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The Heisenberg theory of ferromagnetism is widened to include external electric field action. The material relations are derived by means of
differentiation of logarithm of partition function with respect to the magnetic and electric fields. The mean energy coefficients as the exchange
integrals combinations are expressed via characters of irreducible representations of corresponding permutation groups by the Heitler method. The
thermodynamic equations of state for polarization and magnetization, as functions of the electric and magnetic fields, are derived and illustrated
by figures. The magnetization and hysteresis curves in magnetization – magnetic field components plane are built. The theory is applied to
nanoparticles, the particle partition function is modeled as the product of the surface and bulk parts. The statistical sum is constructed having
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contribution of the surface and bulk terms is evaluated.
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1. Introduction

1.1. General remarks

An exchange integral for electron pair interaction enters the theory of magnetic phenomena as a basic notion
from times of pioneer paper of Heisenberg [1]. In majority of papers on magnetic phenomena applications it is used
as a unique parameter, conventionally established by experiments for a given class of matter [2]. A main result of
the Heisenberg work is the relation that includes the matter parameters, temperature and magnetic field. It contains
information of the distribution of atoms in space via number of closest neighbors z. This relation is an transcen-
dental equation for the magnetization vector component, that, dependent on the matter parameters values, has one
or two solutions. The last is identified with ferro-magnetism existence. Its estimation by the Heitler-London model
approximation, as it is made in [1] can be improved by Fockian eigenfunctions [3], which, however, is a complicated
numerical task.

This seminal paper [1] theory exhibits the next important ingredient of the multi-electrons’ system natural sym-
metry, with respect to the permutation group. Following [4], it uses evaluation of mean energy for a given irreducible
representation of this group, expressing it explicitly via exchange integrals. On same platform, explicit formulas for
mean quadratic deviations of the energy is derived by Heisenberg [1] and used for energy distribution modeling in
Gaussian form. Some natural critics of this theory is published in [5] with respect to its applicability to the case of 8
nearest neighbors case (Fe), but exhibits a good physical realization for a 12 neighbors matter (Ni,Co), illustrated by
comparison with experiments [6, 7].

The ab initio models such as Brillouin or Langevin ones developed by Weiss either in a framework of molecu-
lar theory, or in combination with the phenomenology of Landau, improves paramagnetic domain description for a
ferromagnetic matter, but not so good in a hysteresis curves production [8, 9]. It also do not take into account the
fundamental permutation group symmetry.

In [10] Nakano represents the results with the lower (compared to Heisenbergs’) minimal number of closest
neighbors z = 6, that opens a possibility of using this model for Iron. Next, W. Heisenberg [11] develops the theory
with the domain walls account. The whole story of the ferromagnetism theory, related to Heisenberg contributions, is
outlined in [12].

According to Kondorsky classification [13], there are three main causes of hysteresis: 1) Hysteresis due to a delay
in the displacement of boundaries between domains. 2) Hysteresis due to growth retardation of the magnetization
reversal of nucleation. 3) Hysteresis due to irreversible rotation.
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It is known that the continuous version of Heisenberg chain equation with Gilbert term account [14] may explain
existence of domain walls (DW). An energy of a DW and conditions of its creation may be estimated in terms of
exchange integral and anisotropy coefficient. The first is proportional to the so-called exchange stiffness and the
second is related to a distribution of atoms in space [15].

The hysteresis curve for nanocrystallized soft magnetic systems was extracted from the intrinsic switching field
distribution of the sample, as it is simulated with a combination of a Gaussian distributions [16], that has an intersection
of ideas with [11]; other approach is based on the solid base of Landau-Lifshitz-Gilbert equations [17].

The model we presented recently is a generalization of Heitler-Heisenberg method of energy mean values and
mean quadratic deviations of the energy derivation by explicit formulas via characters of irreducible representation
of permutation group. The generalizations widen the symmetry group including space transformation and external
electric field [3]. As a consequence of a difference between the nearest neighbors relative distance, fixed by positions
in an atomic net, two kinds of the exchange integrals were introduced.

In this work, going down with dimension of objects under consideration from macroscopic to mesoscopic such as
“fine particles” or “nanoparticles”, we should take into account a relative weight of surface atoms in the whole object
description [18]. There is important direction of the Barium titanate (BTO) nanoparticles investigations [19] related
to the ferroelectricity phenomenon, known from times of [20].

The magnetoelectric effect has tremendous potential applications. Transition metal oxides provide a fertile play-
ground for such phenomena. First-principles methods to study magnetoelectric phenomena are reviewed in the present
text.

The search for materials displaying a large magnetoelectric effect has occupied researchers for many decades [21].
The rewards could include not only advanced electronics technologies, but also fundamental insights concerning
the dielectric and magnetic properties of condensed matter. In this article, we focus on the magnetoelectric effect
(e.g. in transition metal oxides) and review the manner in which first-principles calculations have helped guide the
search for (and increasingly, predicted) new materials and shed light on the microscopic mechanisms responsible for
magnetoelectric phenomena [22].

In this paper, we plan to go by the second way, introducing three kinds of the parameters (integrals) that link
atoms as 1) bulk-bulk; 2) surface-surface; 3) bulk-surface.

The Heisenberg sum by atoms in such division would be shared to three subsums, with corresponding factors
J1, J2, J3. The statistical sum is correspondingly factorized. In this note, to show the principle, we restrict ourselves
by two terms, unifying the last two parts, deriving and illustrating matter relations, including hysteresis curves for the
simplest bulk case and bulk-surface.

1.2. Notations. Partition function. Thermodynamics

Let a Hamiltonian Ĥ be a function of external thermodynamic parameter a, which is conjugate to the internal
parameterB, so that the elementary work is equal toBda.Within the framework of the equilibrium quantum statistical
physics, for given Boltzmann constant k and temperature T , the Gibbs operator [23]

f̂ =
1

Z
exp[− Ĥ

kT
],

contains the normalization constant,

Z = Tr
[

exp[
−Ĥ
kT

]
]
, (1)

called a statistical sum (partition function). Then

B = −kT ∂ lnZ

∂a
. (2)

In this text we shall consider two pairs of the parameters: a,B → H,M ; E,P , these are the component of magnetic
field versus component of magnetization vector; the component of electric field versus component of polarization
vector. For the sake of clarity, we act in a projection of all fields to one direction, so the Hamiltonian is a function of
the magnetic and electric fields components along the marked direction Ĥ = Ĥ(H,E). If the Hamiltonian is divided
in few terms as Ĥ = Ĥ1 + Ĥ2, the partition function is factorized as Z = Z1Z2, hence the thermodynamic variable

− B

kT
=
∂ lnZ1Z2

∂a
=
∂ lnZ1

∂a
+
∂ lnZ2

∂a
(3)

correspondingly splits.
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2. Heisenberg relation and hysteresis existence condition

2.1. Origin of the Heisenberg relation

We start with the bulk case. After transformations, described in [24] (some explanations are given in subsequent
sections) the partition function Z, defined by (1), is the following function of most probable magnetization M per
electron:

Z = F
[
2 cosh ω

2

]2n
, (4)

where:

ω = α+ βM − β2M

z
+ β2M

3

2z
, α =

e~
mkT

H, β =
zJ

kT
, (5)

z – number of closest neighbors, e, m – electron charge and mass, n – number of electrons, ~ – Plank constant, J –
exchange integral.

The value of magnetization as thermodynamic variable is determined by (2) and (4) as [23]:

M =
1

n

∂ lnZ

∂α
= tanh

ω

2
. (6)

Finally, the Heisenberg relation appears as:

M = tanh
α+ (1− β

z )βM + β2M3

2z

2
, (7)

the l.h.s. of (7) we would note as y1(M) = M and the r.h.s. as y2(M,α).

2.2. On Heisenberg relation solution

The number of intersections of the straight line y1 = M and the curve y2 = y2(M,α) for given α depends on the
curve inclination in the origin. Let us illustrate it by plots, taking the closest neighbors number z = 12 as for nickel
and cobalt. At the Fig. 1 plots of the y1 and three curves y2 with different values of α are shown for the paramagnetic
case β = 1.

FIG. 1. β = 1. The straight line (red) is y1=M. The curves from lower to upper y2(M, 0) – black –
4, y2(M, 0.5) – green – 3, y2(M, 1.0) – brown – 2, y2(M, 2.0) – navy – 1, with numbers at left

The intersection points for a sequence of unique values of α (proportional to the magnetic field, see (5)) lie on the
magnetization curve, the phenomenon of saturation is quite visible. So, the intersection points form the magnetization
curve.
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2.3. Critical curve of ferromagnetizm existence

As it is seen from the graphical view, for the ferro-magnetism in the present condition, the curve y2(M,α)
inclination at M = 0 is less than one for y1, or

β(1− β

z
) ≥ 2. (8)

At critical point of transition from unique to double solution, the inclinations at origin for both y1,2 coincide, whence
the derivative of the function y2(M, 0) should be equal to 1:

∂y2(M, 0)

∂M

∣∣∣
M=0

=
1

2
(1− β

z
)β = z

J

2kT
(1− J

2kT
) = 1. (9)

The curve of critical values of nearest neighbors z(
kT

J
) as the inverse function of exchange integral per electron in

kT units is shown at the Fig. 2.

FIG. 2. The plot of the function z =
2x2

x− 1
, x =

kT

J
. The straight horizontal line marks z = 12.

The Boltzmann constant is marked as k at the abscissa label

The solution of the quadratic equation (1− β

z
)β = 2 gives the roots:

β1,2 =
z

2
±
√
z2

4
− 2z, (10)

the minimal temperature yields for the case:

βmax =
zJ

kTmin
, Tmin =

zJ

kβmax
, (11)

and the maximum is equal to:

βmin =
zJ

kTmax
, Tmax =

zJ

kβmin
. (12)

For the minimal case of z = 8, (iron) a direct application of the theory is impossible, because of the ferromagnetic
range is restricted by one point, look e.g. [5,6]. Outside the range, the magnetization curve shows the behavior typical
for a paramagnetic material.

For the case, marked at the Fig. 2, z = 12, we obtain β = 6± 2
√

3, hence the minimal temperature yields for the
case:

Tmin =
12J12

k(6 + 2
√

3)
, (13)

and the maximum

Tmax =
12J12

k(6− 2
√

3)
. (14)



54 S. Leble

We would estimate the exchange integral from (15) for Ni, having:

JNi =
TmaxNik(6− 2

√
3)

12
. (15)

Plugging the result into (16) we compute the critical temperature:

Tmin =
12JNi

k(6 + 2
√

3)
, (16)

This case, valid for Ni, Co, is described in [5], where the curve of magnetization as function of temperature is shown
and close to experiments of [6, 7].

Then, the hysteresis phenomenon exists at z ≥ 8. For a simulation of the effect we take β = 10, see Fig. 3.

FIG. 3. The straight line (red) is y1 = M . The curves from upper to lower, numbers at the top:
y2(M,−1) – green – 1, y2(M, 0) – navy – 2, y2(M, 1) – sienna – 3

The double intersection of the curves y1 = M and y2(M,α) are demonstrated by Fig. 4.

FIG. 4. The straight line (red) is y1 = M . The curves from upper to lower y2(M,−0.2) – green –
1, y2(M, 0) – navy – 2, y2(M, 0.2) – sienna – 3
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Generally, it is convenient to use the inverse to M = tanh
x

2
function:

x = ln
1 +M

1−M
, M ∈ (−1, 1), (17)

which has double intersections with the curve (see (7))

ω = α+ βM − β2M

z
+ β2M

3

2z
, (18)

giving the hysteresis curve, as it is shown at the Fig. 5.

FIG. 5. The black curve shows the function marked at the ordinate. The colored curves shows the
r.h.s. of the function (56) with β = 10, α = 0 (red – 1), α = −1 (green – 2), α = −1.5 (navy – 3),
numbers mark the curves

3. Fine particles case

3.1. Back to partition function, surface-bulk division

Figure 6 presents a nanoparticle cross-section schematically, that allows to estimate the number of atoms at the
surface layer and under the surface (bulk) layers.

Let the nanoparticle radius be Nd, with N – number of layers and d is the atom diameter, then the number of
“surface” particles is estimated as:

na =
4

3
π(N3 − (N − 1)3) = 4π(3N2 − 3N + 1), (19)

the number of “bulk” particles is equal to:

nb =
4

3
π(N − 1)3. (20)

Let m be the spin projection quantum number. The partition function of states is built as in [1], taking as density
of states the product of Gauss distribution and the distribution with mean energy for given spin s via evaluation for
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FIG. 6. The plot represents the cross-section of a nanoparticle, approximated by a sphere of radius
Nd, whereN is the number of layers and d is the atom diameter. E.g. for Ni it is d = 1.49·10−10[m].
The space between black curve (2) with radius (N−1)d and the red curve (1) with radiusNd shows
the surface monoatomic layer. Numbers of curves are in the parenthesis

irreducible representation (nν its dimension) for electrons’ permutations group; we keep the author’s notations:

n,s∑
s=0,m=−s

∞∫
−∞

d∆E
nν√

2π(∆Eν)2
exp

{
αm+ β

s2

2n
− ∆E

kT
− ∆E2

2(∆Eν)2

}
=

n∑
s=0

s∑
m=−s

nν exp
{
αm+ β

s2

2n
+

∆(Eν)2

2k2T 2

}
.

(21)

After the principal bulk model simplification Jg = J and some algebra we arrive at (4).

3.2. Energy distribution for a tiny particle

Now, let us take into account the difference between exchange integrals for surface and bulk atoms. Such division
is stressed in [18]. We take, that the values of Ja,b are the same for pairs bulk-bulk (Jb); while surface-surface; and
bulk-surface are denoted as Ja.The energy Eν and the Gauss distribution parameter ∆Eν , that is also expressed in
terms of the symmetry group characters [3]. The result of Heitler for the energy is expressed as the sum by n-particle
permutation group g ∈ P [4], the exchange integrals are marked by group elements:

Eν =
1

nν

∑
g∈P

χν(g)Jg. (22)

Here, χν(g) = Dν
ii(g) is the character of the symmetry group irreducible representation (number ν, the representation

dimension is nν), that numerates the energy terms of multielectron system. The characters of the permutation group
are listed in [4], corrected in [1].

For the case with absence of space symmetry, as e.g. for amorphous matter, one has only the mentioned surface-
bulk division of exchange integrals and the subgroups Ga ∈ P that contains only permutations between electrons
of surface-surface and bulk-surface atoms, while Gb ∈ P contains the permutations only between bulk-bulk atoms,
electrons. Both groups are the permutation ones of the corresponding orders. For clarity, we left only two different
exchange integrals, marked by indices a, b; b for bulk and a for surface. Then the mean energy reads:

Eν,ν
′

=
Ja
nν′

∑
g∈Ga

χν
′
(g) +

Jb
nν

∑
g′∈Gb

χν(g′), (23)
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we keep the number ν for the irreducible representation of the “bulk” subgroup Gb ∈ P . To explain the modification
of the statistical sum with the surface-bulk subdivision we return to its origin.The sum by Heisenberg includes the
terms with an energy and its Gauss distribution parameter, i.e. the mean square deviation of energy distribution.

The
∑

∆En = 0, as well as due to χν(e) = nν , again in terms of the characters, we derive, finally the mean
square deviation from the mean value Eν with more details compared with one from [3]:

(∆En)2 =
J2
a

n2ν′

∑
g′,g∈Ga

(χν
′
(gg′)− χν

′
(g)χν

′
(g′)) +

J2
b

n2ν

∑
g′,g∈Gb

(χν(gg′)− χν(g)χν(g′)), (24)

where the sums run the subgroups of the complete permutation group.
The energy (23) and the distribution parameter (24) enter the partition function exponent (21) linearly, hence the

exponential property admits that the statistical may be factorized as in (3).

3.3. Partition functions for a tiny particle

The modification of he whole construction could be similarly done for Za and Zb partition functions:

Ma+b =
∂ ln(ZaZb)

∂α
=
∂ ln(Za)

∂α
+
∂ ln(Zb)

∂α
= (25)

∂ ln([2 cosh ωa

2 ]2na)

∂α
+
∂ ln([2 cosh ωb

2 ]2nb)

∂α
= (26)

na
n

tanh
ωa
2

+
nb
n

tanh
ωb
2
. (27)

where na is given by (19) and nb by (20) correspondingly, so that:

na
n

=
4π(3N2 − 3N + 1)

4πN3
=

3N2 − 3N + 1

N3
, (28)

similarly, the relative number of “bulk” particles is equal to:

nb
n

=
(N − 1)3

N3
. (29)

Look the plots at Fig. 7

FIG. 7. The relative number of atoms in bulk (black – 1) and surface (red – 2) layers as the function
of atomic layers N

Ma+b = Ma +Mb is a most probable value of magnetic quantum number projection per electron for a joint bulk
and a surface parts. The functions ωa,b are described by:

ωa = α+ βaMa − β2
a

Ma

za
(1− M2

a

2
). (30)

similarily for b case. The parameters βa,b =
za,bJa,b
kT

depend on exchange integrals. The bulk one may be defined via
Curie point temperature.
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3.4. Numerical experiments

For the numeric estimations let us choose the number of layers N = 5 for Ni nanoparticle. For such layers
number we have equal number of atoms. The parameters we have chosen are the following: the bulk exchange integral,

evaluated via Curie temperature value (θNi = 627K) JNi = 1.8 · 10−21J [25]. The parameter βb =
12JNi
kBT

= 2 for

T = 795K outside the ferromagnetic range. For the surface condition we take z = 8, βa =
8 · 1, 15JNi

kBT
= 1.53; the

exchange integral corrected up 15%, for the minor distance between the surface and bulk atoms.
The magnetization of the surface layer is presented at Fig. 8. The corresponding bulk magnetization is superposed

at the Fig. 9.

FIG. 8. The surface layer contribution to magnetization of a nanoparticle model. The three
points of intersections of the inverse tanh function (red line) and ωa black lines are shown for
α = 0.5, 1.0, 3.0 growth up (0.5 – 1, 0.3 – 2). The last point α = 3 (3) stands close to mag-
netization saturation

4. Electric field action

4.1. Polarisation, Stark effect

A theory of perturbation of atoms by the external electric field ~E is based on the perturbed Fockian action [3]:

Hφ = (HF + V )φ. (31)

There are two possibilities for the field account: if a medium unit, e.g. – molecule, has constant dipole momentum
~p = e~d, where V = eE(x + dx), ~E applied along x, reads as the conventional expansion by small parameter ε,
ε = eE:

φ = φ0 + εφ(1) + .... (32)

In the first order it gives the following expression for an eigen function perturbation, evaluated as sum by m 6= n

φ(1)p =
′∑
m

xmp + (dx)mp
Em − Ep

φ0m, (33)

where xmn are matrix elements of the Cartesian coordinate x and (dx)mn are proportional to the matrix elements
projection of the constant dipole momentum ~p/e in non-perturbed states, between the eigenfunctions φ0m of the
Fockian HF . Note, that a stability of similar perturbations is studied in [26].
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FIG. 9. The superposed layers contribution to magnetization of a nanoparticle model. The points of
intersections of the inverse tanh function (red line) and ωa,b black lines – 1, 2 for surface and green –
3, 4 for bulk are shown for α = 0.5, 1.0. For α = 0.5, the curves 1,3. The sum of magnetization
contributions of the same order is quite visible with both values of α with the natural bulk prevails

4.2. Exchange integrals perturbation

Plugging (32) into exchange integrals Jik, defined for the electrons coupled to the centers i, k, by the expression:

Jik =
e2

2

∫∫
ρik(~r, ~r′)

|~r − ~r′|
d~rd~r′, (34)

where, in a spirit of he Fock paper [27], it may include all interacting electrons of the closest neighbors, as equal ones,
hence indices omitted, reproducing [3]:

ρ(~r, ~r′) =
∑
p

φ∗p(~r)φp(~r
′) =

∑
p

(
φ∗0p(~r) + εφ(1)∗p (~r)

)(
φ0p(~r

′) + εφ(1)p (~r′)

)
=

∑
p

φ∗0p(~r)φ0p(~r
′) + ε

∑
p

[
φ(1)∗p (~r)φ0p(~r

′) + φ∗0p(~r)φ
(1)
p (~r′)

]
+ o(ε2) = ρ0(~r, ~r′) + ερ1(~r, ~r′) + ....

(35)

The electric field perturbs the exchange integral as it is prescribed by (35) with:

J0 =
e2

2

∫∫
ρ0(~r, ~r′)

|~r − ~r′|
d~rd~r′, (36)

J1 =
e2

2

∫∫
ρ1(~r, ~r′)

|~r − ~r′|
d~rd~r′, (37)

whence:

β =
z(J0 + εJ1)

kT
= β0 + εβ1. (38)

More details for J1 gives:

J1 =
e2

2

′∑
p,m

(xmp + (dx)mp)J
0
mp

Em − Ep
, (39)

with the notation for J0
pm =

∫
φ∗0m(~r)φ0p(~r

′)

|~r − ~r′|
d~rd~r′.

The matrix elements J0
pm are evaluated between the unperturbed Fockian eigenfunction, that yields (39). In the

phenomenologic theory we consider J0 and J1 as parameters.
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5. Magneto-electric effect

5.1. Material equation of state

First-principles methods to study magnetoelectric phenomena are reviewed as follows. Plugging (38) into (4)
yields:

Z

F
=

[
2 cosh

(
α+ β0M − β2

0
M
z + β2

0
M3

2z + εβ1M(1− 2
zβ0 + M2

2z β0) + ε2β2
1(M

3

2z −
M
z )

2

)]2n
, (40)

being the base for the partition function expression with the electric field account.
The mean (most probable) value of the magnetization per electron is defined by the Heisenberg relation (7):

M(α, ε) = tanh
α+ (1− β(ε)

z )β(ε)M + β(ε)2M
3

2z

2
, (41)

that now includes not only magnetic field H as the parameter, but also the electric field E via ε. It constitutes the
magnetic material relation in implicit form.

Let us illustrate the solution of the transcendent equation (41) by the Fig. 10. It shows that there is a minimal
value of ε for a solution existence.

FIG. 10. The points of intersections of the inverse tanh function (black line) and ω(M), green line –
1 for ε = 0.1, the red one – 2 for ε = 1 and the sienna – 3 for ε = 2 are shown for α = 0. The case
of ε = 0.1 is out of a solution range

The derivative of lnZ by ε gives the polarization on electron as:

P =
p0
n

= e
∂ lnZ

n∂ε
= e

∂ω

∂ε
tanh

ω

2
,

∂ω

∂ε
= β1M − 2β

β1
z
M + 2ββ1

M3

2z
+ β

[
(1− β

z
) +

3M2

2z
β

]
∂M

∂ε
, (42)

or, in alternative form,

P = e

(
β1M(1− 2

z
β0 +

M2

2z
β0) + 2εβ2

1

M

z
(
1

2
M2− 1)

)
tanh

(
α+ β0M − β2

0
M
z + β2

0
M3

2z

2
+A

)
+ e

∂ lnZ

n∂M

∂M

∂ε
,

(43)
where

A =

(
1

2

M3

z
β2
1 −

M

z
β2
1

)
ε2 +

(
Mβ1 +

M3

z
β0β1 − 2

M

z
β0β1

)
ε. (44)

The second term in (42),
∂M

∂ε
should be evaluated along the solution of (41) path. The condition of a solution existence

repeats the inequality (8) but now it should be solved with respect to ε, or for the boundary,

−1

z
(β0 + εβ1) (β0 − z + εβ1) = β0 −

1

z
β2
0 + εβ1 −

1

z
ε2β2

1 −
2

z
εβ0β1 = 2.
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The range of interest lies between the roots of this equations:

− 1

2β1

(
−z + 2β0 + z

√
1

z
(z − 8)

)
,

1

2β1

(
z − 2β0 + z

√
1

z
(z − 8)

)
,

for z = 12 it gives
1

2β1

(
4
√

3− 2β0 + 12
)
, − 1

2β1

(
2β0 + 4

√
3− 12

)
.

To evaluate the derivative
∂M

∂ε
, we use the approximate expansion of the both sides of (41), as is demonstrated

by the plot Fig. 11. Algebraically it appears as:

FIG. 11. The small variation of a solution of (41) by the change of β, for z = 12, β0 = 5.3, red –
1, εβ1 = 0.3, β = 5.6 – green – 2

for the r.h.s. α+ (β + x) (M + y)− (β + x)
2 M + y

z
+ (β + x)

2 (M + y)
3

2z
and for the left one,

ln
1 + (M + y)

1− (M + y)
= ln

(
− 1

M − 1
(M + 1)

)
− y

(
1

(M − 1)
2 (M + 1)− 1

M − 1

)
M − 1

M + 1
+O

(
y2
)
.

The linear in y term is equal to:

1

2
y

4z − 5M2β2 + 3M4β2 − 2zβ + 2β2 + 2M2zβ

z (M − 1) (M + 1)
,

It contains the factor 4z − 5M2β2 + 3M4β2 − 2zβ + 2β2 + 2M2zβ, that can be zero when:

M2
r = ± 1

6β

(
5β +

√
β2 + 48β − 24

)
. (45)

In such points a solution of the equation for y does not exist. Hence, far enough of these points, equalizing the linear
in x, y parts with α = 0, we arrive at:

∂M

∂ε
≈ y

x
=

2M
(
z − 2β +M2β

)
(M − 1) (M + 1)

4z − 5M2β2 + 3M4β2 − 2zβ + 2β2 + 2M2zβ
. (46)

Plugging it into (43) yields:

∂ω

∂ε
= β1M−2β

β1
z
M+2ββ1

M3

2z
+β

[
(1− β

z
) +

3M2

2z
β

]
2M

(
z − 2β +M2β

)
(M − 1) (M + 1)

4z − 5M2β2 + 3M4β2 − 2zβ + 2β2 + 2M2zβ
. (47)

That gives explicit form for the polarization P (E) as function of electric field, see the Fig. 12.
If to write the material relations in approximation of Taylor expansion of both P , M in αε plane up to the first

order, we arrive at:
P = P0 + εP1 + αP 1, M = M0 + αM1 + εM1, (48)
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where:

P0 = e
∂ω

∂ε
tanh

ω

2

∣∣∣
ε,α=0

= e

(
β1M − 2β0

β1
z
M + 2β0β1

M3

2z
+ β0

[
(1− β0

z
) +

3M2

2z
β0

]
∂M

∂ε

∣∣∣
ε=0

)
T ,

P1 =
∂P

∂ε

∣∣∣
α,ε=0

= e

[
∂2ω

∂ε2
tanh

ω

2
+ (

∂ω

∂ε
)2

1

2
(1− T 2)

] ∣∣∣
ε=0

, P 1 =
∂P

∂α

∣∣∣
α,ε=0

=
e

2

∂ω

∂ε
(1− T 2),

M0 = T , M1 =
1

2

(
1− T 2

)
, M1 =

∂M

∂ε

∣∣∣
α,ε=0

,

(49)

with T = tanh
β0M

4z

(
M2β0 − 2β0 + 2z

)
. u = −1

2
M2β2

1

(
z − 2β0 +M2β0

)2
z2

, v = −M
z
β2
1

(
2−M2

)
, that

demonstrates magneto-electric effects as in [28].

FIG. 12. The dependence the polarization P on field E – curve 1. The range of a solution of (41)
existence lies between the red parabola (curve 2) roots, for z = 12, β0 = 5, β1 = 1

As we see, the argument of the hyperbolic tangent function in the r.h.s. of (42), contains the quadratic polynomial
in the electric field ε. We observe the nonlinear dependence of P (ε). The key cross-terms of the polarization P 1

and magnetization M1 material equations expansion coefficients in (49) are shown at the Fig. 13 as function of the
background magnetization.

FIG. 13. The M1(M) – black – 1 and P 1(M) – red – 2 are plotted within the range restricted by (45)
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5.2. Magnetoelectric phenomena for nanoparticles

The consideration of magnetoelectric effects may be done along the lines of the Sec. 3.3. We base on the equation
(25) while the functions (56) contain the parameters, βa,b, “splitted” by the electric field action as, for example
βa = β0

a + εβ1
a in direct analogy with (38). So, the basic equations for magnetization and polarization are

Ma+b =
∂ ln(Za)

∂α
+
∂ ln(Zb)

∂α
= (50)

∂ ln([2 cosh
ωe

a

2 ]2na)

∂α
+
∂ ln([2 cosh

ωe
b

2 ]2nb)

∂α
= (51)

na
n

tanh
ωea
2

+
nb
n

tanh
ωeb
2
, (52)

and, for the polarization:

P a+b = e
∂ ln(Za)

∂ε
+ e

∂ ln(Zb)

∂ε
= (53)

e
∂ ln([2 cosh

ωe
a

2 ]2na)

∂ε
+ e

∂ ln([2 cosh
ωe

b

2 ]2nb)

∂ε
= (54)

e
na
n

∂ωea
∂ε

tanh
ωea
2

+ e
nb
n

∂ωeb
∂ε

tanh
ωeb
2
. (55)

where, plugging βa = β0
a + εβ1

a, we write:

ωea = α+ (β0
a + εβ1

a)Ma

(
1− βa

(1− M2
a

2 )

za

)
, (56)

and, quite similar for ωeb .
Let us plot the scheme of the equations (50) solution, again for the case, as for the Nickel, for magnetic properties

see [29]. Taking the same values for the bulk contribution as at Fig. 14, and for the surface as in the Table 1:

TABLE 1. Nanoparticle parameters

Atom place β0 β1 z

surface(a) 1.53 1 8

bulk(b) 2 1 12

FIG. 14. The superposed layers contribution to magnetisation of a nanoparticle in the field with

ε = 1. The points of intersections of the inverse tanh function (black line) x = ln
1 +M

1−M
and ωa,b

red – 1 line for surface and green – 2 for bulk are shown for α = 0. The sum of magnetization
contributions of the same order is quite visible with both values of βa, za and βb, zb with the natural
bulk prevails
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6. Conclusion

We do understand, that the theory has model restrictions that are discussed in the Heisenberg papers, that do not
allow literal application of the model, for example to Fe-based magnetics.

However, the use of a generalized Heisenberg theory allows one to classify matters in respect to matter relations
and existence of ferro- properties of nanoparticles at least for the number of closest neighbors z > 8. It also allows
one to construct the hysteresis curves for given values of the structure and electron states parameters. Modifications
for nanotubes naturally introduce the closest neighbors exchange integrals defined by the nano-object symmetry and
position of them in bulk or surface of it. This gives a model thermodynamic description on the basis of the Heisenberg
model of the partition function, which allows natural modifications.
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