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physics@pnzgu.ru, alex.shorokhov@gmail.com

PACS 73.40.Gk, 03.65.Xp DOI 10.17586/2220-8054-2021-12-6-680-689

Temperature dependence of the spectral intensity of recombination radiation in a quasi-zero-dimensional structure, containing impurity complexes
“A+ + e” (a hole localized on a neutral acceptor, interacting with an electron localized in the ground state of a quantum dot), has been investigated
in an external electric field in the presence of tunneling decay of a quasistationary A+-state. Probability of dissipative tunneling of a hole has been
calculated in the one-instanton approximation, and the influence of tunneling decay and of an external electric field on the A+-state binding energy
and on the spectra of recombination radiation, associated with the optical transition of an electron from the ground state of a quantum dot to the
A+-state of the impurity center, has been investigated in the adiabatic approximation. “Dips” in the temperature dependence of the SIRR have been
revealed, which are associated with the presence of resonant tunneling at certain values of temperature and strength of the external electric field, for
which the double-well oscillatory potential becomes symmetric.
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1. Introduction

The relevance of studies of the spectral intensity of recombination radiation (SIRR) temperature dependence
in quasi-zero-dimensional structures is determined by the fact that, first, electro-optical systems based on quantum
dots (QD)s have significantly better parameters compared to similar devices based on quantum wells. Second, the
temperature quenching of luminescence is usually associated with the presence of a nonradiative channel caused by a
defect located in a QD [1, 2] or at the barrier boundary. In this work, we would like to draw attention to the possible
existence of one more channel of temperature quenching of luminescence associated with tunneling processes, in
particular, with the process of dissipative tunneling of a hole localized at the A+-center into the matrix, surrounding
the QD. As will be shown below, the temperature “spreading” of the wave function for the quasi-stationary A+-state
under tunnel decay conditions is accompanied by an increase in the energy of the radiative transition of an electron
and a corresponding decrease in the overlap integral of the wave functions of a hole and an electron, which leads to
temperature quenching of the recombination radiation. The aim of this work is to study theoretically the temperature
effect, associated with the electron – phonon interaction, on the binding energy of a hole in the “A+ + e”-impurity
complex in a spherically symmetric QD, as well as on the spectral intensity of the recombination radiation of a quasi-
zero-dimensional structure in the presence of a dissipative tunneling.

2. Binding energy of a quasi-stationary A+-state in a quantum dot in the presence of dissipative tunneling in
an external electric field

Let us consider the problem of quasi-stationary states of a hole in an impurity complexA+ +e in a semiconductor
spherically symmetric QD. The interaction of an electron in the QD ground state with a hole, localized at theA0-center,
will be considered in the framework of the adiabatic approximation [3]. In this case, the electron potential Vn,l,m(~r)
acting on the hole can be considered averaged over the electron motion:

Vnlm (~r) = − e2

4πε0ε

R0∫
0

|Ψnlm (~re)|2

|~r − ~re|
d~re, (1)

where e is the the electron charge; ε is the dielectric permittivity of QD material; ε0 is the electrical constant; m =
0,±1,±2, ... is the magnetic quantum number; l = 0, 1, 2... is the orbital quantum number, Ψnlm (~re) is the wave
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function of an electron in a QD determined by the expression (2):

Ψnlm (~re) = Ylm (θe, ϕe)
Jl+ 3

2
(Knlre)

√
2πR0

√
rJl+ 3

2
(KnlR0)

, (2)

where Knl is defined by an expression of the following form:

Knl =

√
X̃2
n,l

R∗20

+
kT

Eh
ln

[
4 sinh

(
Ω

vLA
√
kT

)
sinh

(
2Ω

vTA
√
kT

)]
. (3)

Here νLA, νTA are the velocities of longitudinal and transverse phonons; Ω =
π~ΘG

a

√
2

ρV
, G is the overlap

integral, Θ is the deformation potential, a is the lattice constant, ρ is the QD material density, V is the QD volume,
Eh is the Bohr hole energy, X̃n,l is the half-integer root of the Bessel function l + 1/2.

Let us consider the case corresponding to the p-state of an electron, in this case l = 1, m = 0, then expression (1)
can be represented in the form

Vn10(~rh) =

− e2

4πε0ε

π∫
0

sin θedθe

2π∫
0

dϕe

 rh∫
0

|Ψn10 (re, θe, ϕe)|2 re2dre√
rh2 + re2 − 2rhre cos θe

+

R0∫
rh

|Ψn10 (re, θe, ϕe)|2 re2dre√
rh2 + re2 − 2rhre cos θe

 . (4)

Or, taking into account the explicit expression for the wave function:

Vn10(~rh) = − 3e2

32π3ε0εR2
0J

2
5
2

(Kn1R0)

π∫
0

sin θe cos2 θedθe

2π∫
0

dϕe

 rh∫
0

J2
5
2

(Kn1re) redre
√
rh2 + re2 − 2rhre cos θe

+

R0∫
rh

J2
5
2

(Knlre) redre
√
rh2 + re2 − 2rhre cos θe

 . (5)

After integration over the angular variables ϕe, θe and over the radial coordinate of the electron re, we obtain:

Vn10(rh) =
e2

27π3ε0εR∗60 K
∗5
n1r
∗4
h J

2
5
2

(K∗n1r
∗
h)

[
3R∗40 + 6K∗2n1R

∗4
0 r
∗2
h + 9r∗4h + 6K∗2n1R

∗2
0 r
∗4
h

− 4K∗4n1R
∗4
0 r
∗4
h − 9r∗4h cos (2K∗n1R

∗
0) + 12K∗2n1R

∗2
0 r
∗4
h cos (2K∗n1R

∗
0)

− 3R∗40 cos (2K∗n1R
∗
0) + 4K∗4n1R

∗4
0 r
∗4
h (Ci (2K∗n1R

∗
0) − Ci (2K∗n1r

∗
h))

−4K∗4n1R
∗4
0 r
∗4
h ln

(
R∗0
r∗h

)
−
(
9r∗3h + 3R∗30 −K∗2n1R

∗3
0 r
∗2
h

)
2K∗n1R

∗
0r
∗
h sin (2K∗n1R

∗
0)

]
. (6)

Here, r∗h = rh/ah, R∗0 = R0/ah,

K∗n =

√
X2
n,l

R∗20

+
kT

EhR∗20

ln

[
4 sinh

(
Ω

vLA
√
kT

)
sinh

(
2Ω

vTA
√
kT

)]
,

Ci (x) is the cosine integral.
In the case under consideration, p-state with m = 0, the potential energy minimum is shifted relative to the

QD center. Position of the minimum rhmin is determined from the solution of the transcendental equation, which is
obtained by equating the first derivative of expression (6) to zero:

dVn,1,0(rh)

drh
= 0. (7)
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Expanding expression (6) in a Taylor series near rhmin and limiting ourselves to the quadratic term in the radial
coordinate of the hole rh, we obtain:

Vn10(rh) =
e22−7π−3

ε0εR∗60 K
∗5
n1r
∗6
hminJ

2
5/2 (K∗n1R

∗
0)

[
r∗2hmin

(
2K∗2n1R

∗2
0 r
∗2
hmin

(
3R∗20 + 3r∗2hmin − 2K∗2n1R

∗2
0 r
∗2
hmin

) )
+

+ 4K∗4n1R
∗4
0 r
∗4
hmin

(
Ci (2K∗n1R

∗
0)− Ci (2K∗n1r

∗
hmin)− ln

(
R∗0
r∗hmin

))
−

− 2K∗n1r
∗
hminR

∗
0

(
K∗2n1R

∗3
0 r
∗2
hmin sin (2K∗n1r

∗
hmin)− 9r∗3hmin sin (2K∗n1R

∗
0)− 3R∗30 sin (2K∗n1r

∗
hmin)

)
+

+ (r∗h − r∗hmin) 2R∗40 r
∗
hmin

(
− 6− 6K∗2n1r

∗2
hmin + 2K∗4n1r

∗4
hmin + 6

(
1−K∗2n1r

∗2
hmin

)
cos (2K∗n1r

∗
hmin) +

+K∗n1r
∗
hmin

(
K∗2n1r

∗2
hmin − 12

)
sin (2K∗n1r

∗
hmin)

)
−

− (r∗h − r∗hmin)
2

2R∗40

(
− 15− 9K∗2n1r

∗2
hmin +K∗4n1r

∗4
hmin+

+
(
15− 21K∗2n1r

∗2
hmin +K∗4n1r

∗4
hmin

)
cos (2K∗n1r

∗
hmin) +

(
30K∗n1r

∗
hmin − 7K∗3n1r

∗3
hmin

)
sin (2K∗n1r

∗
hmin)

)]
, (8)

where r∗hmin = rhmin/ah.
Within the framework of the adiabatic approximation for the p-state of an electron, we obtain:

Vn10(r∗h) = − e2

εR∗0
βn −

mhω
2
n (r∗h − r∗T )

2

2
, (9)

where values βn, ωn and r∗T are defined as follows:

βn =
2−7π−3

R∗50 K
∗5
n1r
∗6
hminJ

2
5/2 (K∗n1R

∗
0)

[
r∗2hmin

(
2K∗2n1R

∗2
0 r
∗2
hmin

(
3R∗20 + 3r∗2hmin − 2K∗2n1R

∗2
0 r
∗2
hmin

) )
+

+ 3R∗40 + 9r∗4hmin + 3r∗4hmin cos (2K∗n1R
∗
0)
(
6K∗2n1R

∗2
0 − 3

)
− 3R∗40 cos (2K∗n1r

∗
hmin) +

+ 4K∗4n1R
∗4
0 r
∗4
hmin

(
Ci (2K∗n1R

∗
0)− Ci (2K∗n1r

∗
hmin)− ln

(
R∗0
r∗hmin

))
−

− 2K∗n1r
∗
hminR

∗
0

(
K∗2n1R

∗3
0 r
∗2
hmin sin (2K∗n1r

∗
hmin)− 9r∗3hmin sin (2K∗n1R

∗
0)− 3R∗30 sin (2K∗n1r

∗
hmin)

)
+

+ 2R∗40 r
∗2
hmin

(
− 6− 6K∗2n1r

∗2
hmin + 2K∗4n1r

∗4
hmin + 6

(
1−K∗2n1r

∗2
hmin

)
cos (2K∗n1r

∗
hmin) +

+K∗n1r
∗
hmin

(
K∗2n1r

∗2
hmin − 12

)
sin (2K∗n1r

∗
hmin)

)2

×
(

15 + 9K∗2n1r
∗2
hmin −K∗4n1r

∗4
hmin−

− cos (2K∗n1r
∗
hmin)

(
15− 21K∗2n1r

∗2
hmin +K∗4n1r

∗4
hmin

)
−
(
30K∗n1r

∗
hmin − 7K∗3n1r

∗3
hmin

)
sin (2K∗n1r

∗
hmin)

)−1
]
,

(10)

~ωn =

[
~2e22−5π−3

m∗hε0εR∗20 K
∗5
n1r
∗6
hminJ

2
5/2 (Kn1R∗0)

(
15 + 9K∗2n1r

∗2
hmin −K∗4n1r

∗4
hmin−

− cos (2K∗n1r
∗
hmin)

(
15− 21K∗2n1r

∗2
hmin +K∗4n1r

∗4
hmin

)
−
(
30K∗n1r

∗
hmin − 7K∗3n1r

∗3
hmin

)
sin (2K∗n1r

∗
hmin)

)]1/2

,

(11)

and

r∗T = −r∗hmin −
r∗hmin

2

(
− 6− 6K∗2n1r

∗2
hmin + 2K∗4n1r

∗4
hmin + 6

(
1−K∗2n1r

∗2
hmin

)
cos (2K∗n1r

∗
hmin) +

+K∗n1r
∗
hmin

(
K∗2n1r

∗2
hmin − 12

)
sin (2K∗n1r

∗
hmin)

)
×
[
− 15− 9K∗2n1r

∗2
hmin +K∗4n1r

∗4
hmin+

+
(
15− 21K∗2n1r

∗2
hmin +K∗4n1r

∗4
hmin

)
cos (2K∗n1r

∗
hmin) +

(
30K∗n1r

∗
hmin − 7K∗3n1r

∗3
hmin

)
sin (2K∗n1r

∗
hmin)

]−1

.

(12)
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Since the confining potential of a QD, generally speaking, should have a finite depth, then in our model of the
hole potential of confinement (9), the amplitude of the potential U0 is an empirical parameter and satisfies the relation

U0 = −e2βn/4πε0εR0 +m∗hω
2
nR

2
0/2 = m∗hω

2
0R

2
0/2,

whence ω0 =
√
ω2
n − e2βn/2πε0εmhR3

0 is the characteristic frequency of the hole confining potential of a QD within
the adiabatic approximation, and in this case U0/ (~ω0)� 1.

Usage of the adiabatic approximation makes it possible to take into account the effect of an external electric field
on the bound state of the hole. Let the electric field strength vector ~E0 be directed along the x coordinate axis, then
the energy levels of the oscillatory potential (9) will have the form:

En,0,0n1n2n3
(T ) = − e2

εR0
βh −

|e|2E2
0

2mhω2
n

+ ~ωn
(
n1 + n2 + n3 +

3

2

)
+

+ kT ln

[
4 sinh

(
Ω

vLA
√
kT

)
sinh

(
2Ω

vTA
√
kT

)]
, (13)

and the corresponding one-particle wave functions are written as:

Ψn
n1n2n3

(x, y, z) = Cnexp

(
− (x− x0)

2
+ y2 + z2

2a2
n

)
Hn1

(
x− x0

an

)
Hn2

(
y

an

)
Hn3

(
z

an

)
. (14)

Here, Cn =
[
2n1+n2+n3n1!n2!n3!π3/2a3

n

]−1/2

; an =
√
~/ (m∗hωn); x0 = |e|E0/

(
m∗hω

2
n

)
; Hn (x) are the Hermite

polynomials; n1, n2, n3 are the quantum numbers corresponding to energy levels of a harmonic oscillator. We will
assume that the process of decay of the quasi-stationary level of theA+-center is due to dissipative tunneling. It should
be noted that in the one-instanton approximation, the decay probability Γ0 (dissipative tunneling), under conditions of
an external electric field, can be represented in the form Γ0 = B exp (−S), where the expressions for S and B were
obtained in our previous papers (in the Bohr units) [4, 5]:

S =
1

2

(
b′0 + x∗0
a′0 + x∗0

+ 1

) (
3− b′0 + x∗0

a′0 + x∗0

)
τ∗0 −

1

2β∗

(
b′0 + x∗0
a′0 + x∗0

+ 1

)2

τ∗0
2 − 1

2γ∗

(
b′0 + x∗0
a′0 + x∗0

+ 1

)2

×

×

(
(1− x∗2)√

x∗1

[
coth

(
β∗
√
x∗1

)
−

cosh
(
(β∗ − τ∗0 )

√
x∗1
)
− cosh

(
β∗
√
x∗1
)

sinh
(
β∗
√
x∗1
) + cosh

(
(β∗ − τ∗0 )

√
x∗1

)]
−

− (1− x∗1)√
x∗2

[
coth

(
β∗
√
x∗2

)
−

cosh
(
(β∗ − τ∗0 )

√
x∗2
)
− cosh

(
β∗
√
x∗2
)

sinh
(
β∗
√
x∗2
) + cosh

(
(β∗ − τ∗0 )

√
x∗2

)])
, (15)

B =
2Ed

√
U∗0

~
√
π

(
b′0 + x∗0
a′0 + x∗0

+ 1

)√
ε∗T ×

{
A∗
[
β∗1 cosh

(
β∗1
2

)
− 1

]
+D∗

[
β∗2 cosh

(
β∗2
2

)
− 1

]
+

+A∗

1− β∗1
2

(
β∗
1

2 − τ01
∗
)

sinh
(
β∗
1

2

)
+D∗

β∗2
2

cosh
(
β∗
2

2 − τ02
∗
)

sinh
(
β∗
2

2

) − 1

}×
A∗

β∗1
2

cosh
(
β∗
1

2 − τ01
∗
)

sinh
(
β∗
1

2

) − 1

+D∗

β∗2
2

cosh
(
β∗
2

2 − τ02
∗
)

sinh
(
β∗
2

2

) − 1

−1/2

, (16)

where

x∗1,2 =
1

2

ε∗2L a∗2
4U∗0

+ 1 +
ε4
ca
∗2

4ε∗2L U
∗
0

∓

√(
ε∗2L a

∗2

4U∗0
+ 1 +

ε4
ca
∗2

4ε∗2L U
∗
0

)2

−
ε∗2L a

∗2

U∗0

 ,
γ∗ =

√
(ε∗2L a

∗2/ (4U∗0 ) + 1 + ε∗ 4
c a∗2/ (4ε∗2L U

∗
0 ))

2 − ε∗2L a∗2/U∗0 ,

τ∗0 = arsinh

[(
1− b′0 + x∗0

a′0 + x∗0

)
sinh (β∗) /

(
1 +

b′0 + x∗0
a′0 + x∗0

)]
+ β∗” ,

ε∗T = kT/Eh, ε∗L = ~ωL/Eh, ε∗c = ~
√
c/Ed, β∗” =

√
U∗0 /a

∗ε∗T , b′0 = b0/ah, a′0 = a0/ah, x0
∗ = x0/ah;
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Eh and ah are the Bohr energy and the hole radius correspondingly;

A∗ =
(
2ε∗2L a

∗2 − x∗1
)
/ ((x∗1 − x∗2)x∗1), D∗ =

(
2ε∗2L a

∗2 − x∗2
)
/ ((x∗1 − x∗2)x∗2),

β∗1 =
√

2 U∗0x
∗
1/ (a∗ε∗T ), β∗2 =

√
2 U∗0x

∗
2/ (a∗ε∗T ), τ∗01 = τ∗0

√
x∗1/
√

2, τ∗02 = τ∗0
√
x∗2/
√

2.

Using the zero-range potential procedure (see, for example, [3]), in combination with the one-instanton approx-
imation [5], we obtain an equation that determines the dependence of the hole energy in the complex A+ + e on
temperature T , QD parameters, and dissipative tunneling.

The short-range potential of an impurity is simulated by a potential of zero radius with a power γ = 2π~2/(αm∗h),
which has the form:

Vδ (x, y, z;xa, ya, za) = γδ (x− xa) δ (y − ya) δ (z − za)

[
1 + (r − ra)

∂

∂r

]
, (17)

where α is determined by the binding energy Ei of the same A+-center in a bulk semiconductor.
In the effective mass approximation, the wave function Ψλh (x, y, z;xa, ya, za) of an electron localized at a short-

range potential satisfies the Schrödinger equation:

(Eλh −H) Ψλh (x, y, z;xa, ya, za) = Vδ (x, y, z;xa, ya, za) Ψλh (x, y, z;xa, ya, za) , (18)

where EQDh = −~2λ2/ (2m∗h) – the eigenvalues of the Hamilton operator Hδ = H + Vδ (x, y, z;xa, ya, za); H =

−~2/ (2m∗h) ∇2 +m∗hω
2
0

(
x2 + y2 + z2

)
/2− |e|E0x.

To determine the binding energy of a hole in a complex A+ + e in the adiabatic approximation, it is necessary to
construct a one-particle Green’s function G (x, y, z;xa, ya, za;Eλn) to the Schrödinger equation with a Hamiltonian,
containing potential (17):

G (x, y, z;xa, ya, za;Eλh) = −
∑

n1,n2,n3

Ψn∗
n1,n2,n3

(xa, ya, za) Ψn
n1,n2,n3

(x, y, z)

−EQDh + i~Γ0 + En,0,0n1,n2,n3 (T )
. (19)

The Lippmann–Schwinger equation for a A+-state in a QD with a parabolic confinement potential can be written
as:

Ψh (x, y, z;xa, ya, za) =

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

dx1dy1dz1G (x, y, z;xa, ya, za;Eλh)×

× Vδ (x, y, z;xa, ya, za) Ψλh (x1, y1, z1, xa, ya, za) . (20)

Substituting (17) into (20), we obtain:

Ψh (x, y, z;xa, ya, za) = γG (x, y, z;xa, ya, za;Eλh) (TΨh) (x, y, z;xa, ya, za) , (21)

where:

(TΨλh) (x, y, z;xa, ya, za) ≡ lim
r→ra
ϕ→ϕa
θ→θa

[
1 + (r − ra)

∂

∂r

]
Ψλh (x, y, z;xa, ya, za) . (22)

Acting by the operator T on both sides of relation (21), we obtain an equation that determines dependence of
the energy Eλh of the bound state of the A+-center on the parameters of the QD, on the position of the impurity
Ra = (xa, ya, za), and on the temperature T :

α =
2π~2

m∗h
(TG) (xa, ya, za;xa, ya, za;Eλh) , (23)

here, α is determined by the energy Ei of the bound state of the same A+-center in a massive semiconductor.
Then, for Green’s function (29), taking into account (23) and (24), we obtain in the Bohr units:

G
(
x, y, z, xa, ya, za; η2

λh

)
= − 1

π3/2a2
nEh

exp

(
− (x∗ − x∗0)

2
+ y∗2 + z∗2 + (x∗a − x∗0)

2
+ y∗2a + z∗2a

2

)
×

×
∑

n1,n2,n3

Hn1
(x∗ − x∗0)Hn1

(x∗a − x∗0)

2n1 !n1!

Hn2
(y∗)Hn2

(y∗a)

2n2 !n2!

Hn3
(z∗)Hn3

(z∗a)

2n3 !n3!
×

{
−η2

h − β∗h −
x∗20

4β−2
+ i4Γ∗0 + β−1

(
n1 + n2 + n3 +

3

2

)
+
kT

Eh
ln

[
4 sinh

(
Ω

vLA
√
kT

)
sinh

(
2Ω

vTA
√
kT

)]}−1

,

(24)
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where the next notations are introduced: η2
h = EQD

h
/Eh; R∗0 = R0/ah; β = Eh/~ωn; a∗n = an/ah;

β∗h = e2βh/εR
∗
0Ehah; Γ∗0 = ~Γ0/4Eh.

Further, given that:(
−η2

h − β∗h −
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, (25)

the expression for the Green’s function takes the following form:
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Making summation over the quantum numbers n1, n2, n3, and separating the divergent part of the expression for
the Green’s function (26), we obtain:
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Substituting (27) into (23) we obtain the dispersion equation that determines the dependence of the binding energy
of a hole EQDh in the complex A+ + e on the parameters of the QD, on temperature T , and on the electron quantum
number n. Using the procedure of the zero-range potential method (see, for example, [3]) in combination with the
one-instanton approximation [5], we obtain the dispersion equation that determines dependence of the hole binding
energy in the complex A+ + e on the temperature T and on parameters of dissipative tunneling:
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where R∗a = Ra/an; ηi =
√
|Ei| /Eh, ηh =

√
E

(QD)
h /Eh.

It should be noted that the binding energy of a hole in the case under consideration is a complex quantity. Its

real part determines the average binding energy of the resonant state of the A+-center E(QD)
h = ReE(QD)

h
, and the

doubled imaginary part determines the broadening of the corresponding energy level ∆Eh = 2 ImE(QD)
h

. Fig. 1
shows the result of a numerical analysis of the dispersion equation for the case of a centered A+-center (R∗a = 0) at
different values of the QD radius R∗0. It was taken into account that the binding energy of the A+-state is measured
from the level of the ground state of the adiabatic oscillatory well.

FIG. 1. Dependence of the binding energy of quasi-stationary states of a hole in the complexA++e
on the temperature T and the magnitude of the external electric field E0, for the following values
of the QD parameters and dissipative tunneling R∗0 = 1 (R∗0 = R0/ah – QD radius R0 in units of
the effective Bohr radius of the hole ah); U∗0 = 350 (U∗0 = U0/Eh is the amplitude of the adiabatic
potential U0 of an electron in units of the effective Bohr energy of a hole Eh), ηi = 3.

As can be seen from Fig. 1, that in the field dependence of the binding energy of the A+-state, there are “dips” at
a certain temperature. This is due to the effect of “tuning” the starting energy level of the A+-state to the states caused
by the hole-phonon interaction in the matrix surrounding the quantum dot, i.e. with the effect of resonant tunneling.
The depth of the dip increases with increasing temperature, which is due to the dynamics of the temperature-dependent
peak in the field dependence of the probability of dissipative tunneling [5]. A decrease in the binding energy of the
A+-state with an increase in the external electric field strength is associated with the Stark shift in energy and with
the polarization of the A+-center, and with an increase in temperature – with the broadening of energy levels and the
corresponding “spreading” of the wave function of the A+-state.

3. Temperature and field dependences of the spectral intensity of recombination radiation in a
quasi-zero-dimensional structure with impurity complexes

Let us consider the process of radiative transition of an excited electron to the level of A+-center. The Coulomb
interaction of an electron with a hole is accompanied by a radiative transition of an electron to the energy level of
A+-center under conditions of tunneling decay of a quasi-stationary A+-state. The energy spectrum of an electron in
the size-quantized band can be represented as [6, 7]:

En,l =
X̃2
n,lEh

R∗20

+ kT ln

[
4 sinh

(
Ω

vLA
√
kT

)
sinh

(
2Ω

vTA
√
kT

)]
, (29)

here X̃n,l is the root of the Bessel function of half-integer order l + 1/2.
The wave function of an electron is given by expression (2).
The SIRR, taking into account the dispersion of QD sizes and the finite lifetime of the resonant A+-state, is

determined by an expression of the next form [8]:

Φ (ω) =
4ω2
√
εe2

c3V

∣∣∣∣Pehe0

m0

∣∣∣∣ ∫ ∑
nlm

|M |2 P (u)
Γ0

~2Γ2
0

4 + (Enlm − Eλh − ~ω)
2
du, (30)
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where m0 – the free electron mass; Peh is the matrix element of the momentum operator at the Bloch amplitudes
of band carriers; ω is the frequency of the emitted electromagnetic wave with polarization e0; V is the QD volume;
P (u) – the Lifshitz–Slezov function [9]:

P (u) =


34eu2 exp [−1/ (1− 2u/3)]

25/3 (u+ 3)
7/3

(3/2− u)
11/3
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3

2
,

0, u >
3

2
.

(31)

The wave function of A+-state, in the case of a central location of the A+ center in the QD, has the form:
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where C is the normalization factor, determined by an expression of the next form:
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Here, η2
λh (T ) is determined by the dispersion equation (28).

The matrix element of the radiative transition of an excited electron to the level of A+-center in the dipole ap-
proximation has the form:

M = iλ0

√
2πα∗I0
ω

(En,l,m − Eh) 〈Ψh (r) |(~eλ, ~r)|Ψn,l,m (ρ, θ, ϕ)〉 . (34)

Taking into account (2), (28) and (32), the matrix element of the radiative recombination transition of an electron
from the ground state of the size-quantized band to the level of A+-center in the QD can be represented as:
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where R∗0 = R0/ah.
Calculation of (35) leads to integrals giving selection rules for quantum numbers m and l:

2π∫
0

exp (imϕ) dϕ =

{
2π, if m = 0,

0, if m 6= 0,
(36)

π∫
0

Pl (cos θ) cos θ sin θdθ =


2

3
, if l = 1,

0, if l 6= 1.
(37)

Thus, the radiative transition of an electron to the level of the A+-center is possible only from states with the
values of quantum numbers l = 0 and m = 0.
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The remaining integral over the radial coordinate r∗ has the form:
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Taking into account (36), (37), and (38), for the square of the matrix element (35), we have:
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Taking into account (31) and (39) for the spectral intensity of recombination radiation (SIRR) in QD (30), we can
write:
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a4
hβhX̃n,1X

2

R∗12
0

∣∣∣J 3
2

(
X̃n,1

)
J 5

2

(
X̃n,1

)∣∣∣2 ×
3/2∫
0

duP (u)×

×

∣∣∣∣∣ Γ
(

1 +
η2h
2

)
(η2
h)

2
Γ
(
η2h−1

2

) [η2
h

2

(
Ψ

(
η2
h

2
+ 1

)
−Ψ

(
η2
h

2
− 1

2

)
− 1

)] ∣∣∣∣∣
−1

×

×

∣∣∣∣∣
∞∫

0

dt exp

[
−t
(
−η2

hβ − ββ∗h −
x∗20 β

a∗4n
+ i4βΓ∗0 +

kTβ

Eh
ln

[
4 sinh

(
Ω

vLA
√
kT

)
sinh

(
2Ω

vTA
√
kT

)]
+

3

2

)]
×

× (1− exp (−t))−3/2
exp

−1

2

(
1− e−2t

1 + e−2t

)(
X̃n,1

R∗0

)2
(1− e−2t

1 + e−2t

)3/2
∣∣∣∣∣
2

×

× Γ∗0

Γ∗20 +
(
X2

n,1

R∗2
0

+ kT
Eh

ln
[
4 sinh

(
Ω

vLA

√
kT

)
sinh

(
2Ω

vTA

√
kT

)]
− η2

λh −X
)2 , (40)

where X = ~ω/Eh; Φ0 =
√
εe2 |Pehe0| /4π

5
2 ~3c3m0.

Figure 2 shows the SIRR dependence on the magnitude of the external electric field E0. It can be seen that
the decrease in the SIRR value with increasing of E0 is accompanied by “dips”, that appear at certain values of the
external electric field strength and temperature. In [5], it is shown that variation of the strength of the external electric
field can lead to transformation of the shape of the double-well oscillatory potential, which simulates the system
“QD – surrounding matrix”, while the transition to the symmetric shape of the double-well oscillatory potential is
accompanied by the appearance of a peak in the field dependence of tunneling probability. Thus, the nature of the dip
appears to be related to the effect of resonant tunneling, when the double-well oscillator potential becomes symmetric.
An increase in the SIRR value with the temperature increasing (Fig. 2) is associated with an increase in the overlap
integral of the wave functions of the initial and final states due to temperature smearing of energy levels. It should
be noted that the presence of dissipative tunneling makes the optics of quantum dots very sensitive to the parameters
of the surrounding matrix, which determine, respectively, the frequency of the phonon mode εL and the constant of
interaction with the contact medium (with the heat-bath) εC . With an increase in the value of εL, the wave function
of the A+-state “spreads” due to the hole-phonon interaction, which is accompanied by a decrease in the SIRR value.
An increase in the parameter εC leads to an increase in the “viscosity” of the surrounding matrix, i.e. to a decrease
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FIG. 2. The SIRR dependence on the inverse temperature 1000/T and the external electric field
strength E0 at R∗0 = 1; U∗0 = 350; ηi = 3.

in the probability of dissipative tunneling. As a result, the binding energy of the A+-state increases, and the overlap
integral of the wave functions of the initial and final states decreases, which leads to a decrease in the SIRR value.

4. Conclusion

The possibility of the existence of a luminescence temperature quenching channel in semiconductor quasi-zero-
dimensional structures with “A+ + e” impurity complexes associated with dissipative tunneling of a hole into the
matrix, surrounding the QD, has been theoretically substantiated. It is shown that this channel “triggers” efficiently at
the temperature and strength of the external electric field, for which the double-well oscillatory potential, simulating
the “quantum dot – surrounding matrix” system, becomes symmetric (resonant tunneling effect).
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