are typical only for lattice
case, and they do not have analogs in the continues case.

Now, we formulate the problem. Let T3 be the three-dimensional torus, the cube (−π, π]3 with appropriately
identified sides equipped with its Haar measure. Let L2(T3) be the Hilbert space of square integrable (complex)
functions defined on T3 and Ls

2((T3)2) be the Hilbert space of square integrable (complex) symmetric functions
defined on (T3)2. Denote byH the direct sum of spacesH1 := L2(T3) andH2 := Ls

2((T3)2), that is,H := H1⊕H2.
The spaces H1 and H2 are called one- and two-particle subspaces of a bosonic Fock space Fs(L2(T3)) over L2(T3),
respectively.

Let us consider a 2× 2 operator matrix Aµ acting in the Hilbert spaceH as:

Aµ :=

 A11 µA12

µA∗12 A22


with the entries

(A11f1)(k) = w1(k)f1(k), (A12f2)(k) =

∫
T3

f2(k, s)ds,

(A22f2)(k, p) = w2(k, p)f2(k, p), fi ∈ Hi, i = 1, 2.

Here, µ > 0 is a coupling constant, the functions w1(·) and w2(·, ·) have the form

w1(k) := ε(k) + γ, w2(k, p) := ε(k) + ε(
1

2
(k + p)) + ε(p)

with γ ∈ R and the dispersion function ε(·) is defined by:

ε(k) :=

3∑
i=1

(1− cos ki), k = (k1, k2, k3) ∈ T3, (1.1)

A∗12 denotes the adjoint operator to A12 and

(A∗12f1)(k, p) =
1

2
(f1(k) + f1(p)), f1 ∈ H1.

Under these assumptions, the operator Aµ is bounded and self-adjoint.
We remark that the operators A12 and A∗12 are called annihilation and creation operators [21], respectively. In

physics, an annihilation operator is an operator that lowers the number of particles in a given state by one, a creation
operator is an operator that increases the number of particles in a given state by one, and it is the adjoint of the
annihilation operator.

2. Faddeev’s equation and essential spectrum of Aµ

In this section, we obtain an analog of the Faddeev type integral equation for eigenvectors of Aµ and investigate
the location and structure of the essential spectrum of Aµ.

Throughout the present paper we adopt the following conventions: Denote by σ(·), σess(·) and σdisc(·), respec-
tively, the spectrum, the essential spectrum, and the discrete spectrum of a bounded self-adjoint operator.

Let H0 := C. To study the spectral properties of the operator Aµ, we introduce a family of bounded self-adjoint
operators (generalized Friedrichs models) Aµ(k), k ∈ T3 which acts inH0 ⊕H1 as 2× 2 operator matrices:

Aµ(k) :=

 A00(k)
µ√
2
A01

µ√
2
A∗01 A11(k)

 ,
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with matrix elements:

A00(k)f0 = w1(k)f0, (A01f1) =

∫
T3

f1(t)dt,

(A11(k)f2)(p) = w2(k, p)f1(p), fi ∈ Hi, i = 1, 2.

From the simple discussions it follows that σess(Aµ(k)) = [m(k),M(k)], where the numbers m(k) and M(k)
are defined by:

m(k) := min
p∈T3

w2(k, p), M(k) := max
p∈T3

w2(k, p). (2.1)

For any k ∈ T3 we define an analytic function: I(k ; ·) in C \ σess(Aµ(k)) by

I(k ; z) :=

∫
T3

dt

w2(k, t)− z
.

Then the Fredholm determinant associated to the operator Aµ(k) is defined by:

∆µ(k ; z) := w1(k)− z − µ2

2
I(k ; z), z ∈ C \ σess(Aµ(k)).

A simple consequence of the Birman–Schwinger principle and the Fredholm theorem implies that for the discrete
spectrum of Aµ(k), the equality:

σdisc(Aµ(k)) = {z ∈ C \ [m(k);M(k)] : ∆µ(k ; z) = 0}

holds.

We set:

m := min
k,p∈T3

w2(k, p), M := max
k,p∈T3

w2(k, p),

Λµ :=
⋃
k∈T3

σdisc(Aµ(k)), Σµ := [m;M ] ∪ Λµ.

For each µ > 0 and z ∈ C \ Σµ we define the integral operator Tµ(z) acting in the Hilbert spaces L2(T3) by

(Tµ(z)g)(p) =
µ2

2∆µ(p; z)

∫
T3

g(t)dt

w2(p, t)− z
.

The following theorem is an analog of the well-known Faddeev’s result for the operator Aµ and establishes a
connection between eigenvalues of Aµ and Tµ(z).
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Theorem 2.1. The number z ∈ C \ Σµ is an eigenvalue of the operator Aµ if and only if the number λ = 1 is an
eigenvalue of the operator Tµ(z). Moreover, the eigenvalues z and 1 have the same multiplicities.

We point out that the integral equation g = Tµ(z)g is an analog of the Faddeev type system of integral equations
for eigenfunctions of the operator Aµ and it is played crucial role in the analysis of the spectrum of Aµ. For the proof
of Theorem 2.1 we show the equivalence of the eigenvalue problem Aµf = zf to the equation g = Tµ(z)g.

The following theorem describes the location of the essential spectrum of the operator Aµ by the spectrum of the
family of generalized Friedrichs models Aµ(k).

Theorem 2.2. For the essential spectrum of Aµ, the equality σess(Aµ) = Σµ holds. Moreover, the set Σµ consists of
no more than three bounded closed intervals.

The inclusion Σµ ⊂ σess(Aµ) in the proof of Theorem 2.2 is established with the use of a well-known Weyl
creterion, see for example [11]. An application of Theorem 2.1 and analytic Fredholm theorem (see, e.g., Theorem
VI.14 in [18]) proves inclusion σess(Aµ) ⊂ Σµ.

In the following we introduce the new subsets of the essential spectrum of Aµ.

Definition 2.3. The sets Λµ and [m;M ] are called two- and three-particle branches of the essential spectrum of Aµ,
respectively.

The definition of the set Λµ and the equality⋃
k∈T3

[m(k);M(k)] = [m;M ]

together with Theorem 2.2 give the equality

σess(Aµ) =
⋃
k∈T3

σ(Aµ(k)). (2.2)

Here the family of operators Aµ(k) have a simpler structure than the operator Aµ. Hence, in many instances, (2.2)
provides an effective tool for the description of the essential spectrum.

Using the extremal properties of the function w2(·, ·), and the Lebesgue dominated convergence theorem one can
show that the integral I(0; 0) is finite, where 0̄ := (0, 0, 0) ∈ T3, see [22, 23].

For the next investigations we introduce the following quantities

µ0
l (γ) :=

√
2γ
(
I(0, 0)

)−1/2
for γ > 0;

µ0
r(γ) :=

√
24− 2γ

(
I(0, 0)

)−1/2
for γ < 12.

Since T3 is compact, and the functions ∆µ(·; 0) and ∆µ(·; 18) are continuous on T3, there exist points k0, k1 ∈ T3

such that the equalities

max
k∈T3

∆µ(k; 0) = ∆µ(k0; 0), min
k∈T3

∆µ(k; 18) = ∆µ(k1; 18)

hold.
Let us define the following notations:

γ0 :=

(
12
I(k0; 0)

I(0; 0)
− ε(k0)

)(
1 +

I(k0; 0)

I(0; 0)

)−1

;

γ1 := (18− ε(k1))

(
1− I(k1; 18)

I(0; 0)

)
.

We denote:

E(1)
µ := min {Λµ ∩ (−∞; 0]} ;E(2)

µ := max {Λµ ∩ (−∞; 0]} ;

E(3)
µ := min {Λµ ∩ [18;∞)} ;E(4)

µ := max {Λµ ∩ [18;∞)} .

We formulate the results, which precisely describe the structure of the essential spectrum of Aµ. The structure of
the essential spectrum depends on the location of the parameters µ > 0 and γ ∈ R.
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Theorem 2.4. Let µ = µ0
r(γ), with γ < 12. The following equality holds

σess(Aµ) =


[E1;E2]

⋃
[0; 18], if γ < γ0;

[E1; 18], if γ0 ≤ γ < 6;
[0; 18], if 6 ≤ γ < 12.

Theorem 2.5. Let µ = µ0
l (γ), with γ > 0. The following equality holds:

σess(Aµ) =


[0; 18], if 0 < γ ≤ 6;

[0;E(4)
µ ], if 6 < γ ≤ γ1;

[0; 18]
⋃

[E(3)
µ ;E(4)

µ ], if γ > γ1.

The proof of these two theorems are based on the existence conditions of the eigenvalue zµ(k) of the operator
Aµ(·) and the continuity of zµ(·) on its domain.

3. Birman–Schwinger principle and discrete spectrum asymptotics of the operator Aµ

Let us denote by τmin(Aµ) and τmax(Aµ) the lower and upper bounds of the essential spectrum σess(Aµ) of the
operator Aµ, respectively, that is,

τmin(Aµ) :≡ minσess(Aµ), τmax(Aµ) :≡ maxσess(Aµ).

For an interval ∆ ⊂ R, E∆(Aµ) stands for the spectral subspace of Aµ corresponding to ∆. Let us denote by
]{·} the cardinality of a set and by N(a,b)(Aµ) the number of eigenvalues of the operatorAµ, including multiplicities,
lying in (a, b) ⊂ R \ σess(Aµ), that is,

N(a,b)(Aµ) := dimE(a,b)(Aµ).

For a λ ∈ R, we define the number n(λ,Aµ) as follows

n(λ,Aµ) := sup{dimF : (Aµu, u) > λ, u ∈ F ⊂ H, ||u|| = 1}.

The number n(λ,Aµ) is equal to the infinity if λ < maxσess(Aµ); if n(λ,Aµ) is finite, then it is equal to the
number of the eigenvalues of Aµ bigger than λ.

By the definition of N(a;b)(Aµ), we have

N(−∞;z)(Aµ) = n(−z,−Aµ), −z > −τmin(Aµ),

N(z;+∞)(Aµ) = n(z,Aµ), z > τmax(Aµ).

In our analysis of the discrete spectrum of Aµ, the crucial role is played by the compact operator T̂µ(z), z ∈
R \ [τmin(Aµ); τmax(Aµ)] in the space L2(T3) as integral operator

(T̂µ(z)g)(p) =
µ2

2
√

∆µ(p; z)

∫
T3

g(t)dt√
∆µ(t; z)(w2(p, t)− z)

, for z < τmin(Aµ),

(T̂µ(z)g)(p) = − µ2

2
√
−∆µ(p; z)

∫
T3

g(t)dt√
−∆µ(t; z)(w2(p, t)− z)

, for z > τmax(Aµ).

The following lemma is a realization of the well-known Birman–Schwinger principle for the operatorAµ (see [8]).
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Lemma 3.1. For z ∈ R \ [τmin(Aµ); τmax(Aµ)] the operator T̂µ(z) is compact and continuous in z and

N(−∞;z)(Aµ) = n(1, T̂µ(z)) for z < τmin(Aµ),

N(z;+∞)(Aµ) = n(1, T̂µ(z)) for z > τmax(Aµ).

This lemma can be proven quite similarly to the corresponding result of [8].
Let S2 being the unit sphere in R3 and

Sr : L2((0, r), σ0)→ L2((0, r), σ0), r > 0, σ0 = L2(S2)

be the integral operator with the kernel

S(t; y) =
25

8π2
√

6

1

5 cos(hy) + t
,

y = x− x′, x, x′ ∈ (0, r), t = (ξ, η), ξ, η ∈ S2.

For λ > 0, define

U(λ) =
1

2
lim
r→∞

r−1n(λ, Sr).

The existence of the latter limit and the fact U(1) > 0 shown in [12].
From the definitions of the quantities µ0

l (γ) and µ0
r(γ), it is easy to see that µ0

l (6) = µ0
r(6). We set µ0 := µ0

l (6).
We can now formulate our last main result.

Theorem 3.2. The following relations hold:

](σdisc(Aµ0) ∩ (−∞, 0)) = ](σdisc(Aµ0) ∩ (18,∞)) =∞;

lim
z↗0

N(−∞, z)(Aµ0)

| log |z||
= lim
z↘18

N(z,∞)(Aµ0
)

| log |z − 18||
= U(1). (3.1)

Clearly, by equality (3.1), the infinite cardinality of the parts of discrete spectrum of Aµ0 in (−∞; 0) and
(18; +∞) follows automatically from the positivity of U(1).
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[4] Hübner M., Spohn H. Radiative decay: nonperturbative approaches. Rev. Math. Phys., 1995, 7 (3), P. 363–387.
[5] Gérard C. Asymptotic completeness for the spin-boson model with a particle number cutoff. Rev. in Math. Phys., 1996, 8 (4), P. 549–589.
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