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Properties of an oriented ring of neurons with the FitzHugh-Nagumo model
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The transmission of an impulse through a neuron is provided by processes that occur at the nanoscale level. This paper will build a model for an
oriented ring of connected neurons. To describe the process of impulse transmission through a neuron, the FitzHugh-Nagumo model is used, which
allows one to set a higher abstraction level by simulating an impulse. In this case, when transmitting impulses between neurons, the delay is taken
into account. For the constructed model, the dependence of the number of neurons on the dynamics of the network as a whole is studied, and local
bifurcations are found. All results are verified numerically. It is shown that the period of self-oscillations of such a network depends on the number
of neurons.
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1. Introduction

The time delay can greatly affect the network of neurons and significantly expand the range of possible behaviors
of the network. Because of this, models of networks are actively being investigated, where transmission between
neurons occurs with a delay. There are works here on a network of connected neurons with an identical delay [1, 2].
And works on different transmission lag times [3–6]. Most often, in such studies, a pair of connected neurons is
considered.

The transmission of an impulse through a neuron is provided by processes that occur at the nanoscale level, for
example, via the overflow of sodium, potassium, chlorine and calcium ions through ion channels. In this work, we
study the effect of the delay in the transmission of an impulse between connected neurons on the dynamics of the
system of neurons as a whole. The FitzHugh-Nagumo model will be used to describe one neuron. And the system as
a whole will be an oriented ring of neurons connected one after another. In this case, any connection between neurons
will be considered with a constant delay. The main goal is to determine the type of behavior depending on the delay
time, as well as to test the hypothesis that there is no direct relationship between the number of neurons and the period
of self-oscillation of the impulse in the system. For this, in the first part of the work, the analysis of equilibrium states
and their stability is carried out. In the second part of the work, the results obtained are verified numerically.

2. Neuron network

We will consider a group of neurons, where each neuron can have unidirectional connections with other neurons.
That is, the axon of a neuron can be called its output, and for another neuron it will be an input (through a bunch of
synapses and dendrites). To describe one neuron, will use the FitzHugh-Nagumo model [7–9]:{

u̇ = −au+ (a+ 1)u2 − u3 − v + I,

v̇ = bu− γv,
(1)

where u(t) corresponds to the potential of the neuron at time t, and v(t) is the function of the internal state at time t,
a, b, γ are positive constant parameters of the neuron , and I is the external current to the neuron.

As an external current I for a neuron, we will consider the total impact of other neurons, and the output will be
the value of the potential of a neuron with a delay τ (delay for the transmission of an impulse through an axon). In
this case, the effect between neurons will be sigmoidal (that is, it does not depend on the postsynaptic neuron). Thus,
the model of the i-th neuron will be as follows:{

u̇i = −aui + (a+ 1)u2i − u3i − vi +
∑n
j=1,j 6=i c tanh(u

τ
j ),

v̇i = bui − γvi.
(2)
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2.1. Ring of connected neurons

In this section, we will consider a specific network of neurons in the form of an oriented ring. That is, the input
of the neuron i will be the output of the neuron i − 1 (i ≥ 2), and the input of the neuron 1 will be the output of
the neuron n. Moreover, all neurons are identical in their parameters. A schematic representation of the considered
network in Fig. 1. We will write a model of the considered network of neurons:

FIG. 1. Schematic representation of an oriented ring of connected neurons



u̇1 = −au1 + (a+ 1)u21 − u31 − v1 + c tanh(uτn),

v̇1 = bu1 − γv1,
u̇2 = −au2 + (a+ 1)u22 − u32 − v2 + c tanh(uτ1),

v̇2 = bu2 − γv2,
· · ·

u̇n = −aun + (a+ 1)u2n − u3n − vn + c tanh(uτn−1),

v̇n = bun − γvn,

(3)

where ui(t) corresponds to the potential of the i-th neuron at time t, and vi(t) is the function of the internal state at
time t, a, b, γ are positive constant parameters of neurons, c positive constant, connection strength, uτi (t) = ui(t− τ),
i = 1, 2, . . . n.

2.1.1. Find equilibrium states. To search for equilibrium states of the system, it is necessary to solve:

0 = −au1 + (a+ 1)u21 − u31 − v1 + c tanh(un),

0 = bu1 − γv1,
0 = −au2 + (a+ 1)u22 − u32 − v2 + c tanh(u1),

0 = bu2 − γv2,
· · ·

0 = −aun + (a+ 1)u2n − u3n − vn + c tanh(un−1),

0 = bun − γvn,

(4)


vi = b

γui, i ∈ [1 . . . n],

c tanh(ui−1) = u3i − (a+ 1)u2i +
(
a+ b

γ

)
ui, i ∈ [2 . . . n],

c tanh(un) = u31 − (a+ 1)u21 +
(
a+ b

γ

)
u1.

(5)
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Some of the equations in the system can be represented as:{
f(ui−1) = g(ui),

f(un) = g(u1),
(6)

where f(u) = c tanh(u), g(u) = u3 − (a + 1)u2 +

(
a+

b

γ

)
u. Let

b

γ
≥ 1

3
(a2 − a + 1). This assumption fits the

main parameters of the neurons under consideration [2, 10], where a < 1, and b roughly the same γ. Throughout the
rest of this section, we will assume everywhere that the assumption is fulfilled.

Proposition 1. In the described system, the equilibrium states of neurons are the same, that is ui = uj , vi = vj ∀i, j.

For the proof, we show that the function g(x) will be increasing. Derivative g(x): g′(u) = 3u2−2(a+1)u+a+
b

γ
.

Then, if
b

γ
≥ 1

3
(a2 − a+ 1), then (a+ 1)2 − 3

(
a+

b

γ

)
≤ 0, which coincides with the determinant g(u)/2. Hence,

g(u) is an increasing function (the leading coefficient is positive). Now, for the system (6), the functions f(u) and
g(u) are increasing, which means that the assumption that some two connected neurons have different values of the
equilibrium state potential leads to contradiction. That is, ui = uj∀i, j, hence vi = vj ∀i, j. �

Now, the system (5) can be reduced to an equivalent:
vi = b

γui, i ∈ [1 . . . n],

ui = u1, i ∈ [2 . . . n],

c tanh(u1) = u31 − (a+ 1)u21 +
(
a+ b

γ

)
u1.

(7)

Now the search for equilibrium states has been reduced to finding the roots of the equation c tanh(u1) = u31 −

(a + 1)u21 +

(
a+

b

γ

)
u1. Note that u1 = 0 is always a root. The right side of the equation has only one inflection

point and it is located on the right semiaxis. Now let’s highlight a few cases:

1) a +
b

γ
> c, then the considered equation has no negative solutions, but positive solutions can be 0, 1 or 2 (as c

grows, the number of roots grows from 0 to 2, 1 root at the only critical value of c).

2) a+
b

γ
< c, then the considered equation has only one negative and one positive solution.

2.1.2. Define the stability of equilibrium states. To determine the stability of the equilibrium states of the system of
neurons under consideration, we linearize the system in the general equilibrium state ui = u1, vi = v1, i ∈ [2 . . . n].
For this, we rewrite the system (3) as U̇(t) = AU(t) +BU(t− τ), where
U(t) = (u1(t), v1(t), . . . , un(t), vn(t))

T :

A =



−α −1 0 0 · · · 0 0

b −γ 0 0 · · · 0 0

0 0 −α −1 · · · 0 0

0 0 b −γ · · · 0 0

· · ·
0 0 0 0 · · · −α −1
0 0 0 0 · · · b −γ


, B =



0 0 · · · 0 0 c′ 0

0 0 · · · 0 0 0 0

c′ 0 · · · 0 0 0 0

0 0 · · · 0 0 0 0

· · ·
0 0 · · · c′ 0 0 0

0 0 · · · 0 0 0 0


, (8)

where α = 3u21 − 2u1(a+ 1) + a, c′ =
c

cosh2(u1)
.

Next, we find solutions to the characteristic equation det
(
A− λI +Be−λτ

)
= 0 to determine stability:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−α− λ −1 0 0 · · · 0 0 c′e−λτ 0

b −γ − λ 0 0 · · · 0 0 0 0

c′e−λτ 0 −α− λ −1 · · · 0 0 0 0

0 0 b −γ − λ · · · 0 0 0 0

· · ·
0 0 0 0 · · · c′e−λτ 0 −α− λ −1
0 0 0 0 · · · 0 0 b −γ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (9)
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To find the determinant, let’s write it down on the top line. The first two elements will reduce the problem to a
similar one with a lower dimension and this part of the determinant is equal to ((−α− λ)(−γ − λ) + b)

n. The third
element in the top line is unique and sets a set of elements in the matrix and the part corresponding to it is equal to
−
(
c′e−λτ (−γ − λ)

)n
. As a result:

((−α− λ)(−γ − λ) + b)
n −

(
c′e−λτ (−γ − λ)

)n
= 0, (10)

(α+ λ)(γ + λ) + b = c′e−λτ+
2πk
n i(γ + λ), k ∈ [0 . . . n− 1] . (11)

To determine stability in the system in the absence of delay, take τ = 0. Then:

λ2 + λ(α+ γ − c′e 2πk
n i) + αγ + b− c′γe 2πk

n i = 0, k ∈ [0 . . . n− 1]. (12)

For even odd n, these equations can be split into pairs (k;−k) and there remains one equation for k = 0. For
even n these equations can be split into pairs (k;−k) and there will remain two equations for k = 0 and k =

n

2
. Next,

we define the stability of the selected groups.
For k = 0:

λ2 + λ(α+ γ − c′) + αγ + b− c′γ = 0. (13)
This pair of roots will be stable if and only if: {

α+ γ − c′ > 0,

α+ b
γ − c

′ > 0.
(14)

That is α+min

(
γ,
b

γ

)
> c′. And, for the zero state of equilibrium:

a+min

(
γ,
b

γ

)
> c. (15)

For k =
n

2
(n

...2) :

λ2 + λ(α+ γ + c′) + αγ + b+ c′γ = 0. (16)
This pair of roots will be stable if and only if: {

α+ γ + c′ > 0,

α+ b
γ + c′ > 0.

(17)

That is α+min

(
γ,
b

γ

)
> −c′. For a zero equilibrium state, this condition is automatically satisfied, since c > 0.

For couple (k;−k) (k 6= 0, k 6= n

2
) :(

λ2 + λ(α+ γ − c′e− 2πk
n i) + αγ + b− c′γe−2πk

n i
)
×(

λ2 + λ(α+ γ − c′e 2πk
n i) + αγ + b− c′γe 2πk

n i
)
= 0,

(18)

(
λ2 + λ(α+ γ) + αγ + b

)2 − 2
(
λ2 + λ(α+ γ) + αγ + b

)
c′(γ + λ) cos 2πk

n + c′2(γ + λ)2 = 0, (19)

λ4 + 2
(
α+ γ − c′ cos 2πk

n

)
λ3 +

(
(α+ γ)2 + 2(αγ + b)− 2(α+ 2γ)c′ cos 2πk

n + c′2
)
λ2+

2
(
(α+ γ)(αγ + b)− (α+ γ)c′γ cos 2πk

n − (αγ + b)c′ cos 2πk
n + c′2γ

)
λ+

(αγ + b)2 − 2(αγ + b)c′γ cos 2πk
n + c′2γ2 = 0.

(20)

An equation of the 4-th degree with real coefficients is obtained, its stability can be checked by the Hurwitz or
Mikhailov criterion.

Now, we will find candidates for bifurcation from stable to unstable equilibrium or vice versa (when there is a
purely imaginary eigenvalue). To do this, we take λ = iω:

(α+ iω)(γ + iω) + b = c′e−iωτ+
2πk
n i(γ + iω), (21){

αγ − ω2 + b+ iω(α+ γ) = c′(γ cos τ ′ + ω sin τ ′ + i(ω cos τ ′ − γ sin τ ′)),
τ ′ = ωτ − 2πk

n ,
(22)
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
αγ − ω2 + b = c′(γ cos τ ′ + ω sin τ ′),

ω(α+ γ) = c′(ω cos τ ′ − γ sin τ ′),
τ ′ = ωτ − 2πk

n ,

(23)


c′
(
ω2 + γ2

)
cos τ ′ = α

(
ω2 + γ2

)
+ bγ,

c′
(
ω2 + γ2

)
sin τ ′ = −ω

(
ω2 + γ2

)
+ bω,

τ ′ = ωτ − 2πk
n ,

(24)

let τ ′ 6= π

2
+ πk, k ∈ Z, then:

tan
(
ωτ − 2πk

n

)
=
−ω(ω2+γ2)+bω
α(ω2+γ2)+bγ

sign (cos
(
ωτ − 2πk

n

)
) = sign (α

(
ω2 + γ2

)
+ bγ),

c′2
(
ω2 + γ2

)2
=
(
α
(
ω2 + γ2

)
+ bγ

)2
+
(
−ω

(
ω2 + γ2

)
+ bω

)2
,

(25)


tan

(
ωτ − 2πk

n

)
=
−ω(ω2+γ2)+bω
α(ω2+γ2)+bγ ,

sign (cos
(
ωτ − 2πk

n

)
) = sign (α

(
ω2 + γ2

)
+ bγ),

c′2
(
ω2 + γ2

)
= α2

(
ω2 + γ2

)
+ 2bαγ + b2 + ω2

(
ω2 + γ2

)
− 2bω2,

(26)


tan

(
ωτ − 2πk

n

)
=
−ω(ω2+γ2)+bω
α(ω2+γ2)+bγ ,

sign (cos
(
ωτ − 2πk

n

)
) = sign (α

(
ω2 + γ2

)
+ bγ),

ω4 +
(
α2 + γ2 − c′2 − 2b

)
ω2 + α2γ2 + 2bαγ + b2 − c′2γ2 = 0.

(27)

This means that the system can have 0, 1, or 2 series of decisions. Under the condition α
(
ω2 + γ2

)
+ bγ > 0 (which

is always true for the zero equilibrium state), we obtain (if the condition is not true, then the series for τ ′ must be offset
by π): 

ω =

(
1
2

(
−
(
α2 + γ2 − c′2 − 2b

)
±
√
(α2 − γ2 − c′2)2 − 4b ((α+ γ)2 − c′2)

)) 1
2

,

τ = 1
ω arctan

(
−ω(ω2+γ2)+bω
α(ω2+γ2)+bγ

)
+ 2πm

ω + 2πk
nω , k,m ∈ Z,

(28)


ω =

(
1
2

(
−
(
α2 + γ2 − c′2 − 2b

)
±
√
(α2 − γ2 − c′2)2 − 4b ((α+ γ)2 − c′2)

)) 1
2

,

τ = 1
ω arctan

(
−ω(ω2+γ2)+bω
α(ω2+γ2)+bγ

)
+ 2πk

nω , k ∈ Z.
(29)

Next, we define the conditions for the presence of candidates for a local bifurcation. That is, the conditions under
which (27) has a real or positive root for ω2. If:

1) c′ > |α+
b

γ
|, in for ω = 0 (27) is negative, therefore, with respect to ω2 there is exactly one positive solution.

2) c′ < |α+
b

γ
|, (27) will be positive at 0, then it is necessary and sufficient that the roots are (the discriminant is

positive) and the coefficient at ω2 was negative. That is:{ (
α2 + γ2 − c′2 − 2b

)2 − 4
(
α2γ2 + 2bαγ + b2 − c′2γ2

)
> 0,

α2 + γ2 − c′2 − 2b < 0,
(30){

c′4 − 2
(
α2 − γ2 − 2b

)
c′2 + α4 − 2α2γ2 + γ4 − 4α2b− 8αbγ − 4bγ2 > 0,

c′2 > α2 + γ2 − 2b.
(31)

For 2αbγ + 2bγ2 + b2 < 0, the system is equivalent to c′2 > α2 + γ2 − 2b, otherwise:
[
c′2 < α2 − γ2 − 2b− 2

√
2αbγ + 2bγ2 + b2,

c′2 > α2 − γ2 − 2b+ 2
√
2αbγ + 2bγ2 + b2,

c′2 > α2 + γ2 − 2b,

(32)

c′2 > α2 − γ2 − 2b+ 2
√
2αbγ + 2bγ2 + b2. (33)
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Next, it is necessary to determine for each candidate for bifurcation its effect on stability (increases or decreases
the number of eigenvalues with a positive real part). Let τ0 be a candidate for bifurcation, ω0, λ0 = iω0 correspond

to it. Define the sign of the expression
∂<(λ)
∂τ

∣∣
τ=τ0

, where <(x) is the real part of the number x, D – characteristic
equation (10):

∂<(λ)
∂τ

∣∣∣∣
τ=τ0

= −<
(
∂D

∂τ

/∂D
∂λ

) ∣∣∣∣
τ=τ0

= −<

(
n
(
c′e−λ0τ0(γ + λ0)

)n
λ0

d1

)
, (34)

where

d1 = n((α+ λ0)(γ + λ0) + b)n−1(γ + α+ 2λ0)− nc′ne−nλ0τ0(γ + λ0)
n−1(−τ0(γ + λ0) + 1). (35)

Since τ0 and λ0 satisfy the characteristic equation, then(
c′e−λ0τ0(−γ − λ0)

)n
= ((−α− λ0)(−γ − λ0) + b)

n
, (36)

then
∂<(λ)
∂τ

∣∣∣∣
τ=τ0

= −<
(
((α+ λ0)(γ + λ0) + b)nλ0

d2

)
= −<

(
((α+ λ0)(γ + λ0) + b)λ0(γ + λ0)

d3

)
, (37)

where

d2 = ((α+ λ0)(γ + λ0) + b)n−1(γ + α+ 2λ0)− ((α+ λ0)(γ + λ0) + b)n
(
−τ0 +

1

γ + λ0

)
, (38)

d3 = τ0λ
3
0 + (ατ0 + 2γτ0 + 1)λ20 + (2αγτ0 + γ2τ0 + bτ0 + 2γ)λ0 + + αγ2τ0 + bγτ0 + γ2 − b. (39)

Multiply in (37) the numerator and denominator by the conjugate of d3 and multiply the whole expression by the
square of the modulus d3:

sign

(
∂<(λ)
∂τ

∣∣∣∣
τ=τ0

)
= sign

((
ω2
0 + γ2

)2 − (b2 + 2αbγ + 2bγ2
))
. (40)

Now, we can see that the condition for increasing/decreasing the number of roots with a positive real part does
not depend on a specific representative of the τ series, but is a property of the entire series or depends only on ω. ω0

is the root of (27):
ω4
0 +

(
α2 + γ2 − c′2 − 2b

)
ω2
0 + α2γ2 + 2bαγ + b2 − c′2γ2 = 0, (41)

in another view: (
ω2
0 + γ2

)2
+
(
α2 − c′2 − γ2 − 2b

) (
ω2
0 + γ2

)
+ b2 + 2αbγ + 2bγ2 = 0. (42)

Lemma 2. Let x2 + ax + b = 0 have two real roots x1, x2 (x1 < x2) and b > 0, then x21 − b and x22 − b will have
different signs. And if a > 0, then x22 − b < 0, and if a < 0, then x21 − b < 0.

Let x2 + ax + b = 0 have two real roots x1, x2 (x1 < x2) and b < 0, then x21 − b and x22 − b will always be
positive.

Substitute the values of the roots in x2 − b:((
−a±

√
a2 − 4b

)
2

)2

− b = a2 − 4b∓ a
√
a2 − 4b

2
, (43)

then sign(x2 − b) = sign
(√
a2 − 4b∓ a

)
. This implies the assertions of the lemma. �

As previously received, if |α +
b

γ
| < c′, that is, one solution (27) for ω (up to sign). |α +

b

γ
| < c′, so, α < c′,

and therefore α2 − c′2 − γ2 − 2b < 0. That is, among the two roots (27) for ω2 ours is larger in absolute value. If

|α+
b

γ
| > c′, then α2 + γ2 − c′2 − 2b < 0, hence α2 − γ2 − c′2 − 2b < 0.

Applying lemma (2), the expression for sign
(
∂<(λ)
∂τ

∣∣
τ=τ0

)
, the inequalities obtained above for ω0 and the

equation (let there be at least one solution for ω0) obtain that sign
(
∂<(λ)
∂τ

∣∣
τ=τ0

)
= −1, if and only if there are two

roots (up to a sign) for ω and b2+2αbγ+2bγ2 > 0 for all τ , corresponding to a smaller ω (larger period of the series).
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Then, we can conclude that:

1) If c > a+
b

γ
, that is, there are three equilibrium states (u < 0, u = 0, u > 0), while the zero equilibrium state

will be unstable for τ = 0, and will remain unstable with increasing τ (there is one series of values that changes the
number of roots with a positive real part, but it only increases this number).

2) If c < a+
b

γ
, that is, either one equilibrium state (u = 0), or three (u = 0, u > 0, u > 0).

For equilibrium states, the following results were obtained:

1) If c′ > α + γ or c′ > α +
b

γ
, then the equilibrium state is unstable at τ = 0. If c′ < α + γ and c′ < α +

b

γ
,

then it is asymptotically stable.

2) If c′ > |α+
b

γ
|, then (the equilibrium state is unstable at τ = 0) the equilibrium state will be unstable for any

τ (there is one series of values , which changes the number of roots with a positive real part, but it only increases this
number).

3) Otherwise, if 2αγ + 2γ2 + b < 0 and c′2 > α2 + γ2 − 2b, that is, two series of changing the number of
roots with positive real part, both of which increase this number. If 2αγ + 2γ2 + b > 0 and c′2 > α2 − γ2 − 2b +

2
√
2αbγ + 2bγ2 + b2, that is, two series of changing the number of roots with a positive real part, one of which

decreases the number of roots, the other increases (the one with a shorter period). Otherwise, there are no succession
series, the asymptotic stability of the equilibrium state does not depend on τ .

As a special case, for the zero equilibrium state:

1) If c > a+
b

γ
, then the equilibrium state will be unstable for any τ and there are two other equilibrium states.

2) If a+
b

γ
> c > a+ γ, then the equilibrium state is unstable at τ = 0 and there are two series of changing the

number of roots with a positive real part, one of which decreases the number roots, the other increases.
3) If c < a + γ, then the equilibrium state is asymptotically stable for τ = 0, for c2 < a2 − γ2 − 2b +

2
√

2abγ + 2bγ2 + b2 it will remain so for any τ , otherwise there are two series of changing the number of roots with
a positive real part, one of which decreases the number of roots, the other increases.

In the results obtained, it can be noted that the number and the states of equilibrium themselves do not depend
on the number of neurons in the ring. Also, the main criteria for determining the stability of a series of candidates

do not depend on the number of neurons. Only the period in this series depends: the period is equal to
2π

nω
. Thus,

the direct relationship between the number of neurons in the ring and the pulse propagation period was not confirmed
analytically.

2.1.3. Numerical verification of conclusion. Let us introduce several definitions: a sequence of the first kind is a
sequence {τk} such that for the characteristic equation (10) passing through the value of this sequence leads to an
increase by two the number of roots with a positive real part. Similarly, introduce a sequence of the second kind – one
that reduces by two the number of roots with a positive real part.

To obtain numerical solutions of the system, the Wolfram Mathematica package and the NDSolve method were
used. The initial values were zero functions and a jump at the time t = 0 for the first neuron by 0.01. That is,
u1(t|t < 0) = v1(t|t ≤ 0) = 0, u1(0) = 0.01, ui(t|t ≤ 0) = vi(t|t ≤ 0) = 0, i ∈ [2, . . . n].

Consider the following values of neuron parameters: a = 0.15, b = γ = 0.02, c = 0.18.
The value c = 0.18 lies between the value c = 0.890512, which separates one state of equilibrium from three,

and between c = a + γ = 0.17. That is, from the results obtained earlier, we can conclude that, regardless of the
number of neurons, there is one equilibrium state (u = 0), which is unstable at τ = 0. For this state of equilibrium,
there is a series of both the first and second kind.

Next, we consider the different number of neurons in the ring:
1) A ring of two neurons. Then two series of candidates are τ1,k ≈ 1.70691 + 25.715009k of the second kind,

and τ2,k ≈ 14.431569 + 16.895513k of the first kind. Then, for this unique equilibrium state, we obtain four Hopf
bifurcations: at τ ≈ 1.70691 – a transition from an unstable equilibrium to an asymptotically stable one (Fig. 2, 3),
then for τ ≈ 14.431569, τ ≈ 27.42192 and τ ≈ 31.327082 (Fig. 4, 5).

2) A ring of three neurons. Then two series of candidates are τ1,k ≈ 1.70691 + 17.143339k of the second kind,
and τ2,k ≈ 8.799731 + 11.263675k of the first kind. Then, for this unique equilibrium state, we obtain four Hopf
bifurcations: at τ ≈ 1.70691 – a transition from an unstable equilibrium to an asymptotically stable one (Fig. 6, 7),
then for τ ≈ 8.799731, τ ≈ 18.850249 and τ ≈ 20.063406 (Fig. 8, 9).
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2 neurons in a ring
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FIG. 2. τ = 0
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FIG. 5. τ = 29

3 neurons in a ring
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FIG. 6. τ = 0
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FIG. 8. τ = 12
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FIG. 9. τ = 19.3
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3) A ring of four neurons. Then two series of candidates are τ1,k ≈ 1.70691+12.857505k of the second kind, and
τ2,k ≈ 5.983812 + 8.447756k of the first kind. Then, for this unique equilibrium state, obtain two Hopf bifurcations:
at τ ≈ 1.70691 – a transition from an unstable equilibrium to an asymptotically stable one (Fig. 10, 11), then at
τ ≈ 5.983812 (Fig. 12).

4 neurons in a ring
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FIG. 10. τ = 0
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FIG. 12. τ = 7

3. Conclusion

In this work, a system in the form of an oriented ring of neurons was considered. Connection between the two
neurons was delayed. To describe the behavior of one neuron, the FitzHugh-Nagumo model was used, and on its basis,
the final model for the system in the form of a ring of neurons was built. For this system, the equilibrium states were
determined, criteria for determining the stability of equilibrium states and, as a consequence, criteria for the presence
of periodic solutions in the system were obtained. It has been shown that the period of self-oscillations in the ring of
neurons does not have a linear dependence on the number of neurons in the ring. In this case, for a fixed number of
neurons, the dynamics will be affected only by the total delay in the transmission of an impulse along the ring, and not
by individual pairs of neurons. All results are then verified numerically.
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[10] Burić N., Grozdanović I., Vasović N. Type I vs. type II excitable systems with delayed coupling. Chaos, Solitons and Fractals. 2005. 5 (23).

1221–1233.


