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The spectral properties of a photon spontaneously emitted by a material two-level system, modelling an atom or ion, in a parabolic cavity are

investigated. In particular, we concentrate on the special case of a motionless two-level system positioned exactly at the focus of a parabolic

cavity with a dipole moment oriented along the symmetry axis of this cavity. Treating the corresponding atom-field coupling in the dipole-

and rotating wave approximation, it is demonstrated that inside the parabolic cavity the position and frequency dependence of the spectrum of

the spontaneously emitted photon exhibits interesting interference patterns. These patterns are explored in detail with the help of a photon path

representation of the first-order electric field correlation function. In the radiation, zone the spatial behavior of the spectrum reveals strong

interference in particular at distances from the two-level system of the order of the focal length of the parabola. With increasing distances,

these interference patterns decay except for an undepleted component surrounding the symmetry axis at an almost constant radius. Furthermore,

the maximum of the frequency dependence of the spectrum exhibits a position-dependent frequency shift with respect to the atomic resonance

frequency.
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1. Introduction

A material two-level system, modelling an atom or ion, interacting with the quantized radiation field is the
paradigm of an elementary quantum optical system. Despite its simplicity, it exhibits many fundamental phenomena
characteristic for quantum theory which also offer interesting possibilities for innovative quantum technological
applications [1]. Within this scenario, the almost resonant exchange of energy between a single photon of the
radiation field and a trapped motionless two-level system represents the simplest physically realizable model
system. Particularly interesting phenomena occur in this simple model system if the photonic mode structure is
engineered by the presence of a cavity which imposes additional physical boundary conditions.

In quantum electrodynamical experiments [2], manipulations of the photonic mode structure have already
been pushed to the extreme case that approximately only a single mode of the electromagnetic radiation field is
capable of exchanging energy with a trapped motionless atom almost resonantly. In these cases, which can be
described within the Jaynes-Cummings-Paul model [3,4], the cavity induced modification of the interaction between
a two-level system and a photon can lead to vacuum Rabi oscillations or to collapse and revival phenomena [5].

A series of recent experiments [6] has started to explore a different dynamical regime in which a single
approximately motionless two-level ion is trapped at the focus of a parabolic mirror. In view of the peculiar focusing
properties of a parabolic mirror an intense exchange of energy between a single photon and the trapped material
two-level system is expected in this scenario. In addition, this physical system offers interesting possibilities
for applications in quantum communication [7], for example, as it allows for an almost lossless coupling in and
coupling out of the electromagnetic field energy into and out of the cavity. Contrary to the case of extreme mode
selection, in this scenario this half open cavity supports a continuum of photonic modes which can couple to
the trapped material two-level system. This continuum of modes, however, is structured by the presence of the
parabolic cavity so that interesting dynamical modifications take place, which range from modifications of the
spontaneous decay rate of the trapped two-level system in comparison with the free-space scenario by the Purcell
effect [8] to intricate recurrence effects observable in the time evolution of the trapped two-level system originating
from photonic reflections at the boundary of the cavity [9, 10].
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In this paper we generalize previous investigations into the interaction of a trapped approximately motionless
material two-level system with a single photon inside a parabolic cavity [10] and explore the spectral properties
of a spontaneously emitted photon inside this cavity. For this purpose, we apply our recently developed classical
path representation of photonic transition amplitudes to the description of the electric field correlation function of
a single photon and to the corresponding spectrum. This position-dependent photonic correlation function and its
corresponding spectrum produced by the trapped spontaneously decaying two-level system can be measured by
positioning a photon detector with appropriate spectral properties at various positions inside the parabolic cavity.
Our subsequent investigations demonstrate that in the radiation zone, the spatial behavior of the spectrum reveals
strong interference effects. These interference effects reflect the intricate photonic dynamics inside the parabolic
cavity in the presence of the trapped material two-level system which originates from the interference of probability
amplitudes associated with different photon paths.

This paper is organized as follows: In Sec. 2, the quantum optical model of a trapped motionless two-level
system interacting with the quantized radiation field inside a parabolic cavity is introduced and previous results are
summarized briefly. Based on these previous results, characteristic dynamical properties of the spontaneous decay
process and its influence on the first-order electric field correlation function of the radiation field are discussed in
Sec. 3. Subsequently, the resulting spectrum of a photon spontaneously emitted by the two-level system trapped in
the focus of the parabolic cavity is explored in Sec. 4.

2. The quantum optical model

In this section, we introduce the quantum optical model describing a two-level system positioned in the focus
of a parabolic cavity and interacting with the quantized radiation field.

In particular, we consider a motionless material two-level system placed at a fixed position in a parabolic
optical cavity with an ideally conducting wall. The Hamiltonian describing the dynamics of its interaction with the
quantized radiation field is given by [10]:

Ĥ = ĤA + ĤF + ĤAF , (1)

with the (free) Hamiltonian:

ĤA = Ee|e〉〈e|+ Eg|g〉〈g|, (2)

of the two-level system with its ground |g〉 and its excited state |e〉. These two states are assumed to be of
opposite parity. The (free) dynamics of the quantized radiation field inside the parabolic cavity is described by the
Hamiltonian:

ĤF =
∑
n

∫
dω h̄ω â†ω,nâω,n. (3)

The creation and destruction operators of the field modes are denoted by â†ω,n and âω,n. These modes are labeled
by their continuous frequencies ω and by the discrete, integer-valued parameter n originating from the boundary
conditions imposed by the parabolic cavity. Consistent with the Coulomb gauge the corresponding orthonormal and
frequency normalized mode functions gω,n(x) fulfill the transversality condition ∇·gω,n(x) = 0 and are solutions
of the Helmholtz equation: (

∇2 +
ω2

c2

)
gω,n(x) = 0, (4)

with boundary conditions of an ideally conducting parabolic mirror with focal length f . (c denotes the speed of
light in vacuum.) The interaction between the two-level system positioned at xA and the quantized radiation field
is treated in the dipole- and rotating-wave approximations and is described by the Hamiltonian:

ĤAF = −i
∑
n

∫
dω

√
h̄ω

2ε0
d · gω,n(xA)âω,n|e〉〈g|+ h.c., (5)

with the atomic dipole matrix element d = 〈e|d̂|g〉 between the excited state |e〉 and the ground state |g〉.
In our subsequent discussion, we assume that the atom is located at the focus of the parabolic mirror, i.e.

xA = 0, and that its dipole moment is oriented along the symmetry axis of the parabolic cavity, i.e. d = dez . As
a consequence, the mode functions gω,n(x) solving Eq. (4) and capable of coupling to this atomic dipole can be
written in the form [10]:
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gω,n(x) = ∇×Gω,n(x), (6)

with

Gω,n(x) =
1√

2πωNω,n

χω,n(ξ)√
ξ

χω,n(η)
√
η

eφ,

χω,n(ξ) =

√
4

πk
F0(αn/k, kξ/2),

χω,n(η) =

√
4

πk
F0(−αn/k, kη/2).

(7)

Thereby, we have introduced parabolic coordinates (ξ, η, z) which are related to the corresponding symmetry
adapted cylindrical coordinates (ρ, φ, z) by ξ = r + z and η = r − z with r =

√
ρ2 + z2. The relevant mode

functions involve the Coulomb functions FL(µ, x) [11] in these parabolic coordinates with L = 0 and with wave
number k = ω/c. The normalization factors appearing in Eq. (7) are given by:

Nω,n =

2f∫
0

dη
χ2
ω,n(η)

η
. (8)

The separation constants αn are determined by the relevant boundary conditions at the surface of the ideally
conducting parabola described by the equation η = 2f , i.e.:

dχω,n(η)

dη

∣∣∣∣
η=2f

= 0. (9)

Eq. (9) ensures the absence of the tangential component of the electric-field operator Êξ(x) ≡ eξ · Ê(x) on the
surface of the parabola, where:

Ê(x) = i
∑
n

∫
dω

√
h̄ω

2ε0
gω,n(x)âω,n + h.c. ≡ Ê+(x) + Ê−(x). (10)

3. Photon path representation of the electric-field correlation function

Based on the results of Sec. 2, we explore the first-order electric-field correlation function of a photon
spontaneously emitted by the two-level system. For this purpose, we develop a classical photon path representation
for the relevant one-photon transition amplitude in the radiation zone, i.e. at distances from the radiating two-level
system large in comparison with the wave length of the spontaneously emitted photon. This classical photon path
representation exhibits the intricate photonic dynamics inside the parabola with sequences of reflections at the
boundary and elastic scatterings by the two-level system [9].

If the two-level system is initially in its excited state |e〉 without any photon in the radiation field, the
subsequent time evolution of the quantum state of the atom-field system is of the general form:

|ψ(t)〉 = Ae(t)|e〉|0〉+
∑
n

∞∫
0

dωAω,n(t)|g〉â†ω,n|0〉. (11)

The time-dependent coefficients Ae(t) and Aω,n(t) fulfill the Schrödinger equation with Hamiltonian (1). In the
long-time limit, i.e. t� 1/Γ0 with Γ0 denoting the spontaneous decay rate of state |e〉, one obtains the result [10]:

Aω,n(t) = i

√
ω

2h̄ε0
e−iωt

d · gω,n(xA)

ω − ω0 − iΓ0/2
. (12)

Information on the dynamics of the spontaneously emitted photon is contained in the first-order electric-field
correlation function which is related to this probability amplitude by:

〈ψ(t1)|Ê−(x1)⊗ Ê+(x2)|ψ(t2)〉 = ∇× F∗(x1, t1)⊗∇× F(x2, t2), (13)

with the effective one-photon amplitude:
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F(x, t) = −i
∑
n

∞∫
0

dω

√
h̄ω

2ε0
A∗ω,n(t)Gω,n(x). (14)

If the focal length f of the parabolic cavity is not too large in the sense c/ω0 � f � c/Γ0, in the radiation zone
this effective one-photon amplitude is given by [10]:

F(x, t) = −ieφ
k0d

4πε0ρ

∞∑
M=0

e−i2πMn0e(iω0−Γ0/2)(t−r/c)
[
θ(t− r/c−MT )

cosh ΛM (ρ, z; k0)
− θ(t− z/c−MT )

cosh ΘM−1(ρ, z; k0)

]
, (15)

with:

ΛL(ρ, z; k0) = ln

(
r − z
r + z

)
+ 2LS (k0f),

ΘL(ρ, z; k0) = ln

(
2f

ρ

)2

+ 2LS (k0f),

(16)

and with the diffraction function:

S (u) =

u∫
0

dy
sin2 y

y
.

In Eq. (15), the radiation zone refers to distances from the radiating two-level system which are large in comparison
to the optical wave length characterizing the resonant atomic transition.

Eq. (15) represents the effective one-photon amplitude determining the electric-field correlation function as
a sum of contributions M which can be associated with repeated returns of the spontaneously emitted photon
back to the atom. Thereby, this photon evolves periodically along a straight-line classical path extending along
the symmetry axis of the parabolic cavity from its focal point, where the two-level system is positioned, to its
boundary and back again. The time the photon requires for this motion is given by the period T = 2f/c and 2πn0

with n0 = k0f/π − 1/2 is the corresponding classical eikonal associated with this photon path. The integer M
enumerates the number of reflections of this photon path at the boundary of the parabola.

4. Spectrum of the spontaneously emitted photon

Based on the results of Sec. 3, we explore characteristic properties of the spectrum of the radiation field
produced by the spontaneously emitted photon in the radiation zone, i.e. at distances from the radiating two-level
system large in comparison with the wave length of the spontaneously emitted photon.

In general, the power spectrum of a photon spontaneously emitted by the material two-level system and
detected at position x with frequency ωS is related to the first-order electric-field correlation function of Eq. (13)
by [12]:

S(x, ωS) =

∞∫
0

dt1

∞∫
0

dt2e−iωS(t1−t2)〈ψ(t1)|Ê−(x) · Ê+(x)|ψ(t2)〉. (17)

Performing the time integrations, we find from Eqs. (13) and (15) the final result, which is conveniently represented
in the form:

S(x, ωS) =

(
ω2

0d

4πε0c2

)2

· 1

(ω0 − ωS)2 + Γ2
0/4
· Imir(ρ, z;ωS , k0), (18)

with the mirror influence function being defined by:
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Imir(ρ, z;ωS , k0) =
1

2r
·
∞∑

L,M=0

e−i(M−L)[2πn0−T (ω0−ωS)]−(M+L)TΓ0/2

×
{

1

cosh ΛM (ρ, z; k0) cosh ΛL(ρ, z; k0)

×
(

1

r + z
·
[
1− 2i tanh ΛM (ρ, z; k0)

k0(r − z)

] [
1 +

2i tanh ΛL(ρ, z; k0)

k0(r − z)

]
+

1

r − z
·
[
1 +

2i tanh ΛM (ρ, z; k0)

k0(r + z)

] [
1− 2i tanh ΛL(ρ, z; k0)

k0(r + z)

])
+

1

cosh ΘM−1(ρ, z; k0) cosh ΘL−1(ρ, z; k0)

×
(

1

r + z
·
[
1− 2i tanh ΘM−1(ρ, z; k0)

k0(r − z)

] [
1 +

2i tanh ΘL−1(ρ, z; k0)

k0(r − z)

]
+

1

r − z
·
[
1 +

2i tanh ΘM−1(ρ, z; k0)

k0(r + z)

] [
1− 2i tanh ΘL−1(ρ, z; k0)

k0(r + z)

])
+2Re

[
e−iωS(r−z)/c

cosh ΛM (ρ, z; k0) cosh ΘL−1(ρ, z; k0)

×
(

1

r + z
·
[
1− 2i tanh ΛM (ρ, z; k0)

k0(r − z)

] [
1 +

2i tanh ΘL−1(ρ, z; k0)

k0(r − z)

]
− 1

r − z
·
[
1 +

2i tanh ΛM (ρ, z; k0)

k0(r + z)

] [
1− 2i tanh ΘL−1(ρ, z; k0)

k0(r + z)

])]}
. (19)

Eqs. (18) and (19) represent the main result of this section.
In the extreme far-field zone in the sense of ρ� f Eq. (19) reduces to the well-known free-space result:

Ifree(ρ, z) =

(
ρ

ρ2 + z2

)2

,

so that the spectrum (18) assumes the characteristic positional intensity distribution of dipolar radiation, i.e.:

Sfree(x, ωS) =

(
ω2

0dρ

4πε0c2r2

)2

· 1

(ω0 − ωS)2 + Γ2
0/4

. (20)

As a consequence of the rotating wave approximation, in this limit the frequency distribution exhibits a purely
Lorentzian lineshape. However, in more general cases which do not correspond to the extreme far-field condition
the function Imir(ρ, z;ωS , k0) is not only position dependent but also depends on the atomic transition frequency
ω0 = k0c and on the frequency ωS at which the spontaneously emitted photon is observed. This additional
frequency dependence reveals the influence of the parabolic mirror on the spatial behavior of the atomic photon
emission.

The spatial behavior of Imir(ρ, z;ωS = ω0, k0) at the atomic resonance frequency is depicted in Fig. 1.
Apparently, pronounced interference effects take place in the radiation zone at positions of the photon detector
from the radiating two-level system comparable to the focal length of the parabola. Due to the specific structure
of the field modes capable of coupling to the atomic dipole oriented along the symmetry axis of the parabolic
cavity, the spectrum is exactly zero on the axis of symmetry. However, there is a ring zone around the symmetry
axis approximately at ρ/f ∼ 2/

√
3 ≈ 1.15 at which the spectrum is maximal. Along this ring, the spectrum

remains appreciable even at asymptotically large distances from the radiating two-level system. However, in all
other directions the probability of detecting a photon diminishes quickly with increasing distance from the radiating
two-level system.

The dependence of the spectrum of Eq. (18) on frequency and distance orthogonal to the symmetry axis is
depicted in Fig. 2. Characteristic spatial interference patterns originating from the presence of the parabolic cavity
are again visible. The contour plot of Fig. 2 indicates a small asymmetry of the frequency dependence with respect
to the atomic resonance frequency ω0. To a good degree of approximation this asymmetry can be described by a
position-dependent frequency shift ∆ according to the relation:
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FIG. 1. Position dependence of the mirror influence function Imir(ρ, z;ωS , k0) as defined by
Eq. (19) at frequency ωS = ω0 for a parabolic mirror. The parameters are T = 20/ω0 and
T = 0.1/Γ0 so that the focal length f is large in comparison to the resonant inverse wave
number k0, i.e. f = 10/k0, and the spontaneously emitted photon is reflected at the boundary of
the parabolic mirror many times during time T (compare with Eq. (15)). The boundary of the
figure is given by the equation of the parabolic mirror of the form z/f + 1 = (ρ/2f)2

FIG. 2. Dependence of the spectrum of Eq. (18) and of its contour plot on the dimensionless
frequency 2(ωS − ω0)/Γ0 and on the distance orthogonal to the symmetry axis at z/f = 3. The
parameters are ω0T = 20 and Γ0T = 0.1 as in Fig. 1

S(x, ωS) =

(
ω2

0d

4πε0c2

)2

· Imir(ρ, z;ω0, k0)

(ω0 − ωS −∆)2 + Γ2
0/4

, (21)

with the frequency shift ∆ being determined by the equation:

∂Imir(ρ, z;ω0 + ∆, k0)/∂ωS
Imir(ρ, z;ω0 + ∆, k0)

=
2∆

∆2 + Γ2
0/4

. (22)

In Fig. 3, the spatial dependence of this frequency shift ∆ is depicted. The modifications of the spectrum
originating from the presence of the parabolic cavity give rise to an oscillatory spatial dependence of this frequency
shift which reflects once again characteristic interference effects taking place inside the parabolic cavity.

In order to demonstrate the accuracy of the approximation of Eqs. (21) and (22) a cut of Fig. 2 at position
ρ/f = 0.5, z/f = 3 is depicted in detail in Fig. 4 (left) with its top part being amplified in Fig. 4 (right). Although
this shift is small, i.e. 2∆/Γ0 ≈ −0.003, it is clearly visible.
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FIG. 3. Position dependence of the effective shift 2∆/Γ0 as defined by Eqs. (21) and (22). The
parameters are ω0T = 20 and Γ0T = 0.1 as in Fig. 1

FIG. 4. Spectrum of Fig. 2 and its dependence on the dimensionless spectral frequency 2(ωS −
ω0)/Γ0 at the fixed position ρ/f = 0.5 and z/f = 3. The parameters are ω0T = 20 and
Γ0T = 0.1 as in Fig. 1. The right part of this figure shows the frequency dependence around the
maximum on a finer scale

5. Summary and conclusion

We have investigated the spectral properties of a photon spontaneously emitted by a motionless two-level
atom positioned at the focus of a parabolic cavity with a dipole moment oriented along the symmetry axis of the
parabola. Within a quantum optical model we have studied the spectrum of the spontaneously emitted radiation
with the help of a photon path representation of the first-order electric field correlation function. In this manner,
the influence of the parabolic mirror on the spontaneous photon emission process is described in terms of photon
path contributions originating from repeated reflections of the spontaneously emitted photon at the boundary of the
parabolic mirror. It has been demonstrated that inside the parabolic cavity, the position and frequency dependence
of the spectrum of the spontaneously emitted photon exhibits interesting interference patterns. In the radiation
zone, the spatial behavior of the spectrum reveals strong interference at distances from the atom of the order of the
focal length of the parabola. With increasing distances, these interference patterns decay in all directions except
for an undepleted component along the axis of symmetry. Furthermore, the maximum of the spectral line-shape
exhibits a position-dependent frequency shift with respect to the atomic resonance frequency.
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