NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (4), P. 410414

Quantum image transmission based on linear elements
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Modeling of image transmission with a classic quantum computer interpreter is suggested. The transmission algorithm from the paper (Lemos G.B.,
et.al. Quantum Imaging with Undetected Photons, Nature, 2014, 512, P. 409-412) is modified to reduce the complexity of the quantum circuit.
Simplification was done by replacing the non-linear optical elements with a conventional quantum entanglement operator. The obtained results
show expected efficiency of data transmission with Gaussian beam by hypothesis test and calculation error function. This error function is used for
quality measurement. The interpreter is written in Kotlin language.
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1. Introduction

The production of a working quantum computer has become a real possibility thanks to recent developments in
the field of nanotechnology but there is still a long way to go [1]. Optical channels are preferable in quantum com-
munications (see, e.g., [2,3]). The idea of quantum signal transportation appeared at the very beginning of quantum
algorithms research or even earlier. The AbbeRayleigh diffraction limit constrains spatial resolution for classical imag-
ing methods. Quantum imaging exploits correlations between photons to reproduce structures with higher resolution.
Quantum-correlated N-photon states were shown to potentially surpass the classical limit by a factor of 1/N, corre-
sponding to the Heisenberg limit, using a method known as optical centroid measurement [4—6]. Quantum imaging
found many applications in communications, material investigation, biology, etc. [7-10].

The measurement problem discovered by Steven Weinberg in 1998 [11] does not give one the ability to use full
information contained in a quantum-entangled system. Thus, measurement avoidance is the main vector of quantum
algorithm development, including quantum information transfer algorithm. This leads to the use of an uncontrollably
big system in transport system. Other problem is overwhelming difficulty of maintaining an exclusive measurement
system. In this way, the measurement of high frequency waves is more difficult than the measurement of low frequency
waves. In [12], an example is given of a quantum circuit which transmits information using a wave twice as high
frequency as the measured. But this scheme has a problem, elements used in the suggested circuit are difficult for
expected behavior simulation. In the present work, we suggest to change all non-linear components by a linear
quantum entanglement operator.

2. Quantum imaging
2.1. Classic quantum computer interpreter

A modified quantum imaging algorithm is implemented with classic quantum computer interpreter. The main ele-
ment of the quantum algorithm is unitary operators. Operator A is called unitary operator if AAT = ATA = E where
E is the identity operator and A" is the adjoint operator. Each unitary operator corresponds to some quantum opera-
tion (quantum gate) applied to quantum system. A composition of two unitary operators is consequent application of
each one. A sequence of quantum gates forms a quantum algorithm.

Qubit is the main object for quantum computing. A physical qubit is a quantum system which can be in a
superposition of two states. In quantum informatics, any system has 2" states where 7 is the number of qubits. Each
qubit is a complex 2-vector
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where |a|?, |3|? are the probabilities of observing the qubit in the corresponding state, respectively, |a|* + |8]? = 1.
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The state space for a multiqubit system is the tensor product of the state spaces for separate qubits. Let A be the
operator acting on the first qubit |¢) and B be the operator acting on the second qubit |1)). Then,

(A® B)(l9) ©[¢)) = A(l9)) © B(|4)),

where ® is the tensor product of operators (in matrix case, it is the Kronecker product of matrices). Particularly, the
tensor product of two vectors |¢) , [1)) of sizes n X 1,m X 1 is the vector £ of size nm X 1, where:

€nit;j =Qi0; Vie (1...n),Vj € (1...m).
The tensor product of two matrices A, B of sizes n X n, m x m is the block matrix C' with the following block entries
Cij=A;BVi,je(1...n).
So for implementation of a classic quantum interpreter, the following operations should be implemented:

(1) Algebra of application of matrix to vectors,

(2) Algebra of multiplication between two matrices,
(3) Algebra of tensor products between two vectors,
(4) Algebra of tensor products between two matrices.

2.2. Implementation features

In the current work some data structures were recreated to fulfill the requirements of clean functional style code.
Thus, the vector is linked list with generalized typing. Also the full experimental model used complex number type
which does not exist in vanilla Kotlin. The main idea is to use only recursive types with single exit point for tail-
optimization provided by JVM environment. These types of structures also solve the problem of state mutation, as, all
elements are made immutable objects.

Because the Kotlin sealed class model does not allow to extend them beyond this class, there are some features
such as boxed types. Any type used for this interpreter are boxed. So, formally, there are no outer usage of standard
types.

Finally, there is a problem that Kotlin does not have an apparatus for contract checking, as for pure functions so
for impure. Also, it can not guarantee that all objects are linear-typing. So, the usage of this interpreter is non-verified
and thus, there is a need for large test coverage or in formal verification. For image processing the standard java library
is used.

2.3. Gaussian beam model

The main transmitter is a laser with Gaussian beam characteristics. A Gaussian beam is one in which there is a
superposition of coherent waves each of which has special distribution of amplitudes:
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where p is related to the width of the beam, H; () is the Hermitian polynomial
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Examples of the amplitude distributions can be found below. In Figs. 2—5 one can see the amplitude distributions for
main gaussian beam modes which contribute the most important modes for the image.

Also for improvement of statistics, one uses relative distribution without any mode except |00) , |01) , |10}, |11).
In the present work, there are attempts to use different sets of Gaussian beams, but it does not confer an essential effect
for the quality of the restored image.

The rotation operator is, usually, described by the following matrix in standard basis:

cos(¢) —sin(¢)
sin(¢)  cos(¢)
however, we will use another, more convenient, representation:

T(t)(al0) + B811)) = £]0) + (1),

T(¢) =

where

£=at—Bi,C=Bt+ali= V112
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Thus, the object can be transformed from a constant matrix to a functional matrix. Here, ¢ is “the rotation function”
which is given by location of our beam. In this way, ¢t : R x R — R. This leads to the final representation of the
rotation operator as the following matrix:

t(.l?,y) _t.(xay)

i(x,y)  tlx,y)

This rotation operator is a one-qubit operator, but for many-qubit systems, one can consider the corresponding
tensor product:

T(z,y) =

Thr1 =TTy, Ty=T.
Also, one can construct 7', not for each pixel (or other atomic element), but for a cluster. This solves a problem of
transmission because we can easily facilitate data volume transmitted by classic channel.
Using this operator, one comes to the final representation of the quantum algorithm (the corresponding circuit is
shown in Fig. 5):
Q= (NLlyyn®E,) o (E, ®Ty(x,y)) o (En ® NL2yiy).
Here N L1 and N L2 elements are non-linear crystals which splits the laser beam in two beams of single frequency.

These elements are not simple both for implementation and for computer modelling. We replace it by a linear optical
elements (CNOT-gates):

Q, = (CNOT7L+7L @ En) © (En & Tn(ajv y)) o (En 02y CNOTn+n)
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F1G. 1. The main circuit used in [12]
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FIG. 2. Hyp mode distribution
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FI1G. 3. Hy; mode distribution

FIG. 4. Hyp mode distribution

FIG. 5. H;; mode distribution

2.4. Measurements with interference model

The measurements are particle numbers which are recorded by the sensors. It is important that the sensors detect
only low frequency signals which match them before they have an interference. Taking into account the distribution
for the modes, one can calculate the interference between them with simple addition:

Az, y)+B(z,y) = I(z,y),

where A(z,y) is the distribution after entanglement with modified high-frequency, B(x,y) is the distribution after
entanglement with non-modified high-frequency and + is the binary operator which sums only projection with right
angle. Thus there are two different interference pictures:

Ia(z,y) = A(x,y) + T (2,y)B(z,y),
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IB(‘Ta y) = T+(I7 y)A(Ia y) + B(I7 y)
Let us perform some pre-transformations. Let P, (x, y) be the initial high frequency distribution, P;(z, y) be the initial
low frequency distribution, Z(x,y) be the constant zero distribution, H (x,y) be the high frequency after-processed
distribution,
QP,@P®P)=(A®B®H),
TIy,=TA+TT"B=TA+ B.
As A, B are real scalars, their conjugation does not change the inner structure of them.
T+IA = T+A+B = Ip,
or
Tip =14.

In this way, we can get A, B if we know nature of T'. Keeping in mind the known values of A and B, one can obtain
the approximate picture.

Let us estimate the error. MSE (mean squared error) is a metrics for quality of the transmitted image (/1, 12 are
the initial and the transmitted signals).

1 n m
MSE(I1,12) = — % % " |I1(x,y) — I12(z,y)[.

rz=1y=1
The corresponding results for different number of bits is presented in Table 1.

TABLE 1. Results

Size 16 32 64 128 256 512
MSE || 0.5601 || 0.5559 || 0.5612 || 0.5603 || 0.5600 || 0.5603

3. Conclusion

Finally, the quantum image transmission method was suggested with use of linear elements in quantum circuit
(without non-linear ones). This scheme is simpler for implementation than the analogous non-linear ones. It shows
an appropriate quality of transmission. But there are two unsolved problems: strong blur on image and the need for
classic channel usage (moreover, with no constant size of data). The strong blur may be partially solved by other
non-quantum methods or with additional classical data transfer. This need in classic channel, unfortunately, can not
currently be resolved by this algorithm without additional complication of the scheme.
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