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1. Introduction

A quantum theory of a multielectron system bases on joint symmetry group of permutations and space sym-
metry. In the pioneer paper of Heisenberg [1] it was established, that Weiss model of ferro-magnetism is explained
by electric interaction, which origin may be understood on base of theory of Heitler–London hydrogen molecule. It
is naturally combined with Hartree–Fock theory [2] and its further self-consistent one-particle generalizations that
provide better exchange integral evaluation including the system spectral properties [3].

The group theoretical foundation of [1] is based on multispin state via irredicible representations of the
symmetry with respect to permutation group [4]. The problem of Hamiltonian spectrum parameters evaluation is
expressed in terms of irreducible representations of symmetry group and exchange integrals, see also [5].

The next important step in the theory development taking into account the antisymmetry of the wave function
of electrons and a more advanced extended symmetry, including space (geometry) symmetry of equivalent positions
of atoms equilibrium. The magnetic properties of matter exist as a result of electrons spins and the antisymmetry
of the wave function.

When a system is in an external electric or magnetic field, an additional terms in the Hamiltonian appear.
Its microscopic origin is conventionally understand in terms of perturbation theory that gives deformation of
wavefunctions and energy eigenvalues. The results in atomic physics are known as Stark and Zeeman effects.

A multiferroic control implies a manipulation of magnetic moment by electric field switching. General thermo-
dynamic consideration, specified by Dzialoshinski, introduces the magnetoelectric constants, namely longitudinal
and perpendicular dielectric constants, the magnetic susceptibilities, and the constants describing the magneto-
electrical effect.

In this paper, a spectral and statistical theory in the Heisenberg spirit is developed. The application of statistical
physics approach, formulated in [1] leads to the mentioned thermodynamic parameters evaluation with external
magnetic and electric fields account. The ferro-magnetism appearance conditions are illustrated by plotting the
dependence of closest neighbors number on exchange integral.

Applications to amorphous microwires and crystalline nanowires are discussed by example of a tube made of
atoms which space positions form symmetrical configuration. The energy and distribution parameter modifications
for nanotubes naturally introduce the closest neighbors exchange integrals defined by the nanostructure symmetry.
It gives a model thermodynamic description based on a statistical sum modifications.
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2. A joint symmetry group of multi-electron systems

Generally a wave function of a multi-electron system:

Φ = Φ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)
∈ H, (1)

depends on the variables ~Rj ∈ R3, j = 1, ...K, as on parameters, that are coordinates of “adiabatic” atoms
positions, ~ri ∈ R3, i = 1, ..., N are electron coordinates and σ1, σ2, . . . , σN are spin variables of electrons. Since
the electrons are fermions, the Pauli–Luders theorem states that the wave function must be antisymmetric in the
variables of the electrons; this means that the function belongs the irreducible representation of the all-electrons
permutation group.

A rotation in position space marked as R(α, β, γ), where the angles α, β, γ are Euler ones represents in a
1-electron spin space by a 2×2 matrix u(α, β, γ):

u(α, β, γ) = D1/2(α, β, γ), (2)

where D1/2 is an unitary matrix of irreducible representation of rotation group [6]. This means that the wave
function (1) transforms as direct product of the representations (2). To study the joint group table it is convenient
to “jump” into the representation of the spinors Φ, because the permutations and rotations act also to the atoms
positions. The actions in Hilbert space of states are for the permutations:

PΦ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

=

Φ
(−→
R 1, · · · ,

−→
RK , (P

−→r 1, Pσ1) , · · · , (P−→r N , PσN )
) (3)

and
RΦ

(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

=

D1/2
σ1,σ′

1
...D1/2

σN ,σ′
N

Φ
(−→
R 1, · · · ,

−→
RK , (R

−→r 1, σ
′
1) , · · · , (R−→r N , σ′N )

) (4)

for rotations. The operators P,R act in Hilbert space H, while P,R act in position space R3.
A combination of the transformations (4) and (6):

PRΦ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

=

D1/2
Pσ1,σ′

1
...D1/2

PσN ,σ′
N

Φ
(−→
R 1, · · · ,

−→
RK , (PR

−→r 1, σ
′
1) , · · · , (PR−→r N , σ′N )

)
,

(5)

and, in opposite order,

RPΦ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

=

D1/2
σ1,Pσ1

...D1/2
σN ,PσN

Φ
(−→
R 1, · · · ,

−→
RK , (P

−→r 1, Pσ1) , · · · , (RP−→r N , RPσN )
)
.

(6)

For the joint symmetry applications the Frobenius theorem is used. Let H be a subgroup of the group G and
γ(i) is a irreducible representation of H . Then the representation Γ of G, induced by γ(i) contains each irreducible
representation Γλ of G so many times as γ(i) contains in the representation of H given by matrices Γλ.

The characters of the symmetry group is evaluated by the formula from [7],
Let us give more details for simplest example of Hydrogen molecule. In the case of two-electron system the

wave function is defined in six-dimensional position space with the coordinate set {x1, y1, z1;x2, y2, z2} and with

extra discrete spin variables σ1, σ2, that runs numbers −1, 1. Φ = Φ
(−→
R 1,
−→
R 2;−→r 1, σ1;−→r 2, σ2

)
. Suppose atom

positions ~R1, ~R2 lie in the plane xy symmetrically to origin.
The permutation, in this case, acts in the direct product of space and spin variables as:

P{x1, y1, z1;x2, y2, z2;σ1, σ2} = {x2, y2, z2;x1, y1, z1;σ2, σ1}. (7)

A rotation in xy plane:

R{x1, y1, z1;x2, y2, z2} = {(cosπ)x1, (cosπ)y1, z1; (cosπ)x2, (cosπ)y2, z2}. (8)

is accompanied to a transformation in spin space u(R) ∈ SU(2) so as, generally

uvσ = D1/2
νσ vσ. (9)

The product of the actions is:

PR{x1, y1, z1;x2, y2, z2;σ1, σ2} =

P{(cosπ)x1, (cosπ)y1, z1; (cosπ)x2, (cosπ)y2, z2},
(10)
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and, in inverse order:

RP{x1, y1, z1;x2, y2, z2;σ1, σ2} = R{x2, y2, z2;x1, y1, z1;σ2, σ1}} (11)

with rotation action by (8).

3. Born–Oppenheimer approximation. Hamiltonian of the system of electrons of a solid

In the Born–Oppenheimer approximation, in the problem for electrons, the nuclei of a solid are assumed to be
static. The Hamiltonian is written for a system of N electrons, in the field of the nuclei:

Ĥ = − ~2

2m

∑
i

∆i −
∑
J,i

ZJe
2∣∣∣−→r i −−→RJ

∣∣∣ +
∑
i,j 6=i

e2

|−→r i −−→r j |
. (12)

In the expression (12),
∑
i

is a sum over all electrons, i is the electron number;
∑
J

is a sum over all nuclei, J is

nucleus number; ZJ is the charge of the nucleus with number J , expressed in charges of an electron module |e|;
−→
RJ is a position of the nucleus J , −→r i is a radius-vector for the electron number i.

The energy eigenvalue problem is formulated in terms of the equation:

ĤΦ = EΦ, (13)

where the eigenfinctions Φ = Φ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)
, are parametrized by the nuclei posi-

tions ~Rj , σ1, σ2, . . . σN are electron spin variables. Since the electrons are fermions, the Pauli principle claims,
that a wave function must be antisymmetric in the variables of the electrons, for example,

Φ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

= −Φ
(−→
R 1, · · · ,

−→
RK , (

−→r N , σN ) , · · · , (−→r 1, σ1)
)
.

For shorthand electrons are marked simply with their numbers, that is, we introduce the notation i = (−→r i, σi)
. Then Φ = Φ

(−→
R 1, · · · ,

−→
RK , 1, · · · , N

)
, so further the summation by spin variable is implied.

A symmetry of the equation (13) is determined directly from Fock equations.

4. The Fock equations

Within the framework of the Hartree–Fock method, the wave function Φ = Φ
(−→
R 1, · · · ,

−→
RK , 1, · · · , N

)
may

be searched for in the form of automatically antisymmetric Slater determinant (see [2, 8]) composed of single-
particle functions:

Φ =

∣∣∣∣∣∣∣∣∣∣∣

Ψ1 (1) Ψ2 (1) · · · · · · ΨN (1)

Ψ1 (2) Ψ2 (2) · · · · · · ΨN (2)

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

Ψ1 (N) Ψ2 (N) · · · · · · ΨN (N)

∣∣∣∣∣∣∣∣∣∣∣
Here the functions Ψj(i) are named as spin orbitals. From the variational principle

(
min

〈
Φ, ĤΦ

〉)
the Fock

equations for the spin-orbitals Ψi are derived. Let the set of variables “1,2” be marked as “x, y” as in [9] writing
for shorthand: ∫

dx =
∑
σ

∫
d~r. (14)

The conventional form of the equations is:.

F̂jΨj (x) = εjΨj (x) , (15)

and the F̂j are Fockians:

F̂j = ĥ1 +

′N∑
i=1

(
Ĉi − Ĵi

)
(16)

where the Coulombian interaction operator is defined by: .

ĈiΨj =

∫
Ψ∗i (y) Ψi (y)

r12
dyΨj (x) (17)
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where r12 = |~r1 − ~r2| and the exchange one is:

ĴiΨj =

∫
Ψ∗i (y) Ψj (y)

r12
dyΨi (x) (18)

and

ĥ1 = − ~2

2m
41 −

∑
J

ZJe
2∣∣∣~r1 − ~RJ

∣∣∣
A prime over summation sign means that a term with i = j under the sum sign is skipped. The integration is

carried out over the variables of particle 2, r12 = |~r1 − ~r2|, 41 =
∂2

∂x1
+

∂2

∂y1
+

∂2

∂z1
, ~r1 = (x1, y1, z1). It is

assumed that the functions Ψi are orthogonal:
∫

Ψ∗i (x) Ψk (x) dx = δik.

A symmetry of the equation (15) is determined by the following.

5. Fock equation covariance

We base on Fock Statement [2]. Let L be a Hermitian operator, which is symmetric with respect to all the
electrons, Ω = α1Ψ1 + ...+ αsΨs.

A =

∫
Ω̄LΩ∫
Ω̄Ω

, (19)

then the latter does not depend on coefficients α1; , , , , αs. If H is the energy operator, then, setting the variation
of A to zero, one obtains the Schrödinger equation for the function Ω, to infer the Schrödinger equation from
the variational principles, for any linear combination of functions. In particular the coefficients may be chosen as
matrix elements of irreducible representation Dν

ik(g) of the symmetry group g ∈ G, that defines action:

Ψi(gx) =

s∑
k

Dν
ik(g)Ψk, (20)

A symmetry of the equation (13) is determined directly from Fock equations. Application of permutation
transformation to the Fock equations system consist of

1) change the order of equations
2) the action of the operator Tg on exchange and Coulombian integrals includes action at r12 = |x − y|, that

looks as Tg|x − y| = |gx − y|. After change of variables y = gy′ and application of irreducible representation
matrices unitarity, we arrive at

s∑
i

TgĴiΨj =

s∑
k,p

Dν
jp(g)

∫
Ψ∗k (y) Ψp (y)

|g(x− y)|
dyΨk(x) =

s∑
k,p

Dν
jp(g)ĴkΨk, (21)

and on the Coulomb one
s∑
i

TgĈiΨj =

s∑
k,p

Dν
jk(g)

∫
Ψ∗p (y) Ψp (y)

|g(x− y)|
dyΨk =

s∑
k,p

ĈpD
ν
jk(g)Ψk. (22)

An account of symmetry with respect to the permutation group is studied in [4], where a determinant representation
for the eigenfunctions was introduced. It explored by Fock in derivation of one-particle self-consistent equations
via variational principle in terms of wave functions from irreducible subspaces [2].The space transformation group
action may be determined also via transformation of arguments.

A general symmetry transformations of the system of equations (15) is determined as in Sec. 2.
An irreducible representation basis is fixed by the projection operators P νik, numerated by indices ν, ik:

P νik =
∑
G

NνD
ν
ik(g)Tg, (23)

normalized by Nν .
The system of Fock equations then is rearranged under permutations action while the exchange integrals form

the set Jg . The Coulombian and differential parts are invariant under permutations.
The eigenvalue problem of the exchange operators, numerated by the group elements g after summation by

symmetry group is solved via:

det[
∑
g∈G

Dν
ik(g)Jg − δikE] = 0, (24)
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[4] that we take as the initial point of further investigation.

5.1. Heisenberg chain perturbation

Stark effect. A perturbation theory by the field ε = eE directed along x is applied to a solution φ of the
perturbed Fockian:

Hφ = (HF + εx)φ, (25)

reads as expansion by small parameter ε:
φ = φ0 + εφ(1) + .... (26)

In the first order it gives the following expression for an eigen state:

φ(1)n =

′∑
m

(m|x|n)

Em − En
φ0m, (27)

where (m|x|n) are matrix elements of the Cartesian coordinate x in nonperturbed states. Plugging (26) into
exchange integrals Jik, defined for the electrons coupled to the centers i, k, by the expression (21):

Jik =
e2

2

∫ ∫
ρik(~r, ~r′)

|~r − ~r′|
d~rd~r′, (28)

where, in a spirit of Fock paper [10], it may include all interacting electrons of the closest neighbors, as:

ρ(~r, ~r′) =
∑
p

φ∗p(~r)φp(~r
′) =∑

p

(φ∗0p(~r) + εφ(1)∗p (~r))(φ0p(~r
′) + εφ(1)p (~r′)) =∑

p

φ∗0p(~r)φ0p(~r
′) + ε

∑
p

[φ(1)∗p (~r)φ0p(~r
′) + φ∗0p(~r)φ

(1)
p (~r′)] + o(ε2) =

ρ0(~r, ~r′) + ερ1(~r, ~r′) + ....

(29)

In the case of Stark effect:

Jik =
e2

2

∫ ∫
ρ0(~r, ~r′)

|~r − ~r′|
d~rd~r′ + ε

e2

2

∫ ∫
ρ1(~r, ~r′)

|~r − ~r′|
d~rd~r′ = J0

ik + eEJ1
ik, (30)

we obtain the perturbed Heisenberg chain spin Hamiltonian [11]:

H = Jik(~Si, ~Sk) = (J0
ik + eEJ1

ik)(~Si, ~Sk), (31)

with obvious Ising case:

J1
ik =

e2

2

∫ ∫
ρ1(~r, ~r′)

|~r − ~r′|
d~rd~r′ =

e2

2

∫ ∫ ∑
p[φ

(1)∗
p (~r)φ0p(~r

′) + φ∗0p(~r)φ
(1)
p (~r′)]

|~r − ~r′|
d~rd~r′.

(32)

Plugging (27) and using the shorthand
∫ ∫

=

∫
yields:

e2

2

∫ ∑′
p,m φ

∗
0m(~r) (n|x|m)

Em−Enφ0p(~r
′)

|~r − ~r′|
d~rd~r′ +

e2

2

∫ ∑′
p,m φ

∗
0p(~r)

(m|x|n)
Em−Enφ0m(~r′)]

|~r − ~r′|
d~rd~r′, (33)

or, in a bit more compact from:

e2

2

′∑
p,m

(n|x|m)

Em − En

∫
φ∗0m(~r)φ0p(~r

′)

|~r − ~r′|
d~rd~r′ +

e2

2

′∑
p,m

(m|x|n)

Em − En

∫
φ∗0p(~r)φ0m(~r′)]

|~r − ~r′|
d~rd~r′ (34)

=
e2

2

′∑
p,m

(n|x|m)

Em − En
J0
mp +

e2

2

′∑
p,m

(m|x|n)

Em − En
J0
pm, (35)

with the obvious notation for J0
pm.

Having the results of evaluation of the Fockian eigenfunction, one may calculate (35), otherwise we consider
J1
ik as a parameter. Similarly, the Zeeman effect may be included on basis of the perturbation of Hamiltonian by

V = ~µ ~B, ~µ =
µB(gL~L+ gS ~S)

h̄
.
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6. The Heisenberg method of Gauss distribution parameter evaluation

6.1. On eigenvalues distribution

The basic eigenvalue equation written for multi-electron spin system for a given symmetry group g ∈ G
reads [1, 4]:

det[
∑
g∈G

Dν
ik(g)Jg − δikE] = 0, (36)

where ν is an irreducible representation number, Jg are exchange integrals. It defines the system of terms Γν
numerated by the irreducible representations of the symmetry group G, The Pauli principle yields: each value of
the system spin corresponds to one system of terms:

2n = 2 + ...+ 2 + 1 + ...+ 1. (37)

The mean energy is expressed as the sum of the roots
∑

Ei of the Eq. (36) as a coefficient by Enν−1:

Eν =
1

nν

∑
g

χν(g)Jg, (38)

here χν(g) = Dν
ii(g) are chartacters of the group. The next term in the polynomial by Enν−2 gives:∑

n>m

EnEm =
∑

i>k,g,g′

[Dν
ii(g)Dν

kk(g′)−Dν
ik(g)Dν

ki(g
′)]JgJg′ =

1

2

∑
i,k,g,g′

[Dν
ii(g)Dν

kk(g′)−Dν
ik(g)Dν

ki(g
′)]JgJg′ .

(39)

By the group property:

Dν
ik(g)Dν

ks(g
′) = Dν

is(gg
′),

taking Dν
ii(g) = χν(g) into account:∑

n>m

EnEm =
1

2

∑
g,g′

[χν(g)χν(g′)− χν(gg′)]JgJg′ . (40)

Plugging En = Eν + ∆En yields:∑
n>m

EnEm =
∑
n>m

(Eν + ∆En)(Eν + ∆Em) =

nν(nν − 1)

2
(Eν)2 +

∑
n>m

∆En∆Em.
(41)

As
∑

∆En = 0: ∑
n=1

(∆En)2 = −2
∑
n>m

(∆En)(∆Em). (42)

From (38,40,41,42) and χν(e) = nν we derive:∑
n=1

(∆En)2 =
−1

nν

∑
g,g′

(χν(g)χν(g′)− χν(gg′))JgJg′ . (43)

Finally, the mean square deviation from the mean value Eν

(∆En)2 =
1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))JgJg′ (44)

The characters of the symmetry group are evaluated by Frobenius theorem application. In the simplest case
of the symmetry group as direct product of the permutation group and space symmetry group, the irreducible
representations are all possible direct products of the irreducible representations of the subgroups. The characters
in this case are simple products of the correspondent characters.
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6.2. Perturbations of mean eigenvalues

The values of exchange integrals in external field (30) gives for (48):

Eν =
1

nν

∑
g

χν(g)(J0
g + eEJ1

g ) = Eν0 + eEEν1 , (45)

which demonstrates the Stark effect for the mean energy for a given IR of the symmetry group.
The mean square deviation from the mean value Eν turns now becomes:

(∆En)2 =
1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))(J0
g + eEJ1

g )(J0
g′ + eEJ1

g′) ≈

1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))J0
gJ

0
g′+

eE
1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν)(g′))(J0
gJ

1
g′ + J0

g′J
1
g ) =

1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))J0
gJ

0
g′ + 2eE

1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν)(g′)J0
gJ

1
g′ ,

(46)

after summation rearranging. The magnetic field is accounted for similarly.

6.3. Permutation group characters

The permutation group characters are listed in [4], the nonzero ones (P = e, P ∈ (12), (123), (12)(34)) are:

χν(e) = nν =
(2n)!(2s+ 1)

(n− s)!(n+ s+ 1)
,

χν(12) =
(2n− 2)!2(2s+ 1)

(n− s)!(n+ s+ 1)
(s2 + s+ n2 − 2n),

χν(123) = χν(12)(34).

(47)

For a specific case the result depends on Jg values. In a case of localized atomic states J(12) decays
exponentially with distance. Therefore the main contribution arises from nearest neighbors. A number of the
neighbors depends on atomic structure symmetry.

If to suppose that we account only the closest neighbors, taking for them Jg = J and neglect by others the
energy is:

Eν =
1

nν

∑
g

χν(g)Jg = −z s
2 + n2

2n
J + Je. (48)

For calculation of (∆En)2, we need:

A(g, g′) =
1

n2ν
(χν(e)χν(gg′)− χν(g)χν(g′))JgJg′ . (49)

Taking only the highest powers of n, s into account, we have:

1.g = g′

A(12)(12) =
(n2 − s2)(3n2 + s2)

4n4
,

2. g nad g’ have one joint element

A(12)(13) =
(n2 − s2)(s2)

4n4
,

3. g nad g’ have no joint element

A(12)(34) =
(s2 − n2)(s2)

2n5
.

(50)

If the atom has z neighbors, the type 1. we meet zn times, 2. - z(z-1) times and 3. - 3-
z2n2

2
times. Finally by

(42), a deviation from Eν is ∆Eσ ≈ J
√
n.

(∆En)2 = J2z
(n2 − s2)(3n2 − s2)

4n3
. (51)
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6.4. Nanotube example

The geometry of the nanoobject under consideration is shown at the Fig. 1, the positions of centers of adiabatic
potentials, denoted in previous sections by ~Rj are marked by boldface points. The axis of space symmetry of
the figure is z, that is used as rotations R ∈ S axis. The translations ta ∈ S are performed along this axis. The
transversal Cartesian coordinates are xy. Let the symmetry group G be a direct product of space symmetry group
S and the group of permutation P , G = S � P .

The permutation group characters (the nonzero ones P = e, P ∈ (12), (123), (12)(34)) are listed in [4],
As it was mentioned, for localized states account, the main contribution arises from nearest neighbors arriving

at (48) and (51).The number of the neighbors depends on the material atoms positions.
For the whole symmetry group that is a direct product G = S ⊗ P, s ∈ S.P ∈ P, dimG = dimSdimP , the

characters are also products
χ(g) = χ(s)χ(P ) (52)

and mean energy for the term corresponding to the irreducible representation ν of the whole G, yields, by the
general (48)

Eν =
1

nν

∑
g

χµ(s)χν1(P )Jg. (53)

The index ν is a pair µ, ν1, where µ is the number of irreducible representation of the space group S, while ν1 –
of the permutation group P .

For the tube of atoms at ~Ri, see the Fig. 1, the group is described as follows [12].

FIG. 1. The geometry of the tube centers positions

Let A ∈ S be a group of the point-centers set symmetry and the finite group Rj ∈ Sc ∈ S be a subgroup of

rotations on angles φj =
2πj

N
, j = 0, ..., N − 1 in a plane, orthogonal to the z-axis. Let also the translations along

z-axis are denoted as tna, n = 0, ...,M − 1 and form the discrete group tna ∈ GT , hence the group elements are
the pairs A = (Rj , tna). The particular case relates to the structure of the tube is described by the direct product:

S = Sc ⊗ ST . (54)

Let the group is represented by transformations in the position space ~r ∈ R3. It is straightforward to see that A is
equivalent to the combined operations of rotation:

Rj =

 cos θj sin θj 0

− sin θj cos θj 0

0 0 1

 (55)

and translation:

ta

 x

y

z

 =

 x

y

z + a

 . (56)

The representation of the elements A is written as:

A~r = Rj~r + tna~r =

 cos θjx+ sin θjy

− sin θjy + cosθj
z + na

 . (57)
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The transformations form an Abelian group, Rjta = taRj . In a realistic geometry of the tube and using periodic
von Karman conditions we restrict the positive n variable change so as n ≤ M . The group element, or the

transformation is parametrized by the vector ~s = {s1, s2} = {2πj

N
, na}. The transformation A ∈ G is written as

A~p = ~p+ ~s.
For Abelian symmetry groups and cyclic subgroups, the IRs are one-dimensional. Conventionally choosing it

as unitary, we write:
D~µ(s) = exp[i(~µ,~s)], (58)

where
~µ = {µ1, µ2} = {j1, j2},

the integers, numerating irreducible representations run the values j1 = 1, ..., N ; j2 = 1, ...,M . Hence:

D~µ(s) = exp[i(j1
2πj

N
+

2πn

M
j2], (59)

In such case, the sum that defines the mean energy is divided into two terms. One is “old”, corresponding the
unit element of the space group and the second relates to combined transformations.

Note that the dimension of the IR nν of S ⊗ P is equal to dimension of the IR for the permutation group P
because the dimension of it is unit:

Eν =
1

nν

∑
~s

∑
P

exp[i(~µ,~s)]χν1(P )JPs. (60)

The summation may be rearranged as:

Eν =
1

nν

∑
P

χν1(P )
∑
~s

exp[i(~µ,~s)]JPs. (61)

In the model of equal exchange integrals the sum is proportional J. The characters of space group do not
contribute: ∑

s

χ~µ(s) =

N−1∑
j=0

M−1∑
n=0

exp[2πi(j1
j

N
+
j2
M
n]. (62)

For nontrivial IR (j1 6= 0, j2 6= 0) the sum (62) is the sum of the geometric progression, that gives:
N−1∑
j=0

exp[2πi(j1
j

N
] =

1− exp[2πij1]

1− exp[2πi j1N ]
= 0

For the trivial IR D0(s) = 1, the sum is equal to NM . Generally, the sum in (61) depends on the model of JPs
, that, for example, may depend on direction that link neighboring atoms. For the tube we study, the distance

between neighbors along axis is a, while the neighbors at rings are at distance b = 2R sin
π

N
. Generally a 6= b,

hence we have two principal exchange integrals Ja, Jb. We divide the sum (58) into two terms:

Eν =
1

nν

[∑
P

χν1(P )
∑
~s

exp[i(~µ,~s)]JPs +
∑
P ′

χν1(P ′)
∑
~s

exp[i(~µ,~s)]JP ′s

]
. (63)

The first contains permutations that are products of transpositions inside rings, while the second are built from
transpositions along z axis. Other permutations are not taken into account as related to non-closest neighbors.

We calculate the first internal sum by the space group:∑
~s

exp[i(~µ,~s)]JPs =

N−1∑
j=0

M−1∑
n=0

exp[2πi(j1
j

N
+
j2
M
n]JPs =

M−1∑
n=0

exp[2πi
j2
M
n]

N−1∑
j=0

exp[2πij1
j

N
]Jb

(64)

For nontrivial IR we have zero, for trivial MNJb. The second one is:∑
~s

exp[i(~µ,~s)]JP ′s =

N−1∑
j=0

M−1∑
n=0

exp[2πi(j1
j

N
+
j2
M
n]JP ′s =

N−1∑
j=0

exp[2πij1
j

N
]

M−1∑
n=0

exp[2πi
j2
M
n]Ja

(65)
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with the same result, but for Ja. The nonzero sum (66) for ν = {0, ν1} hence is equal to:

Eν =
MN

nν

[∑
P

χν1(P )Jb +
∑
P ′

χν1(P ′)Ja

]
. (66)

The mean square deviation from the mean value Eν , ν = {0, ν1} is also splits as follows

(∆En)2 =
1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))J2
b + .... (67)

in the first term the pair g, g′ runs a ring set of atoms.

7. Statistics

7.1. Magnetic field

Let, following [1], the eigenvalues around the medium value are distributed by Gauss. As the number of
terms, that belongs to a spin s is equal to nν , then, within the interval Eν + ∆E,Eν + ∆E + d∆E one have for
the number of terms

nν√
2π(∆En)2

exp{− ∆E2

2(∆En)2
}d∆E. (68)

In the external magnetic field the additional energy of the system is:

E′ = − eh

2πµ
Hm (69)

where s ≥ m ≥ −s, µ is electron mass.
The statistical sum of states:

n∑
s=0

S∑
m=−s

∫ ∞
−∞

d∆E
nν√

2π(∆En)2
exp{αm+ β

s2

2n
− ∆E

kT
− ∆E2

2(∆En)2
} =

n∑
s=0

s∑
m=−s

nν exp{αm+ β
s2

2n
+

∆(En)2

2k2T 2
}

(70)

where:

α =
eh

2πµkT
H

β =
zJ

kT

(71)

Plugging (51) gives:

Z =

n∑
s=0

s∑
m=−s

nν exp{αm+ β
s2

2n
+ β2 s

2(4n2 − s2)

8n3z
}. (72)

Denoting:

g(s) = exp{βs
2

2n
} (73)

and taking into account:

nν =

(
2n

n+ s

)
−

(
2n

n+ s+ 1

)
, (74)

after reordering summation one obtains:

Z =

n∑
m=−n

n∑
s=|m|

exp{αm}g(m)

[(
2n

n+ s

)
−

(
2n

n+ s+ 1

)]
. (75)

After transformation similar to integrating by parts, we have:

Z = F

n∑
m=−n

exp{αm}g(m)

(
2n

n+m

)
. (76)
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One may show that the expression exp{αm}g(m)

(
2n

n+m

)
has the sharp maximum at a point m0, hence the

Taylor expansion in the vicinity of this point may be a good approximation in the exponent of g(m). Approximately:

g(m) = exp{βn
2
0

2n
+ β

m0

n
(m−m0)− β2

8n3z
[4m2

0n
2 −m4

0+

8m0n
2(m−m0)− 4m3

0(m−m0)]},
(77)

the statistical sum Z takes the form:

Z = F

n∑
m=−n

exp{(α+ β
m0

n
− β2 m3

0

2n3z
)m}g(m)

(
2n

n+m

)
=

F

[
2 cosh(

α+ βm0

n − β
2m0

nz + β2 m3
0

2n3z

2
)

]2n
.

(78)

The space symmetry account is based on modifications of the characters formula in expressions for energy (66)
and the Gauss distribution parameter (67).

7.2. Electric field

The electric field perturbs the exchange integral as it is prescribed by (30)

β =
z(J0 + εJ1)

kT
= β0 + εβ1. (79)

Plugging it into (85) yields:

Z

F
=

[
2 cosh(

α+ (β0 + εβ1)m0

n − (β0 + εβ1)2m0

nz + (β0 + εβ1)2
m3

0

2n3z

2
)

]2n
=[

2 cosh(
α+ β0

m0

n − β
2
0
m0

nz + β2
0
m3

0

2n3z + εβ1
m0

n (1− 2
z +

m2
0

2n2z ) + ...

2
)

]2n
,

(80)

the quadratic terms in ε are not shown.

7.3. To thermodynamics

The most probable value of magnetic moment is determined as:

m0 =
∂ lnZ

∂α
= n tanh

α+ βm0

n − β
2m0

nz + β2 m3
0

2n3z

2
. (81)

The neglected term with lnF is of order “1”. Further expansion of
m0

n
in power series of ε gives the coefficients

in the equation of state [13]:

∂m0

n∂ε
|ε=0 = β1

(
1

2
− 1

z
+

m2
0

2n2z

)(
1− tanh2 α+ β0

m0

n − β
2
0
m0

nz + β2
0
m3

0

2n3z

2

)
m0

n
. (82)

The derivative of lnZ by ε gives the polarization per atom:

p0
n

=
∂ lnZ

n∂ε
= β1

m0

n

(
1

2
− 1

z
+

m2
0

2n2z

)
tanh

(
α+ βm0

n − β
2m0

nz + β2 m3
0

2n3z

2

)
, (83)

which demonstrates electromagnetic effects. The energy (66) and the Gauss distribution parameter (67) modi-
fications for nanotubes naturally introduce the closest neighbors exchange integrals defined by the nano-object
symmetry. This gives a model thermodynamic description on base of a model of statistical sum.
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7.4. Discussion

The expression (83) differs from Weiss formula by cot−1/x → tanhx because of two spin orientation and
cubic term. Set:

m0

n
= y,

α+ βm0

n − β
2m0

nz + β2 m3
0

2n3z

2
= x, (84)

arriving at the equations:
I. y = tanhx

II. α+ βy − β2 y

z
+ β2 y

3

2z
− 2x = 0.

(85)

Plots Fig. 2, α = 0.2, η = 2, z = 8, ferromagnetism condition (II curve inclination at y = 0 is less than one for I.)

FIG. 2. Graphic solution of (85)

The next figure Fig. 3 presents number of closest neighbors as function J/kT .

FIG. 3. The number of neighbors as function
J

kT

β(1− β

z
) ≥ 2, (86)

maximum of the l.h.s. is βmax = 1/2, that yields

z ≥ 8.
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a good example is zFe = 8.
A small α allows the expansion (thx ≈ x− x3/3 + ...), that gives the following dependence on β

y =
α

2− β + β2

z

+
α3(

2− β + β2

z

)4 (β2

2z
− 2

3

)
, (87)

The first term of the series gives the Weiss modification of Curie law

m0 =
1

T −Θ

T

T
(

1 +
√

1− 8
z

)
−Θ

(
1−

√
1− 8

z

) (88)

with the Curie point

Θ =
2J

k
(

1−
√

1− 8
z

) . (89)

Within the concept suggested in this paper, the electric field account is introduced via its exchange integral
perturbation by Stark effect (30).

8. Conclusion

The Zeeman energy we also can consider as a Zeeman effect, that add a perturbation to the exchange integral.
Both from microscopic (multipole expansion) and macroscopic (symmetry-based expansion of the free energy)

points of view, with Dzialoshinski–Moryja interaction account see [14].The great interest to the magnetoelectric
effects is expressed in abundant publications [15].

An equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet [16]
points out possible applications of the advanced NS equation perturbation theory.

The important perspective of more deep understanding of the chemical bonds contains in the Fock paper [9];
let us put here a citation: “...idea of a bond which is built by a pair of electrons assumes such strong interaction
between the electrons with opposite spins that any description of this interaction by means of two one-electron
functions is somewhat artificial and cannot be exact. It is much more natural to associate with each saturated
bond its own two-electron function”. This also leads also to more natural notion and values of exchange integrals.
The ideas of Heitler and Heisenberg are unified also with Floquet theory for non-localized eigenstates of Fock
Hamiltonian and specified in the context of Wigner theorem [6].
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