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The prediction of COOH functionalized carbon nanotube application
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Using quantum chemical calculations, noncovalent functionalization of melphalan drug on the surface of functionalized carbon nanotube (NT) have
been examined. Quantum molecular descriptors of noncovalent interactions were investigated. It was concluded that binding of drug melphalan
into COOH-functionalized NT (FNT) is exothermic and makes the system stable. Comparison between FNT and COCl functionalized NT (F′NT)
showed that FNT has more binding energy and may act as a carrier for drug delivery (if the noncovalent functionalization is desired). The OH
and NH2 groups of melphalan may bond to Cl (COCl mechanism) and COOH (COOH mechanism) of F′NT and FNT, respectively. Therefore,
four mechanisms for the covalent functionalization have been investigated. The transition states of four pathways were optimized and activation
parameters were evaluated. The high barriers of COOH pathway are greater than those of COCl pathway and therefore F′NT is suitable carrier for
covalent functionalization.

Keywords: Carbon nanotube, density functional theory, functionalization, melphalan, quantum descriptors.

Received: 14 May 2019

Revised: 28 June 2019

1. Introduction

Despite all efforts to overcome cancer, the old approaches through chemotherapy cause side effects such as vom-
iting, heart disease, hair loss and etc. [1, 2]. In recent years, the use of targeted methods for drug delivery has been
felt [3–6]. For this purpose, organic compounds such as dendrimers [7], drug-polymer conjugates [8] and liposomes [9]
and inorganic nanoparticles, such as gold NPs [10], iron oxide NPs [11, 12], silica NPs [13] have been exploited.

Experimental and theoretical studies have recently focused on carbon-based nanoparticles, such as carbon nan-
otubes and graphene, for drug delivery [14–21]. With a unique set of mechanical, electrical and chemical proper-
ties [22–29], carbon nanotubes have many applications in chemical pharmaceutical researches [30–33].

In spite of some deficiencies such as low solubility in aqueous solutions and high toxicity [34–36], carbon nan-
otubes have been highly regarded in drug delivery due to good cell penetration qualities and high drug loading [37–39].
Using nanotubes as the carrier molecules, lower doses of anticancer drugs are needed, resulting in reduced side effects
of the medicine [40–42]. Functionalized carbon nanotubes were used as carriers for different anticancer drugs such as
platinum (IV) [43], 6-mercaptopurine [44], doxorubicin [45,46], paclitaxel [47], Methotrexate [48], gemcitabine [49],
camptothecin [50], tamoxifen [51], oridonin [52], sorafenib [53], soyasapogenol [54] and etc. Melphalan or 4-[bis(2-
Chloroethyl)amino]-L-phenylalanine is an alkylating agent which has anticancer activities and is extremely effective
in the treatment of tumors such as multiple myeloma [55, 56].

Quantum computing is a powerful tool for analyzing drug delivery systems [57–64]. In this work, quantum
chemical calculations were used to study the covalent and noncovalent adsorption of the exterior surface of COOH
functionalized carbon nanotube (FNT) with melphalan drug. Noncovalent functionalization is more commonly used
to carry medicine, but in many cases, such as hydroxycamptothecin, doxorubicin, pirarubicin, platinol, methotrexate,
tamoxifen and thalidomide, covalent functionalization has been used [65]. The predictions made in this way can help
researchers build and use targeted anticancer drugs and reduce the process of trial and error in the laboratory.

2. Computational details

GAUSSIAN 09 package [66] has been utilized for the optimization of all configurations in gas and solution
phases at UB3LYP/6-31G(d,p). Polarized continuum model (PCM) was employed to consider the implicit solvent
effects [67, 68]. For the optimization of the molecular configurations, the standard convergence criteria were utilized.
All degrees of freedom were optimized for all species. The transition states were confirmed to have only one imaginary
frequency of the Hessian. In addition, zero-point corrections were taken into account to obtain the activation energy.



The prediction of COOH functionalized carbon nanotube application in melphalan drug delivery 439

COOH functionalized armchair (5,5) single wall carbon nanotube (FNT) comprising 114 atoms (10 Å) was con-
sidered as FNT model. Unrestricted method (U in UB3LYP) is used for molecules with unpaired electrons such as
FNT model.

Quantum molecular descriptors may be used to evaluate chemical reactivity and stability. The global hardness (η)
demonstrates the resistance of one particle against the modification in its electronic configuration:

η =
I −A

2
, (1)

where I = −EHOMO and A = −ELUMO are the ionization potential and the electron affinity, respectively. The
electrophilicity index (ω) [69] is evaluated by

ω =
(I +A)2

8η
. (2)

3. Results and discussion

Melphalan (M) is an anticancer molecule with NH2, OH and Cl groups as represented in Fig. 1. The optimized
geometries of M, COOH functionalized carbon nanotube (FNT) and COCl functionalized carbon nanotube (F′NT) in
aqueous solution have been shown in Fig. 1.

FIG. 1. Optimized geometries of M, FNT and F′NT

The hydrogen bond interactions between M and FNT or F′NT occur via NH2, OH and Cl groups. These five
configurations have been illustrated in Figs. 2 and 3, namely, FNT/M1-3R and F′NT/M1-2R.

The binding energies (∆E) of M to FNT (in water) and F′NT (in DMF) were calculated using equation (3) and
represented in Table 1:

∆E = EFNT (F ′NT )/M1−3R − (EFNT (F ′NT ) + EM ). (3)

FIG. 2. Optimized geometries of FNT/M1-3R
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FIG. 3. Optimized geometries of F′NT/M1-2

TABLE 1. Solvation and binding energies of different configurations (kJ·mol−1)

Species Solvation energy Binding energy Binding energy

M −45.02
Solution phase Gas phase

FNT −49.00

FNT/M1R −84.43 −6.48 −16.07

FNT/M2R −69.17 −24.26 −49.10

FNT/M3R −74.48 −12.84 −32.37

F′NT/M1R — −2.74 —

F′NT/M2R — −7.79 —

Using the calculated ∆Es of five species in Table 1, these binding energies are negative in gas and solution
phases showing M drug is stabilized by FNT and F′NT surfaces. Among the 5 species, FNT/M1-3R are more stable
than F′NT/M1-2R. Among the three species of FNT/M1-3R, the second one has more negative energy in gas and
solution phases, denoting a stronger hydrogen bonding (from OH group).

Generally, for noncovalent interactions, comparison between FNT and F′NT indicates that using the first one is
more favorable because of a stronger hydrogen bonding between M and COOH functionalized single wall carbon
nanotube.

The solvation energies (∆Esolv) of all structures have been calculated using the following equation:

∆Esolv = Esol − Egas, (4)

whereEgas andEsol represent the total energies in the gas and solution phases, respectively. The solvation energies of
M, FNT, FNT/M1-3R have been shown in Table 1. Because of the negative values of solvation energies, this process
is spontaneous. The calculated solvation energies show that M solubility increases in the vicinity of FNT. After the
functionalization of M on FNT, solubility of M increases which is critical to the drug delivery systems. The important
feature of M is in having NH2, OH and Cl groups, creating hydrogen bonds between FNT, solvent molecules and M
drug.
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Table 2 represents the quantum molecular descriptors for M (H2O, DMF, GAS), FNT (H2O, GAS), F′NT (DMF),
FNT/M1-3R (H2O, GAS) and F′NT/M1-2R (DMF). In Table 2, gap of energy between LUMO and HOMO (Eg) was
also evaluated. Eg determines a more stable system.

TABLE 2. Binding energies (kJ·mol−1) and quantum molecular descriptors (eV) for optimized species

Species EHOMO ELUMO Eg η ω

H2O

M −5.37 −0.24 5.12 2.56 1.53

FNT −4.04 −2.74 1.30 0.65 8.86

FNT/M1R −4.05 −2.76 1.29 0.65 8.96

FNT/M2R −4.04 −2.74 1.30 0.65 8.86

FNT/M3R −3.92 −2.73 1.19 0.60 9.26

GAS

M −5.52 −0.35 5.17 2.59 1.66

FNT −3.90 −2.59 1.31 0.65 8.04

FNT/M1R −3.96 −2.66 1.30 0.65 8.44

FNT/M2R −3.92 −2.62 1.30 0.65 8.21

FNT/M3R −3.92 −2.61 1.31 0.65 8.17

DMF

M −5.37 −0.24 5.12 2.56 1.54

F′NT −4.07 −2.82 1.26 0.63 9.46

F′NT/ M2R −4.09 −2.83 1.25 0.63 9.57

F′NT/ M3R −4.09 −2.84 1.25 0.63 9.62

η and Eg of the M drug are higher than those of FNT/M1-3R and F′NT/M1-2R, demonstrating the reactivity of
M increases in the presence of COOH (COCl) functionalized NT. ω of M increases in the vicinity of COOH (COCl)
functionalized NT, showing that M is an electron acceptor. The η andEg values in FNT/ M1-2R are higher than F′NT/
M1-2R, indicating F′NT/ M to be more reactive (less stable) compared to FNT/ M.

In the covalent functionalization, NH2 and OH groups attack the carbon atom of COOH or COCl to transfer their
protons to the OH (Cl) group. We considered these four possible mechanisms for F(F′)NT/M1-2R. In COOH mecha-
nism OH from FNT is substituted by NH (O) from M to give product P(P′)FNT. The optimized products (P(P′)FNT)
have been presented in Fig. 4.

Using reactant FNT/M1R and product PFNT, the transition state of this step was obtained (TS1 in Fig. 5). The
bond lengths are presented in Figs. 2, 4 and 5.

Relative energies for all structures have been calculated in Table 3 by considering the zero value for electronic plus
zero point energy (E), enthalpy (H) and Gibbs free energy (G) of reactants (FNT+M). The activation energy (Ea),
activation enthalpy (∆H‡) and activation Gibbs free energy (∆G‡) for COOH/M1 mechanism are 200.53, 202.78 and
254.38 kJ·mol−1, respectively (Table 3).

Similar to COOH/M1 mechanism, using FNT/M2R and P′FNT, the transition state (TS2 in Fig. 5) was obtained.
Ea, ∆H‡ and ∆G‡ for COOH/M2 mechanism are 125.41, 129.02 and 178.99 kJ·mol−1 respectively (Table 3). In
room temperature, the activation energies of COOH mechanism are too high to occur.

In the other reactions for the covalent functionalization of M onto COCl functionalized carbon nanotube (COCl
mechanism), FNT was firstly converted into alkyl chloride using SOCl2 (F′NT) [70]. M then reacts with F′NT to form
covalent bond. F′NT is again converted to FNT in the presence of water. Therefore, this process should take place in
a solvent such as DMF. In this mechanism, the attack of NH2 and OH of M to Cl in the F′NT forms products PF′NT
and P′F′NT, respectively (Fig. 6).
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FIG. 4. Optimized geometries of PFNT and P′FNT

FIG. 5. Optimized geometries of TS1 and TS2

Using F′NT/M1R and PF′NT, TS3 is optimized (Fig. 7). The bond lengths are represented in Figs. 3, 6 and 7. Ea,
∆H‡ and ∆G‡ for COCl/M1 mechanism are 68.10, 74.68 and 95.24 kJ·mol−1, respectively (Table 3). Using reactant
F′NT/M2R and product P′F′NT, TS4 was obtained (Fig. 7). Ea, ∆H‡ and ∆G‡ for COCl/M2 mechanism are 86.66,
94.94 and 114.02 kJ·mol−1, respectively (Table 3).

The total Ea for COCl/M1-2 mechanisms are lower than COOH/M1-2 mechanisms by 132.43 and
38.75 kJ·mol−1, respectively. Hence, for the covalent functionalization of CNT by M drug F′NT should be used.

4. Conclusion

Four configurations of noncovalent interactions of drug melphalan (M) onto FNT and F′NT were examined. The
binding energies of F′NT are lower than those of FNT, denoting FNT/M configurations have more stability. The
HOMO-LUMO energy gap and global hardness of FNT/M species are greater than those of F′NT/M configurations
species, showing the reactivity of M increases in the F′NT/M species and its stability decreases.

Four covalent functionalization mechanisms of M onto FNT (COOH mechanism) and F′NT (COCl mechanism)
have been examined. M may bond to FNT or F′NT via NH2 and OH groups. The energy barriers of COOH mecha-
nisms are higher than those of COCl mechanisms. Therefore, COCl mechanisms are suitable for the covalent func-
tionalization.
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TABLE 3. Relative energies (kJ·mol−1) for species in COOH and COCl mechanisms

Species E H G

In water COOH mechanism

FNT+M 0.00 0.00 0.00

FNT/M1R −6.48 0.00 26.38

TS1 200.53 202.78 254.38

PFNT −9.07 −2.57 23.79

FNT/M2R −24.26 −22.01 28.66

TS2 125.41 129.02 178.99

P′FNT 49.24 51.77 102.44

In DMF COCl mehanism

F′NT+M 0.00 0.00 0.00

F′NT/M1R −2.74 4.07 23.59

TS3 68.10 74.68 95.24

PF′NT −16.96 −11.43 −3.55

F′NT/M2R −7.79 −0.90 18.52

TS4 86.66 94.94 114.02

P′F′NT −22.58 −17.20 −9.41

FIG. 6. Optimized geometries of PF′NT and P′F′NT
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FIG. 7. Optimized geometries of TS3 and TS4
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