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The heat capacity of a semiconductor quantum dot in magnetic fields
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The heat capacity of two interacting electrons confined in a quantum dot presented in a magnetic field has been calculated by solving the Hamiltonian
using the exact diagonalization method. The statistical average energies for confined and interacting electrons have been computed for various values
of magnetic fields, confining frequency and temperature. We had investigated the dependence of the heat capacity on quantum dot Hamiltonian’s
parameters and temperature. The singlettriplet transitions in the ground state of the quantum dot spectra and the corresponding jumps in the heat
capacity curves had been shown. The comparisons show that our results are in very good agreement with theoretical reported works.
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1. Introduction

Semiconductor quantum dots (QDs) have been the subject of interest and hot research area due to their physical
properties and significant electronic device applications such as quantum dot lasers, quantum memories, solar cells,
single electron transistors, light emitting diodes, biological markers and quantum computers [1–5] The application of a
magnetic field perpendicular to the dot plane will introduce an additional structure on the energy levels and correlation
effects, of the interacting electrons confined in a quantum dot.

Many authors have used different numerical methods and computational techniques to solve the two electrons QD
Hamiltonian, including the effect of an applied magnetic field, and obtain the eigenenergies [6–12]. The energy levels
of the interacting electrons show transitions in the angular momentum of the ground states. Computed energies have
been used to calculate the statistical average energies of the QD and then, to investigate theoretically the magneto-
thermodynamic properties of the two-interacting electron in a quantum dot [13–25].

In this work, we had calculated the heat capacity as a thermodynamic quantity for a quantum dot helium atom in
which both the magnetic field and the electron-electron interaction are fully taken into account. Since, the eigenvalues
of the electrons in the QD are the starting point to calculate the physical properties of the QD system, we had, first,
applied the exact diagonalization method to solve the QD Hamiltonian and obtain the eigenenergies. Second, we had
used the computed eigenenergies spectra to display theoretically the heat capacity behavior of the QD as a function of
magnetic field strength, confining frequency and temperature.

The rest of this paper is organized as follows: the Hamiltonian formalism, computation exact diagonalization
technique and how to calculate the heat capacity from the mean energy expression are presented in Section 2. The
final section will be devoted for numerical results and conclusions.

2. Theory

In this section we will describe in detail the main three parts which consist the theory, namely: quantum dot
Hamiltonian, exact diagonalization method and the heat capacity.

2.1. Quantum dot Hamiltonian

The effective mass Hamiltonian for two interacting electrons confined in a QD by a parabolic potential in a
uniform magnetic field of strength B, applied along z direction is given by:
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where m∗ is the effective mass of electron, e is the electron charge, c is the speed of light, ω0 and ε are defined as
the confining frequency and the dielectric constant for the GaAs medium, respectively. Here, r1 and r2 describe the
positions of the first and second electron in the xy plane; ωc is the cyclotron frequency and the symmetric gauge
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1

2
B× r has been used for the vector potential. The complete two electron QD Hamiltonian can be separated into

center of mass Hamiltonian HCM and relative Hamiltonian part H , as shown below:
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where M is the total mass 2m∗, Q is the total charge= 2e, µ is reduce mass=
m∗

2
, and q is the reduce charge =

e

2
.

The corresponding energy of this Hamiltonian equation (1) is

Etotal = ECM + Er (5)

The center of mass Hamiltonian given by equation (3) is a harmonic oscillator type with well-known eigenenergies:
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where nCM , mCM are the radial and angular quantum numbers, respectively.
However, the relative motion Hamiltonian part (Hr), given by equation (4) does not have an analytical solution

for all ranges of ω0 and ωc. In this work, an exact diagonalization method will be applied to solve the relative part of
the Hamiltonian and obtain the corresponding eigenenergies, Er.

2.2. Exact diagonalization method

For non-interacting case the relative Hamiltonian in equation (4) can be reduced to a single particle problem with
eigenstates |nr,mr〉 known as Fock-Darwin states [9] given by the following form:

|nr,mr〉 = Nnr,mr
eimrϕ√

2π
(αr)|mr|e−α

2r2/2L|mr|nr (α2r2) (7)

where the functions L|mr|nr (α2r2) are the standard associated Laguerre polynomials. The normalization constant
Nnr,mr can be calculated from the normalization condition of the basis, 〈nr,mr |nr,mr〉 = 1, to give:
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√
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√
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h
, is a constant which has the dimensionality of an inverse length.

The eigenenergies of the QD Hamiltonian which are given by equation (5), consist of the sum of the energies
for the center of mass Hamiltonian, and the eigenenergies obtained by direct diagonalization to the relative Hamil-
tonian part. For the interacting case, we shall apply exact diagonalization method to solve equation (4) and find the
corresponding exact eigenenergies for arbitrary values of ω0 and ωc.

The matrix element of the relative Hamiltonian part using the basis can be expressed as:
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The corresponding relative dimensionless energies are:
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are dimensionless parameters and ω2 =
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0 is the effective confining frequency.

Inn′ is the coulomb energy matrix element that can be evaluated in a closed form by using the following Laguerre
relation [17]:
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This closed form result of the coulomb energy reduces greatly the computation time needed in the diagonalization
process.

In our calculation, we had used the basis, |nr,mr〉 defined by equation (16) to diagonalize the relative QD Hamil-
tonian and obtained its corresponding eigenenergies Er.

2.3. Heat Capacity

The heat capacity Cv of the QD system is evaluated as the temperature derivative of the mean energy of the QD:

Cv(T, ωc, ω0) =
∂ 〈E(T, ωc, ω0)〉

∂T
(12)

where the statistical average energy is calculated as:

〈E(T, ωc, ω0)〉 =
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and the sum is taken over energy levels of the QD.
The dependence of the computed heat capacity Cv on the magnetic field ωc, confining frequency ω0 and temper-

ature are displayed in the next section.

3. Results and conclusions

Our computed results for two interacting electrons in a quantum dot made from GaAs material (R∗ = 5.825 meV)
are presented in Fig. 1 to 4 and Table 1. We tested the calculated energy against different works. In Table 1, we listed
the calculated energy results by the exact diagonalization method for different number of single particle basis sp against
Ciftja’s work [9]. The comparison clearly shows excellent agreement between both works. In Fig. 1 we plotted the

computed energy results of this work against the strength of the magnetic field for ω0 =
2

3
R∗. The present results also

show very good agreement compared with Dyblaski [18], where the authors had used the variational method.

FIG. 1. The computed eigenenergy spectra of two electron quantum dot against the strength of the

magnetic field for ω0 =
2

3
R∗ , and angular momentum mr = 0,±1,±2,±3

Fig. 1 shows clearly the transition in the angular momentum of the ground state of the QD system as the magnetic
field increases. The origin of these transitions is due to the effect of coulomb interaction energy in the QD Hamiltonian.
These transitions in the angular momentum of the QD system correspond to the (S-T) transitions are expected to
manifest themselves as cusps in the heat capacity curve of the QD.
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FIG. 2. The computed ground state energy of a two-electron quantum dot in zero magnetic field
and λ = 3, against the inverse of the number of basis taken in diagonalization process

FIG. 3. The dependence of the heat capacity on the temperature for fixed value of magnetic field
and various confinement frequencies: ω0 = 0.5R∗ and ω0 = 0.67R∗
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FIG. 4. The heat capacity as function of magnetic field strength for fixed value of temperature

(0.01 K) and confinement frequency (ω0 =
2

3
R∗)

TABLE 1. Ground state energies in units of ~ω0 of exact diagonalization method at zero magnetic

field for different values of dimensionless parameter λ =
e2α

~ω0
. The computed results are shown for

various number of basis (sp) against the result which are taken from [9]

Energy ~ω0

λ
Ref. [9]

Present work
sp = 5 sp = 50 sp = 60

0 2.00000 2.00000 2.00000 2.00000
1 3.00097 3.00122 3.00097 3.00080
2 3.72143 3.72166 3.72143 3.72128
3 4.31872 4.31885 4.31872 4.31863
4 4.84780 4.84787 4.84780 4.84775
5 5.33224 5.33227 5.33224 5.33222
6 5.78429 5.78431 5.78429 5.78428
7 6.21129 6.21129 6.21129 6.21128
8 6.61804 6.61805 6.61804 6.61804
9 7.00795 7.00795 7.00795 7.00795

10 7.38351 7.38351 7.38351 7.38351

In all steps of calculations, we had ensured the issue of convergence. For example, the ground state energy is

plotted in Fig. 2 against the inverse of number of basis
(

1

sp

)
, which clearly shows the numerical stability of the

ground state energy as the number of basis increased. The diagonalization scheme was found to be very efficient in
reproducing the exact energies of the QD system. For example, at λ = 10, we had found that only five bases are

sufficient to reproduce the exact energy value,
E

~ω0
= 7.38351 as shown in the table.

In Fig. 3 we showed the behavior of the heat capacity Cv against the temperature for different values of the
confining frequency ω0, while keeping ωc unchanged. For particular confining frequency, the heat capacity curve
shows a peak value at low temperature, while keeping ωc unchanged. For particular confining frequency, the heat
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capacity curve shows a peak value at low temperature, while at high temperature, the heat capacity saturate. These
peaks are attributed to the Schottky anomaly. This behavior for the heat capacity is in agreement with the findings
of [19, 20]. As the confining frequency increases, the peak of the heat capacity shifts to a higher temperature.

In Fig. 4 we had shown the dependence of the heat capacity on the magnetic field strength for fixed values of the
confining frequency and temperature. The heat capacity shows a peak structure which is a result of the transition in
the angular momentum of the ground state energy as shown and discussed previously in Fig. 1. For example, the first
peak corresponds to the transition in the angular momentum of the ground state from mr = 0 to mr = 1.

In conclusion, we have applied the exact diagonalization method as a theoretical approach to solve the Hamil-
tonian for interacting electrons confined parabolically in a quantum dot subjected to a magnetic field. We had used
the Fock Darwin states as bases to evaluate the coulomb matrix element and to give the result in a closed form. In
addition, we had shown the angular momentum transitions in the ground state of GaAs quantum dot spectra. These
level crossings cause oscillations in the heat capacity curve of the quantum dot. The results of both, the eigenenergies
and the heat capacity, calculated by exact diagonalization method show very good agreement comparable with other
recent works.
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