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1. Introduction

Electron transport in nanostructures under the action of a magnetic field attracts great attention during last
decades. The reason is observation of many interesting effects found applications in nanoelectronics. One of
such intriguing problems is that of Aharonov-Bohm oscillations in quantum transport [1–3]. Several models were
suggested to describe the phenomenon. One of the most effective in the field is the quantum graph model (see,
e.g., [4–7]). An excellent review of the state of the art in quantum graph theory is presented in [8].

We are interested in the case when the system (quantum graph) with an Aharonov-Bohm ring interacts with
another system having two energy levels. In this case, the operator of the whole system has the form of a sum of
tensor products:

S := AH ⊗ IT + IH ⊗ TT,

where self-adjoint operators A and T act in Hilbert spaces H and T, respectively. It is well known that such
operators describe the interaction of two quantum systems. Extension technique for such operators is widely
discussed in [9]. We introduce a model for an electron in a quantum graph interacting with a two-level system.
Such an operator also preserves a tensor structure described above. The first operator A stands for the quantum
graph and the second operator T , which is, actually, a 2× 2 matrix, describes the two-level system.

In the following, we investigate the considered operator using boundary triplets approach and the results
from [9]. Scattering matrix is obtained and the diagrams of the argument of the reflection coefficient (scattering
phase) are constructed. The scattering has a resonance character.

2. Preliminaries

2.1. Linear relations

A linear relation Θ in H is a closed linear subspace of H⊕H. The set of all linear relations in H is denoted
by C̃(H). We denote also by C(H) the set of all closed linear (not necessarily densely defined) operators in H.
Identifying each operator T ∈ C(H) with its graph gr (T ), we regard C(H) as a subset of C̃(H).

The role of the set C̃(H) in extension theory becomes clear from Proposition 2.3. However, its role in the
operator theory is substantially motivated by the following circumstances: in contrast to C(H), the set C̃(H) is
closed with respect to taking inverse and adjoint relations Θ−1 and Θ∗. The latter is given by: Θ−1 = {{g, f} :
{f, g} ∈ Θ} and

Θ∗ =

{(
k

k′

)
: (h′, k) = (h, k′) for all

(
h

h′

)
∈ Θ

}
. (1)

A linear relation Θ is called symmetric if Θ ⊂ Θ∗ and self-adjoint if Θ = Θ∗.
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2.2. Boundary triplets and proper extensions

Let us briefly recall some basic facts regarding boundary triplets. Let S be a densely defined closed symmetric
operator with equal deficiency indices n±(S) := dim(N±i), Nz := ker (S∗−z), z ∈ C±, acting on some separable
Hilbert space H.

Definition 2.1.
(i) A closed extension S̃ of S is called proper if dom (S) ⊂ dom (S̃) ⊂ dom (S∗).
(ii) Two proper extensions S̃′, S̃ are called disjoint if dom (S̃′) ∩ dom (S̃) = dom (S) and transversal if in
addition dom (S̃′) + dom (S̃) = dom (S∗).

We denote by ExtS the set of all proper extensions of S completed by the non-proper extensions S and S∗ is
denoted. For instance, any self-adjoint or maximal dissipative (accumulative) extension is proper.

Definition 2.2 ( [10]). A triplet Π = {H,Γ0,Γ1}, where H is an auxiliary Hilbert space and Γ0,Γ1 : dom (S∗)→
H are linear mappings, is called a boundary triplet for S∗ if the “abstract Green’s identity”:

(S∗f, g)− (f, S∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ dom (S∗). (2)

is satisfied and the mapping Γ := (Γ0,Γ1)> : dom (S∗)→ H⊕H is surjective, i.e. ran (Γ) = H⊕H.

A boundary triplet Π = {H,Γ0,Γ1} for S∗ always exists whenever n+(S) = n−(S). Note also that
n±(S) = dim(H) and ker (Γ0) ∩ ker (Γ1) = dom (S).

With any boundary triplet Π, one associates two canonical self-adjoint extensions Sj := S∗ � ker (Γj),
j ∈ {0, 1}. Conversely, for any extension S0 = S∗0 ∈ ExtS there exists a (non-unique) boundary triplet Π =
{H,Γ0,Γ1} for S∗ such that S0 := S∗ � ker (Γ0).

Using the concept of boundary triplets one can parameterize all proper extensions of A in the following way.

Proposition 2.3 ( [11, 12]). Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗. Then the mapping:

ExtS 3 S̃→ Γdom (S̃) = {(Γ0f,Γ1f)> : f ∈ dom (S̃)} =: Θ ∈ C̃(H) (3)

establishes a bijective correspondence between the sets ExtS and C̃(H). We write S̃ = SΘ if S̃ corresponds to Θ
by (3). Moreover, the following holds:
(i) S∗Θ = SΘ∗ , in particular, S∗Θ = SΘ if and only if Θ∗ = Θ.
(ii) SΘ is symmetric (self-adjoint) if and only if Θ is symmetric (self-adjoint).
(iii) The extensions SΘ and S0 are disjoint (transversal) if and only if there is a closed (bounded) operator B
such that Θ = gr (B). In this case (3) takes the form:

SΘ := Sgr (B) = S∗ � ker (Γ1 −BΓ0). (4)

In particular, Sj := S∗ � ker (Γj) = SΘj , j ∈ {0, 1}, where Θ0 :=

(
{0}
H

)
and Θ1 :=

(
H
{0}

)
= gr (O) where

O denotes the zero operator in H. Note also that C̃(H) contains the trivial linear relations {0} × {0} and H×H
parameterizing the extensions S and S∗, respectively, for any boundary triplet Π.

2.3. Gamma field and Weyl function

It is well known that Weyl function is an important tool in the direct and inverse spectral theory of Sturm-
Liouville operators. In [11,12] the concept of Weyl function was generalized to the case of an arbitrary symmetric
operator S with n+(S) = n−(S) 6∞. Following [11] we briefly recall basic facts on Weyl functions and γ-fields
associated with a boundary triplet Π.

Definition 2.4 ( [11,12]). Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗ and S0 = S∗ � ker (Γ0). The operator
valued functions γ(·) : ρ(S0)→ [H,H] and M(·) : ρ(S0)→ [H] defined by:

γ(z) :=
(
Γ0 � Nz

)−1
M(z) := Γ1γ(z), z ∈ ρ(S0), (5)

are called the γ-field and the Weyl function, respectively, corresponding to the boundary triplet Π.

Clearly, the Weyl function can equivalently be defined by:

M(z)Γ0fz = Γ1fz, fz ∈ Nz, z ∈ ρ(S0). (6)
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The γ-field γ(·) and the Weyl function M(·) in (5) are well defined. Moreover, both γ(·) and M(·) are holomorphic
on ρ(S0) and the following relations:

γ(z) =
(
I + (z − ζ)(S0 − z)−1

)
γ(ζ), z, ζ ∈ ρ(S0), (7)

and
M(z)−M(ζ)∗ = (z − ζ)γ(ζ)∗γ(z), z, ζ ∈ ρ(S0), (8)

hold. Identity (8) yields that M(·) is [H]-valued Nevanlinna function (M(·) ∈ R[H]), i.e. M(·) is [H]-valued
holomorphic function on C± satisfying:

M(z) = M(z)∗ and
Im(M(z))

Im(z)
> 0, z ∈ C+ ∪ C−. (9)

It also follows from (8) that 0 ∈ ρ(Im(M(z))) for all z ∈ C±.

2.4. Krein-type formula for resolvents

Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗, M(·) and γ(·) the corresponding Weyl function and γ-field,
respectively. For any proper (not necessarily self-adjoint) extension S̃Θ ∈ ExtS with non-empty resolvent set
ρ(S̃Θ) the following Krein-type formula holds (cf. [11, 12]):

(SΘ − z)−1 − (S0 − z)−1 = γ(z)(Θ−M(z))−1γ∗(z), z ∈ ρ(S0) ∩ ρ(SΘ). (10)

Formula (10) extends the known Krein formula for canonical resolvents to the case of any SΘ ∈ ExtS with
ρ(SΘ) 6= ∅. Moreover, due to relations (3), (4) and (5) formula (10) is related to the boundary triplet Π. We
emphasize, that this relation makes it possible to apply the Krein-type formula (10) to boundary value problems
(see, e.g., [13, 14]).

2.5. Scattering

Let S be a densely defined closed symmetric operator with finite equal deficiency indices n±(S) and Π =
{H,Γ0,Γ1} is a boundary triplet for S∗, Let S0 = S∗ � ker Γ0 and SΘ is a self-adjoint extension corresponding to
Θ ∈ C̃(H). As dimH is finite, by 10

(SΘ − z)−1 − (S0 − z)−1, (11)

is a finite rank operator and the system {SΘ, S0} is a so-called complete scattering system, i.e. the wave operators:

W±(SΘ, S0) = s− lim
t→±∞

eitSΘe−itS0P ac(S0) (12)

exists and they are complete, i.e. their ranges coincide with the absolutely continuous subspace Hac(SΘ) of SΘ

(see, e.g. [17], [15], [16]). By P ac(S0) we denote the orthogonal projection on absolutely continuous subspace
Hac(S0) of S0. The scattering operator S(SΘ, S0) of a scattering system {SΘ, S0} is defined as:

S(SΘ, S0) = W+(SΘ, S0)∗W−(SΘ, S0). (13)

If we regard the scattering operator as an operator in Hac(S0) then it becomes unitary and commutes with absolutely
continuous part:

Sac0 = S0 � H
ac(S0) ∩ dom (S0). (14)

of S0 and thus it is unitarily equivalent to a multiplication operator induced by a family {SΘ(z)} of unitary
operators in a spectral representation of Sac0 ( [17], Proposition 9.57). Tis family is called a scattering matrix of a
scattering system S(SΘ, S0).

Since the dimension dimH is finite then the Weyl function M(·) corresponding to boundary triplet Π =
{H,Γ0,Γ1} is a matrix-valued Nevanlinna function. By Fatous theorem ( [18]), the limit:

M(λ+ i0) = lim
ε→0+0

M(λ+ iε) (15)

exists for almost all λ ∈ R. We denote the set of real point where the limit exists by ΣM . We will use the notation:

HM(λ) = ran (M(λ)), λ ∈ ΣM . (16)

By PM(λ) we will denote the orthogonal projection on HM(λ).
We will also use the notation:

NΘ(z) = (Θ−M(z))−1, z ∈ C \ R, (17)

where Θ ∈ C̃(H) is a self-adjoint relation corresponding to SΘ. This function is well defined and the limit:

NΘ(λ+ i0) = (Θ−M(λ+ i0))−1, (18)
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exists almost for every λ ∈ R. This set we will denote as ΣN .

Theorem 2.5. ( [14]) Let S be a densely defined symmetric operator with finite deficiency indices in separable
Hilbert space H, let Π be a boundary triplet corresponding to S∗ with corresponding Weyl function M(·), SΘ is
a self-adjoint extension of S, S0 = S∗ � ker Γ0, Θ ∈ C̃(H), then in L2(R, dλ,HM(λ)) the scattering matrix of
the complete scattering system {SΘ, S0} is given by:

SΘ(λ) = IHM(λ)
+ 2i

√
=(M(λ+ i0))Nθ(λ+ i0)

√
=(M(λ+ i0)), (19)

for λ ∈ ΣM ∩ ΣN .

3. Model construction

3.1. An electron in quantum graph

Let us consider a Hilbert space H1 = L2(Cr ∪ [−1, 0]), r > 0, where:

Cr := {x ∈ R2 : ρ(x,−1− r) = r}, (20)

so that our Hilbert space is a union of a line segment [−1, 1] and a ring with center at the point (−1− r) ∈ R of
radius r. In a ring we consider an operator (x stands for the angle ϕ in polar coordinates):

ARf := −
(

1

r

d

dx
+ iΦ

)2

f (21)

with domain domAR = {f ∈ W 2,2[0, 2π] : f(0) = f(2π) = 0}. Let us show that the operator is self-adjoint.
Integrating by parts, we have:

(ARf, g) = −
2π∫
0

(
1

r2
f ′′ − 2i

r
Φf ′ − Φ2f

)
gdx = − 1

r2

2π∫
0

f ′′gdx+
2i

r
Φ

2π∫
0

f ′gdx− Φ2

2π∫
0

fgdx =

− 1

r2

f ′(2π)g(2π)− f ′(0)g(0) + f(0)g′(0)− f(2π)g′(2π) +

2π∫
0

fg′′dx

+

2Φ

r

i (f(2π)g(2π)− f(0)g(0)) +

2π∫
0

figdx

+ Φ2

2π∫
0

fgdx =

− 1

r2
(f ′(2π)g(2π)− f ′(0)g(0) + f(0)g′(0)− f(2π)g′(2π)) +

2Φ

r
i (f(2π)g(2π)− f(0)g(0)) +

2π∫
0

f

(
− 1

r2
g′′ +

2Φ

r
ig′ + Φ2g

)
dx.

This proves the statement.

Now we introduce a self-adjoint operator AS := − d2

dx2
in L2[−1, 0] with domain domAS = {f ∈W 2,2[−1, 0] :

f(−1) = f(0) = 0}.
In compound system we consider an operator A1 acting in H1 as an operator AR on a circle and AS on a line

segment. To make it symmetric, we restrict it on a set of functions with the conditions:

f2(−1) = f1(0) = f1(2π)

f ′2(−1) +

(
d

dx
+ iΦ

)
f1(0)−

(
d

dx
+ iΦ

)
f1(2π) = 0

, (22)

where f1 ∈ domAR, f2 ∈ domAS . To find the deficiency elements of A1 we firstly solve the equation ARf = zf
and come to an algebraic equation:

−
(

1

r
λ− iΦ

)2

= z ⇔ 1

r
λ− iΦ = ±

√
z (23)
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or λ = i
(
rΦ± r

√
z
)
. The deficiency elements (if we choose the branch =

√
z > 0) are eirx(Φ±

√
z). For the

operator AS deficiency elements are e±i
√
z . To find the deficiency elements of the considered operator A1, we

solve the system of algebraic equations. We start by introducing:

f1 := c3e
irx(Φ+

√
z) + c4e

irx(Φ−
√
z), f2 := c1e

i
√
z + c2e

−i
√
z, ci ∈ C (24)

and for simplicity introduce the notation a := e−i
√
z , b := ei

√
z , f := e2πir(Φ+

√
z), d := e2πir(Φ−

√
z). Then, from

the boundary conditions, we obtain:
c1a+ c2b = c3 + c4,

c3 + c4 = c3f + c4d,

c1
√
za− c2

√
zb+ c3

(
r(Φ +

√
z)(1− f) + Φ(1− f)

)
+ c4

(
r(Φ−

√
z)(1− d) + Φ(1− d)

)
= 0.

Solving the system above, we obtain:

f1 = c4
d− 1

1− f
eirx(Φ+

√
z) + c4e

irx(Φ−
√
z), (25)

f2 =
c4
2a

(
d− f − 2rd+ 2rdf + 2r − 2rf

1− f

)
ei
√
zx+

c4
2b

(
d− f + 2rd− 2rdf − 2r + 2rf

1− f

)
e−i
√
zx.

(26)

So, the deficiency indices of the operator A1 are equal to 1, i.e. n±(A1) = 1.
The boundary triplet for the operator A1 is as follows:

HA1 := C, ΓA1
0 := f(0), ΓA1

1 := −f ′(0).

One immediately checks that the equation (2.2) is satisfied. For simplicity we put c4 = 2(1− f) in (25) and (26).
Then,

ΓA1
0 f2 =

1

a
(d− f − 2rd+ 2rdf + 2r − 2rf) +

1

b
(d− f + 2rd− 2rdf − 2r + 2rf) . (27)

Putting:

u :=
1

a
(d− f − 2rd+ 2rdf + 2r − 2rf) , (28)

v :=
1

b
(d− f + 2rd− 2rdf − 2r + 2rf) , (29)

the γ-field γA1(z) has the form (in accordance with definition 2.4):

γA1(z) :=
1

u+ v

(
uei
√
zx + ve−i

√
zx
)
. (30)

Then the Weyl function (in accordance with definition 2.4) is:

MA1(z) := ΓA1
1 γA1(z) = − i

√
z(u− v)

u+ v
. (31)

To obtain the scattering matrix (19), we have to calculate the limit of the Weyl function (2.4) to the real axis from
the upper half-plane. All the calculations with the final expressions are obtained in Appendix A.

3.2. Operator on a half-line

Let us consider an operator:

A2 := − d2

dx2
, (32)

with the domain domA2 = W 2,2
00 = {f ∈ W 2,2(0,∞) : f(0) = f ′(0) = 0} in H2 = L2(0,∞). It is symmetric

and its deficiency indices are n±(A3) = 1. In accordance with [9], the Weyl function for this operator has the
following form:

MA3(z) := i
√
z.

It is clear that:

=MA3(λ) = =
(
i
√
λ
)

=
√
λ, λ > 0

and 0 otherwise.
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3.3. The direct sum of the operators

We consider the Hilbert space H = H1 ⊕H2 where H1 and H2 are defined above. We define an operator A as
the operator:

A := A1 ⊕A2. (33)

The operator A is symmetric and has deficiency indices n±(A) = 2. It’s Weyl function is obviously given by the
expression:

MA(z) =

(
MA1(z) 0

0 MA2(z)

)
=

− i√z(u− v)

u+ v
0

0 i
√
z

 . (34)

3.4. Coupling to the two-level system

Now let us couple the considered operator to an operator:

T :=

(
1 0

0 2

)
(35)

acting on the Hilbert space T = C2. For this purpose we consider an operator

S = AH ⊗ IT + IH ⊗ TT. (36)

In accordance with [9], we have:

MS(z) = MA(z − 1)⊗

(
1 0

0 0

)
+MA(z − 2)⊗

(
0 0

0 1

)
= (37)


MA1(z − 1) 0 0 0

0 MA1(z − 2) 0 0

0 0 MA2(z − 1) 0

0 0 0 MA2(z − 2)

 . (38)

To find the scattering matrix, we need to calculate the limit of the Weyl function to the real axis which is,
obviously:

MS(λ) = MS(λ+ i0) =


MA1(λ− 1) 0 0 0

0 MA1(λ− 2) 0 0

0 0 MA2(λ− 1) 0

0 0 0 MA2(λ− 2)

 . (39)

Now we need to calculate the imaginary part of the obtained limit. This gives us

√
=MS(λ) =



√
=MA1(λ− 1) 0 0 0

0
√
=MA1(λ− 2) 0 0

0 0
√
=MA2(λ− 1) 0

0 0 0
√
=MA2(λ− 2)

 . (40)

3.5. Scattering matrix

Let us take the matrix of parameters Θ in the form (α, β ∈ C):

Θ =


0 α 0 0

α 0 β 0

0 β 0 α

0 0 α 0

 . (41)

Then:

NΘ(λ) = (Θ−MS(λ))−1 =


−MA1(λ− 1) α 0 0

α −MA1(λ− 2) β 0

0 β −MA2(λ− 1) α

0 0 α −MA2(λ− 2)


−1

. (42)
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We denote:

a11 = MA1(λ− 1), a22 = MA1(λ− 2), a33 = MA2(λ− 1), a44 = MA2(λ− 2).

Then, one has:

NΘ =
1

a11a22a33a44 − a11a44|β|2 − a11a22|α|2 − a33a44|α|2 + |α|4
·



a44(−a22a33 + |β|2) + |α|2a22 |α|2α− αa33a44 0 0

|α|2α− αa33a44 −a11a33a44 + |α|2a11 0 0

−αβa44 −βa11a44 0 0

−α2β −a11αβ 0 0

+


0 0 −αβa44 −α2β

0 0 −βa11a44 −αβa11

0 0 −a11a22a44 + |α|2a44 |α|2α− a11a22α

0 0 |α|2α− a11a22α −a33(a11a22 − |α|2) + a11|β|2


 .

Assuming:

∆ :=
2i

a11a22a33a44 − a11a44|β|2 − a11a22|α|2 − a33a44|α|2 + |α|4
,

we, finally, obtain:

SΘ(λ) = I + ∆·

=a11

(
a44(−a22a33 + |β|2) + |α|2a22

) √
=a11=a22

(
|α|2α− αa33a44

)
0 0√

=a11=a22

(
|α|2α− αa33a44

)
=a22

(
−a11a33a44 + |α|2a11

)
0 0

−
√
=a11=a33αβa44 −

√
=a22=a33βa11a44 0 0

−
√
=a11=a44α

2β −
√
=a22=a44a11αβ 0 0

+


0 0 −

√
=a11=a33αβa44 −

√
=a11=a44α

2β

0 0 −
√
=a22=a33βa11a44 −

√
=a22=a44αβa11

0 0 =a33

(
−a11a22a44 + |α|2a44

) √
=a33=a44

(
|α|2α− a11a22α

)
0 0

√
=a33=a44

(
|α|2α− a11a22α

)
=a44

(
−a33(a11a22 − |α|2) + a11|β|2

)

 .

Now, we have to take the projection onto the absolutely continuous part, we calculate:((
1 0

0 1

)
⊗
(

1 0
))

SΘ(λ)

((
1 0

0 1

)
⊗

(
1

0

))
+

((
1 0

0 1

)
⊗
(

0 1
))

SΘ(λ)

((
1 0

0 1

)
⊗

(
0

1

))
,

and obtain: (
2 + ∆=a11

(
a44(−a22a33 + |β|2) + |α|2a22

)
+ ∆=a22

(
−a11a33a44 + |α|2a11

)
0

−∆
√
=a11=a33αβa44 −∆

√
=a22=a44a11αβ 0

)
+

(
0 −∆

√
=a11=a33αβa44 −∆

√
=a22=a44αβa11

0 2 + ∆=a33

(
−a11a22a44 + |α|2a44

)
+ ∆=a44

(
−a33(a11a22 − |α|2) + a11|β|2

)) .
We are interested in the argument of the coefficient:

r := 2 + ∆=a33

(
−a11a22a44 + |α|2a44

)
+ ∆=a44

(
−a33(a11a22 − |α|2) + a11|β|2

)
. (43)
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FIG. 1. Argument of the reflection coefficient arg r as a function of energy λ. Left column:
α = β = 1/3, values of Φ vary from top to bottom through, consequently, 1/4, 1/5, 1/8, 1/10;
right column: Φ = β = 1/3, α vary from top to bottom through, consequently,
1/3, 1/5, 1/8, 1/12 (arbitrary units)
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3.6. Results and discussion

The dependence of the scattering phase arg r on the energy is shown in Fig. 1. Jumps of the phase correspond
to resonances which positions depend on the magnetic field. One can observe this dependence looking through
the left column of pictures. Naturally, for a weaker magnetic field, one has resonances closer to the corresponding
eigenvalues of the operator for the ring without the magnetic field. As for influence of parameter α, it is shown
in the left column of pictures in Fig. 1. Parameter α is responsible for the connection between the ring and the
segment. Note that the coupling condition between the ring and the segment (22) depends on the magnetic field Φ
(due to the “magnetic” derivatives the scattering phase changes). This explains the influence of α on the resonance
position. As for β, which is responsible for the connection between the segment and the half-line, it does not
influences on the resonance position essentially due to the absence of Φ in the coupling condition. Correspondingly,
we did not present the pictures for different values of β (their variations are not essential).

Acknowledgements

This work was partially financially supported by the Government of the Russian Federation (grant 08-08), by
grant 16-11-10330 of Russian Science Foundation.

References

[1] Dauber J., Oellers M., Venn F., Epping A., Watanabe K., Taniguchi T., Hassler F., Stampfer C. Aharonov-Bohm oscillations and magnetic
focusing in ballistic graphene rings. Phys. Rev. B, 2017, 96, P. 205407.

[2] Chakraborty T., Manaselyan A., Barseghyan M. Irregular Aharonov-Bohm effect for interacting electrons in a ZnO quantum ring. J Phys
Condens Matter, 2017, 29(7), P. 075605.

[3] Caudrelier V., Mintchev M., Ragoucy E. Exact scattering matrix of graphs in magnetic field and quantum noise. J. Math. Phys., 2014, 55,
P. 083524.

[4] Exner P., Lotoreichik V., Perez-Obiol A. On the bound states of magnetic Laplacians on wedges. Rep. Math. Phys, 2018, 82, P. 161–185.
[5] Kurasov P., Serio A. Topological damping of Aharonov-Bohm effect: quantum graphs and vertex conditions. Nanosystems: Phys. Chem.

Math., 2015, 6(3), P. 309–319.
[6] Eremin D.A., Grishanov E.N., Nikiforov D.S., Popov I.Y. Wave dynamics on time-depending graph with Aharonov-Bohm ring. Nanosys-

tems: Phys. Chem. Math., 2018, 9(4), P. 457–463.
[7] Chatterjee A., Smolkina M.O., Popov I.Y. Persistent current in a chain of two Holstein-Hubbard rings in the presence of Rashba spin-orbit

interaction. Nanosystems: Phys. Chem. Math., 2019, 10(1), P. 50–62.
[8] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs. AMS, Providence, 2012.
[9] Boitsev A.A., Brasche J., Malamud M., Neidhardt H., Popov I.Y. Boundary Triplets, Tensor Products and Point Contacts to Reservoirs

Annales Henri Poincare, IET, 2018, 19(9), P. 2783–2837.
[10] Derkach V. A., Malamud M. M., 1991, Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J.

Funct. Anal., 95(1), P. 1–95.
[11] Malamud M. M. Some classes of extensions of a Hermitian operator with lacunae, Ukraı̈n. Mat. Zh., 1992, 44(2), P. 215–233.
[12] Malamud M. M., 1992, Some classes of extensions of a Hermitian operator with lacunae, Ukraı̈n. Mat. Zh., 44(2), P. 215–233.
[13] Boitsev A. A., Brasche J., Neidhardt H., Popov I. Y., A model of electron transport through a boson cavity. Nanosystems: Phys. Chem.

Math., 2018, 9, P. 171–178.
[14] Behrndt J., Malamud M.M., Neidhardt H. Scattering matrices and Weyl functions. Proc. Lond. Math. Soc., 2008, 97, P. 568–598.
[15] Kato T. Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New

York, Inc., New York 1966.
[16] Yafaev D.R. Mathematical Scattering Theory: General Theory, Translations of Mathematical Monographs, 105. American Mathematical

Society, Providence, RI, 1992.
[17] Baumgartel H., Wollenberg M. Mathematical Scattering Theory, Akademie-Verlag, Berlin, 1983.
[18] Donoghue W.F. Monotone Matrix Functions and Analytic Continuation, Springer Verlag, Berlin and New York, 1974.

Appendix A: Limit of the Weyl function MA1

Let us investigate MA1(λ), λ ∈ R and calculate it’s imaginary part. We put l = 2πr and calculate

u = −2 sin(l
√
λ) sin(lΦ +

√
λ)− 4r cos(l

√
λ) cos(

√
λ+ lΦ) + 2r cos(2lΦ +

√
λ) + 2r cos

√
λ+

i
(

2 sin(l
√
λ) cos(lΦ +

√
λ)− 4r cos(l

√
λ) sin(

√
λ+ lΦ) + 2r sin(2lΦ +

√
λ) + 2r sin

√
λ
)

and
v = −2 sin(l

√
λ) sin(lΦ−

√
λ) + 4r cos(l

√
λ) cos(

√
λ− lΦ)− 2r cos(2lΦ−

√
λ)− 2r cos

√
λ+

i
(

2 sin(l
√
λ) cos(lΦ−

√
λ) + 4r cos(l

√
λ) sin(lΦ−

√
λ)− 2r sin(2lΦ−

√
λ) + 2r sin

√
λ
)
.

Then,
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u+ v = −4 sin(l
√
λ) sin(lΦ) cos

√
λ+ 8r cos(l

√
λ) sin

√
λ sin(lΦ)− 4r sin(2lΦ) sin

√
λ+

i
(

4 sin(l
√
λ) cos(lΦ) cos

√
λ− 8r cos(l

√
λ) sin

√
λ cos(lΦ) + 4r cos(2lΦ) sin

√
λ+ 4r sin

√
λ
)
.

If λ < 0, then
√
λ is purely complex, cos

√
λ ∈ R and sin

√
λ are purely complex. Then for λ > 0 the lines above

give real and imaginary part of u+ v, i.e.
<(u+ v) =

−4 sin(l
√
λ) sin(lΦ) cos

√
λ+ 8r cos(l

√
λ) sin

√
λ sin(lΦ)− 4r sin(2lΦ) sin

√
λ

=(u+ v) =

4 sin(l
√
λ) cos(lΦ) cos

√
λ− 8r cos(l

√
λ) sin

√
λ cos(lΦ) + 4r cos(2lΦ) sin

√
λ+ 4r sin

√
λ

and for λ < 0
<(u+ v) =

i
(

4 sin(l
√
λ) cos(lΦ) cos

√
λ− 8r cos(l

√
λ) sin

√
λ cos(lΦ) + 4r cos(2lΦ) sin

√
λ+ 4r sin

√
λ
)

=(u+ v) =
1

i

(
−4 sin(l

√
λ) sin(lΦ) cos

√
λ+ 8r cos(l

√
λ) sin

√
λ sin(lΦ)− 4r sin(2lΦ) sin

√
λ
)

In the same way we consider
u− v =

−4 sin(l
√
λ) cos(lΦ) sin

√
λ− 8r cos(l

√
λ) cos

√
λ cos(lΦ) + 4r cos(2lΦ) cos

√
λ+ 4r cos

√
λ+

i
(

4 sin(l
√
λ) sin(lΦ) sin

√
λ− 8r cos(l

√
λ) cos

√
λ sin(lΦ) + 4r sin(2lΦ) cos

√
λ
)
.

In this case for any λ ∈ R we have
<(u− v) =

−4 sin(l
√
λ) cos(lΦ) sin

√
λ− 8r cos(l

√
λ) cos

√
λ cos(lΦ) + 4r cos(2lΦ) cos

√
λ+ 4r cos

√
λ

=(u− v) =

4 sin(l
√
λ) sin(lΦ) sin

√
λ− 8r cos(l

√
λ) cos

√
λ sin(lΦ) + 4r sin(2lΦ) cos

√
λ.

Then

MA(λ) = −i
√
λ

(<(u− v) + i=(u− v)) (<(u+ v)− i=(u+ v))

<2(u+ v) + =2(u+ v)
.

If λ > 0, then

=MA(λ) = −
√
λ
<(u+ v)<(u− v) + =(u+ v)=(u− v)

<2(u+ v) + =2(u+ v)
,

and if λ < 0, then

=MA(λ) =
√
|λ|=(u− v)<(u+ v)−<(u− v)=(u+ v)

<2(u+ v) + =2(u+ v)
.


