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Holliday junctions in the HC Blume–Capel model in “one case” on DNA
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We consider a DNA as a configuration of HC Blume–Capel model and embed it on a path of Cayley tree. To study thermodynamic properties of
the model of DNAs, we describe the corresponding translation-invariant Gibbs measures (TIGM) of the model on the Cayley tree. It is shown that,
for k ≥ 2, for any temperature T > 0 there is a unique TIGM. Using these results, we study the distributions of the Holliday junctions DNA. For
very high and very low temperatures, we give stationary distributions and typical configurations of the Holliday junctions.
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1. Introduction and definitions

It is known that each DNA molecule is a double helix formed by two complementary strands of nucleotides held
together by hydrogen bonds between C + G and A + T base pairs, where cytosine (C), guanine (G), adenine (A)
and thymine (T ). The genetic information, stored in an organism’s DNA, contains instructions for all proteins the
organism will ever synthesize [1].

Holliday junctions [2] are cruciform structures that form during genetic recombination when two double-stranded
DNA molecules split into four strands to exchange segments of genetic information.

In articles [3], [4–7] the Ising, Potts and Blume–Capel DNA models were considered in order to study their
thermodynamics by Gibbs measures. Note that the non-uniqueness of the Gibbs measure corresponds to phase coexis-
tence in the DNA system. By the properties of Markov chains (corresponding to TIGM) Holliday junctions and DNA
branches are studied.

On the Cayley tree, the results for DNA were obtained only for cases k = 2. In this paper, the results are obtained
for the case k ≥ 2. For other results on the Blume–Capel model, see [8], [3, 9, 10].

In our model, we consider a set of DNA, as in [4], which “lives” on a tree graph. Suppose that on the edge l of this
graph there is a function σ(l) with three possible values −1, 0, 1 (an analog of the spin values in physical systems) in
the case σ(l) = 0, we say that the edge l doesn’t belong to DNA. If this l separates two DNAs, then the value σ(l) = 1
or σ(l) = −1 means that the two DNAs have a Holliday junction.

Now, following [4, 5, 12], we recall some definitions.
The Cayley tree Γk of order k ≥ 1 is an infinite tree, i.e., a graph without cycles, such that exactly k + 1 edges

originate from each vertex. Let Γk = (V,L, i), where V is the set of vertices Γk, L the set of edges and i is the
incidence function setting each edge l ∈ L into correspondence with its endpoints x, y ∈ V . If i(l) = {x, y}, then, the
vertices x and y are called the nearest neighbors, denoted by l = 〈x, y〉. The distance d(x, y), x, y ∈ V on the Cayley
tree is the number of edges of the shortest path from x to and y:

d(x, y) = min{d : ∃ x = x0, x1, ..., xd−1, xd = y ∈ V such that 〈x0, x1〉, ..., 〈xd−1, xd〉}.

For a fixed x0 ∈ V we set Wn = {x ∈ V : d(x0, x) = n},

Vn = {x ∈ V : d(x0, x) ≤ n}, Ln = {l = 〈x, y〉 ∈ L|x, y ∈ Vn}.

Let Z = {...,−2,−1, 0, 1, 2, ...}. It was proved in [11] that all vertices of a Cayley tree can be partitioned into
equivalence classes labeled by integers and that through each vertex belonging to the m-th equivalence class, there
passes a unique path such that the labels of the equivalence classes to which successive vertices belong form an integer
sequence ...,m−2,m−1,m,m+ 1,m+ 2, ..., which is infinite in both directions. Each such path is called a Z-path.

Let L be the set of edges of the Cayley tree. Consider the function σ, which assigns each edge l ∈ L to the
values σ(l) ∈ {−1, 0, 1}. The value σ(l) = −1 (respectively +1) means that the edge l is “occupied” −1 = A + T
(respectively 1 = C +G) and σ(l) = 0 means that l is “vacant”.
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The configuration σ = {σ(l), l ∈ L} on edges of the Cayley tree is given by a function from L to {−1, 0, 1}.
The set of all configurations in L is denoted by Ω. Configurations in Ln are defined similarly and the set of all
configurations in Ln are denoted by Ωn.

In the case of a “one case”, the configuration σ = {σ(l), l ∈ L} is called admissible, if

1) σ(l) 6= 0 for any l ∈ Z-path;
2) {σ(l), σ(t)} ∈ {{0, 0}, {0,−1}, {0,+1}, {−1, 0}, {−1,+1}};
The restriction of an admissible configuration on a Z-path is called a DNA.
We consider the following Blume–Capel model of energy configuration σ of a DNA set (see [4]):

H(σ) = J
∑

〈l,t〉∈L×L;

(σ(l)− σ(t))2, (1)

where J > 0 is a coupling constant, σ(l) ∈ {−1, 0, 1} and 〈l, t〉 denote the nearest neighboring edges, that is, the
edges that have a common endpoint.

Let Ωan (respectively Ωa) be the set of all admissible configurations on Ln (respectively L).
Let us introduce designations as [4]:

En = {〈x, y〉 ∈ L : x ∈Wn−1, y ∈Wn},

Ωban = the set of admissible configurations on En.

For l ∈ En−1 denote:

S(l) = {t ∈ En : 〈l, t〉}.

It is easy to see that:

S(l)
⋂

Z-path =

{
{l0, l1} ⊂ L, if l /∈ Z-path,
{l1} ⊂ L, if l ∈ Z-path.

We denote:
S0(l) = S(l) \ {l0, l1}, l /∈ Z-path,

S1(l) = S(l) \ {l1}, l ∈ Z-path.

Let L̃(G) be the set of “edge” of G. We define adjacency matrix of G by A ≡ AG = (αij)i,j=−1,0,+1, i.e.:

αij ≡ αGij =

{
1, if {i, j} ∈ L̃(G),

0, if {i, j} /∈ L̃(G).

In a standard way (see [4, 5, 12]), one can reduce the study of the Gibbs measures of the Blume–Capel model to
the problem of finding solutions to the following system of functional equations:

z0,l =
α0,+1λzl0 + α0,−1λ

a−1,+1λ4zl0 + α−1,−1
· α0,+1λzl1 + α0,−1λ

α−1,+1λ4zl1 + α−1,−1
·
∏

t∈S0(l)

α0,+1λz+1,t + α0,−1λ+ α0,0z0,t
α−1,+1λ4z+1,t + α−1,−1 + α−1,0λz0,t

,

l /∈ Z-path,

z1,l =
α+1,+1zl0 + α+1,−1λ

4

α−1,+1λ4zl0 + α−1,−1
· α+1,+1zl1 + α+1,−1λ

4

α−1,+1λ4zl1 + α−1,−1
·
∏

t∈S0(l)

α+1,+1z+1,t + α+1,−1λ
4 + α+1,0λz0,t

α−1,+1λ4z+1,t + α−1,−1 + α−1,0λz0,t
,

l /∈ Z-path,

zl =
α+1,+1zl + α+1,−1λ

4

α−1,+1λ4zl + α−1,−1
·
∏

t∈S1(l)

α+1,+1z+1,t + α+1,−1λ
4 + α+1,0λz0,t

α−1,+1λ4z+1,t + α−1,−1 + α−1,0λz0,t
, l ∈ Z-path,

(2)

where:

λ = exp(−Jβ). (3)

Moreover, this means that for any set of vectors z = {(z0,l, z1,l, zt), l /∈ Z-path, t ∈ Z-path} satisfying the
system of functional equations (2), there exists the only Gibbs measure µ and vice versa. However, analyzing the (2)
solutions is not easy. Here are some solutions (2).



Holliday junctions in the HC Blume–Capel model in “one case” on DNA 565

2. TIGMs of the set of DNAs

Now, in this section, we find solutions zl to the system of functional equations (2), which does not depend on l,
i.e.:

z0,l = u, z1,l = v, ∀l /∈ Z-path; zl = w,∀l ∈ Z-path. (4)

where u, v, w > 0 (by (2)) satisfy:

u =

(
α0,+1λv + α0,−1λ+ α0,0u

α−1,+1λ4v + α−1,−1 + α−1,0λu

)k−2(
α0,+1λw + α0,−1λ

α−1,+1λ4w + α−1,−1

)2

,

v =

(
α+1,+1v + α+1,−1λ

4 + α+1,0λu

α−1,+1λ4v + α−1,−1 + α−1,0λu

)k−2(
α+1,+1w + α+1,−1λ

4

α−1,+1λ4w + α−1,−1

)2

,

w =

(
α+1,+1v + α+1,−1λ

4 + α+1,0λu

α−1,+1λ4v + α−1,−1 + α−1,0λu

)k−1(
α+1,+1w + α+1,−1λ

4

α−1,+1λ4w + α−1,−1

)
.

(5)

Consider in “one case”:
α−1,−1 = 0, α−1,0 = 1, α−1,1 = 1,

α0,−1 = 1, α0,0 = 1, α0,1 = 1,

α1,−1 = 1, α1,0 = 1, α1,1 = 0,

(6)

then system (5) we obtain:

u =

(
λv + λ+ u

λ4v + λu

)k−2
·
(
λw + λ

λ4w

)2

v =

(
λ4 + λu

λ4v + λu

)k−2
· 1

w2

w =

(
λ4 + λu

λ4v + λu

)k−1
· 1

w
.

(7)

We have the equation:

w2 =

(
λ4 + λu

λ4v + λu

)k−1
, (8)

from the last equation of the system (7). Then, from the second equation of the system (7), v = 1. From equation (8)
we obtain w = 1. If we put them to the first equation of the system (7), then we have:

u =
4

λ6

(
u+ 2λ

λ4 + λu

)k−2
. (9)

For k ≥ 2 true the following.
Lemma 1. If k ≥ 2 and 0 < λ < 1, then system (7) has unique solution:

z = (u, v, w) = (u∗, 1, 1),

where u∗ is solution of equation (9).

Proof. We have seen above that at k = 2, equation (9) has a unique solution u∗ =
4

λ6
. Then in this case z =

(u∗, 1, 1) =

(
4

λ6
, 1, 1

)
. We write equation (9) in the form:

u = f(u), (10)

where:

f(u) =
4

λ6

(
u+ 2λ

λ4 + λu

)k−2
.

Note that the derivative of the function f(u):

f ′(u) = (k − 2)
4

λ4

(
u+ 2λ

λ4 + λu

)k−3
(λ−

√
2)(λ+

√
2)

(λ4 + λu)2
< 0

at the 0 < λ < 1, i.e. the function f(u) is decreasing for u > 0. Hence, equation (10) has a unique solution u∗ for
any λ ∈ (0, 1). Then system (7) has unique solution z = (u, v, w) = (u∗, 1, 1). Lemma 1 is proved.
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For some values of k one can give explicit form of the unique solution to (9). For example, if k = 2 then the
unique solution of equation (7) is with:

u
(2)
∗ =

4

λ6
, (11)

i.e.,.:
z = (u, v, w) = (u

(2)
∗ , 1, 1).

For k = 3 the system of equation (7) has unique solution for any λ > 0:

z = (u, v, w) = (u
(3)
∗ , 1, 1),

where:

u
(3)
∗ =

√
(λ10 − 4)2 + 32λ8 − (λ10 − 4)

2λ7
. (12)

For k = 4 the system of equation (7) has unique solution:

z = (u, v, w) = (u
(4)
∗ , 1, 1),

where:

u
(4)
∗ (λ) =

1

3λ8

(
3

√
A+ 6

√
3B +

C
3
√
A+ 6

√
3B
− 2λ11 + 4

)
, (13)

here:

A = λ33 + 30λ22 − 144λ20 + 216λ18 − 96λ11 + 288λ9 + 64,

B =
(λ24 − λ13 − 36λ11 + 108λ9 + 32)(λ2 − 2)2

λ
,

C = λ22 − 16λ11 + 48λ9 + 16.

On the cases k > 4, it is not possible to find an explicit form of the solution to equation (9).
Denote by µ the Gibbs measure which, by (2), correspond to the solution z.
Thus we obtain the following.

Theorem 1. For the HC Blume–Capel model in “one case” of DNAs on the Cayley tree of order k ≥ 2 at the

T =
J

ln 1
λ

> 0 there is unique translation-invariant Gibbs measure µ.

3. Markov chains of TIGMs and Holliday junction of DNA

For marginals on the two-edge sets consisting of two neighboring edges l, t, taking into account the boundary law
{(z0,l, z1,l, zt), l /∈ Z-path, t ∈ Z-path}, i.e. solutions to the (2) system. This boundary law is normalized to −1, i.e.,
z−1,l = 1. We have:

µ(σ(l) = a, σ(t) = b) =
1

Z
za,l exp(Jβ(a− b)2)zb,t, a, b = −1, 0,+1,

where Z is normalizing factor.
From this, using formulas (3) and (4) for solutions (u, v, w) to (7) we write the matrices of the tree-indexed

Markov chains (related to Gibbs measures, see [4]) P[l,t] =
(
P

[l,t]
ij

)
:

P[l,t] = P[l,t]
(3→3) =


0

λu

λu+ λ4v

λ4v

λu+ λ4v
λ

λ+ u+ λv

u

λ+ u+ λv

λv

λ+ u+ λv
λ4

λ4 + λu

λu

λ4 + λu
0

 , if l, t /∈ Z-path.

P[l,t] = P[l,t]
(3→2) =


0 0 1
1

1 + w
0

w

1 + w

1 0 0

 , if l /∈ Z-path, t ∈ Z-path.
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P[l,t] = P[l,t]
(2→3) =


0

λu

λu+ λ4v

λ4v

λu+ λ4v

∗ ∗ ∗
λ4

λ4 + λu

λu

λ4 + λu
0

 , if l ∈ Z-path, t /∈ Z-path,

where ∗ means that P [l,t]
0j is not defined, because σ(l) 6= 0 for any l ∈ Z-path.

P[l,t] = P[l,t]
(2→2) =

 0 1

1 0

 , if l ∈ Z-path, t ∈ Z-path.

Here, the matrix element P [l,t]
ij is the probablity of the transition from the state i on the edge l to the state j on the

neighboring edge t.
Matrices P[l,t]

(2→3), P
[l,t]
(3→2) do not define standard Markov chain. Therefore, we will not consider them.

For the matrix P[l,t]
(n→m) with n = m, it is easy to find the following stationary distributions:

π(n→m) = (π(n→m),−1, π(n→m),0, π(n→m),1).

Namely, we have:

π(3→3) =
1

N

(
λu+ λ4v, (λ+ u+ λv)u, (λ4 + λu)v

)
,

where N the normalizing factor, and:

π(2→2) =

(
1

2
,

1

2

)
.

Using the ergodic theorem (see [13]) for non-negative stochastic matrices and the above formulas for matrices
and stationary distributions, we obtain.
Theorem 2. In a stationary state of the set of DNAs, independently on l /∈ Z-path, a Holliday junction through l does
not occur with the following probability (with respect to measure µ∗):

π(3→3),0 = π
(∗)
(3→3),0 =

1

N
(2λ+ u∗)u∗.

(Consequently, a Holliday junction occurs with probability 1− π(∗)
(3→3),0) where u∗ are defined in Lemma 1.

It can be seen that π(∗)
(3→3),0 is a function only of temperature.

We now find the limits of the stationary distribution vectors π(3→3), π(2→2) (corresponding to the Markov chain
generated by the Gibbs measure µ) as T → 0 (as β → ∞ and λ → 0) and as T → +∞ (as β → 0 and λ → 1). To
find the limits, we take the dependence of u∗ on T = 1/β into account.
Lemma 2. We have the relations:

lim
T→0

π
(k)
(3→3) = (0, 1, 0) , k = 2, 3, 4.

lim
T→0

π
(k)
(2→2) =

(
1

2
,

1

2

)
, k = 2, 3, 4.

in the low-temperature case T → 0 and:

lim
T→+∞

π
(2)
(3→3) =

(
5

34
,

12

17
,

5

34

)
≈ (0.14705882, 0.70588235, 0.14705882) ,

lim
T→+∞

π
(3)
(3→3) =

(
5 +
√

41

41 + 7
√

41
,

31 + 5
√

41

41 + 7
√

41
,

5 +
√

41

41 + 7
√

41

)
≈ (0.13286968, 0.73426064, 0.13286968) ,

lim
T→+∞

π
(4)
(3→3) = (E,F,E) = (0.12195036, 0.75609928, 0.12195036) ,

lim
T→+∞

π
(k)
(2→2) =

(
1

2
,

1

2

)
, k = 2, 3, 4,

in the high-temperature case T → +∞, where:

E =
36
√

78 + 15(359 + 12
√

78)
2
3 + 147(359 + 12

√
78)

1
3 + 1077

8145 + 144(359 + 12
√

78)
2
3 + (359 + 12

√
78)

4
3 + 784(359 + 12

√
78)

1
3 + 192

√
78
≈ 0.12195036,
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F =
5991 + 144(359 + 12

√
78)

2
3 + 490(359 + 12

√
78)

1
3 + (359 + 12

√
78)

4
3 + 120

√
78

8145 + 144(359 + 12
√

78)
2
3 + (359 + 12

√
78)

4
3 + 784(359 + 12

√
78)

1
3 + 192

√
78
≈ 0.75609928.

By Lemma 2 we have the following structures of the DNA set:
• (i) In the case T → 0, the DNA set has the following stationary states (configurations):
Case µ (k = 2, 3, 4): For all neighboring DNA molecules, the Holliday junction does not occur. The sequence

of ±1 s, in a DNA on the Z-path is free with independent identically distributed and equiprobable (1/2) −1
and +1.

• (ii) In the case T → +∞, the DNA set has the following stationary states (configurations):
Case µ (k = 2): All neighboring DNA molecules have Holliday junction with probability 5/17 (more precisely,

a junction via state −1 or +1 with equiprobable 5/34) and no junction with probability 12/17. The sequence
of ±1 s, in a DNA on the Z-path is free with independent identically distributed and equiprobable (1/2) −1
and +1.

Case µ (k = 3): All neighboring DNA molecules have Holliday junction with probability 0.26573936 (more
precisely, a junction via state −1 or +1 with equiprobable 0.13286968) and no junction with probability
0.73426064. The sequence of ±1 s, in a DNA on the Z-path is free with independent identically distributed
and equiprobable (1/2) −1 and +1.

Case µ (k = 4): All neighboring DNA molecules have Holliday junction with probability 0.24390072 (more
precisely, a junction via state −1 or +1 with equiprobable 0.12195036) and no junction with probability
0.75609928. The sequence of ±1 s, in a DNA on the Z-path is free with independent identically distributed
and equiprobable (1/2) −1 and +1.

4. Conclusions

On the Cayley tree, the results for DNA were obtained only for cases k = 2. In this paper, the results are obtained
for the case k ≥ 2. Following [12] for the HC Blume–Capel model in “one case” in DNA on a Cayley tree of order
k ≥ 2, we proved that at a temperature T > 0 there is a unique TIGM.

Since each such measure describes the phase of DNA recruitment. Our results refer to the Gibbs measure allowed
us to study the distributions of Holliday junctions DNA compounds. In the previous section, for very high and very
low temperatures, we gave stationary distributions and typical configurations of Holliday junctions.
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