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We describe and theoretically study a process of photon distribution statistics measurement for intra-cavity mode of EM field monitored by

indirect photo-detection scheme. In particular, we investigate photon number distribution and Mandel’s parameter (normalized dispersion) of

the mode using statistics of atomic state detector clicks. In our model, a two-level atom-pointer which passes through the cavity interacts with

the mode and environment, distorting the measured statistical properties of the mode. To account for this, phase distortion (decoherece) and

population relaxation are introduced in the model. In this paper, we use the super-operators approach to intra-cavity mode evolution conditioned

by atomic state detector clicks.
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1. Introduction

One of the main problems of quantum electromagnetic (EM) field photo-detection is measurement of field
states statistical properties using statistics of clicks obtained from detectors and their combinations [1,2]. Coherence
functions, Q- and P- distributions, phase detection are usually constructed form measured data of homodyne,
heterodyne and indirect measurements [3–5]. The most simple existed schemas suggest direct measurement of
photon counting rate [6] which allows one to estimate statistics for the photon number operator and reveal coherent
properties of the field quantum state such as bunching and anti-bunching.

The conditional photon distribution function for the field depends significantly upon organized the interaction
between the EM field and microscopic part of measurement apparatus. Furthermore, relaxation and decoherention
due to the existence of environmental modes that may change measurement statistics dramatically [7,8]. Therefore
thorough description of such realistic procedure in terms of detectors POVM’s is highly desirable [9].

One of the well known ways to control the interaction strength between the field and the photodetector is to
use an indirect measurement scheme [10] where a two-level atom-pointer passes through the cavity and interacts
with an excited single mode quantum EM field which state is monitored. After that, the state of the atom is
detected in the ionizing chamber and the required statistics of intra-cavity mode is restored from atomic state
detectors measured data [7, 11].

In this paper we use an indirect photodetection scheme to present the protocol for photon distribution statistics
measurement [12]. In particular, we suggest monitoring of photon number distribution function and Mandel’s
parameter from statistics of atomic state detector clicks. Additionally, in the protocol, we account for the non-ideal
measurement procedure resulting from the interaction between the atom-pointer and the external environmental
modes. The cavity quality factor should be quite high in order to eliminate relaxation processes due to the
interaction between intra-cavity and extra-cavity modes.

The work is organized as follows. In the second section we formulate the model of interaction between
intra-cavity mode and dumping atom-pointer and obtain a system of differential equations for the elements of
atom-field density matrix. After that, in section 3, we introduce a set of conditional evolution superoperators
(photodetectors POVM’s) and obtain a system of differential equations for them. Section 4 is devoted to solving of
this operator-valued system using perturbation theory and the assumption that spontaneous relaxation and excitation
rates are small compared to Rabi frequency. In section 5, we use the results of previous section to obtain analytical
expressions for mean photon number and Mandel’s parameter. Section 6 is for numerical modelling and discussion
of obtained results. Section 7 concludes the article.
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2. The model

We start with the master equation for the density operator ρAF (t) of common system of interacting intra-cavity
mode and dumped atom:

i
d

dt
ρAF (t) = [Hint, ρAF (t)] + iDAρAF (t), (1)

where Hint is Hamiltonian describing the interaction between atom and mode. In the interaction picture and under
the resonant approximation we can write:

Hint = Ωσ+a exp (i∆t) + Ω∗σ−a
† exp (−i∆t) . (2)

Here, Ω is the Rabi frequency, σ+ = |e〉 〈g| and σ− = |g〉 〈e| are atomic operators, a is an annihilation operator
of cavity mode, ∆ is frequency detuning. The dynamics of the dumping atom may be described in Born-Markov
approximation using atomic dissipative part DA in Lindblad form:

2DAρ = γge (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) + γeg (c.c.) , (3)

where γge, γeg are the coefficients of spontaneous decay and excitation rates respectively.
System (1) can be written in block-matrix form using the following decomposition for density operator ρAF (t):

ρAF (t) =
∑

µ,ν∈{g,e}

|µ〉 〈ν| ⊗ ρFµν(t), (4)

where ρFµν(t) are taken for matrix elements of the density operator ρ in atomic basis. Then, following [7], we
assume that the coherence relaxation time is much shorter than the typical evolution time of the system and set
Γ� Ω. From here, it is easy to show that the following approximation is applicable:

d

dt

(
ρFgee

i∆t
)
≈ d

dt

(
ρFege

−i∆t) ≈ 0. (5)

Under assumption (5), system (1) may be written as differential equations for blocks ρFµν , µ, ν ∈ {g, e} where
non-diagonal part ρeg and ρge is expressed through diagonal elements ρFgg and ρFee. In this way, we obtain closed
system of differential equations for diagonal elements (see also [7]):

ρ̇Fgg = κΓ
(
2a†ρFeea− ρFgga†a− a†aρFgg

)
− iκ∆

[
a†a, ρFgg

]
+ γegρ

F
ee − γgeρFgg,

ρ̇Fee = κΓ
(
2aρFeea

† − ρFggaa† − aa†ρFgg
)
− iκ∆

[
a†a, ρFee

]
+ γgeρ

F
gg − γegρFee,

(6)

where κ =
|Ω|2

Γ2 + ∆2
.

3. Super-operators of conditional evolution

Just before solving the system (6), we have to give an interpretations for the introduced block-elements ρFµν .
Actually, they correspond to reduced density matrix of the intra-cavity mode conditioned by result of atomic state
detection. Particularly, matrix ρFµν describes state evolution of the mode when atom prepared in state |ν〉 was
detected in state |µ〉.

Using such interpretation, it is convenient to introduce super-operators of conditional evolution and express
them through the set of basis elements of some beautiful algebra. In our case we can notice that maps:

2K0ρ
F = a†aρF + ρFaa†, NρF =

[
a†a, ρF

]
, (7)

K+ρ
F = a†ρFa, K−ρ

F = aρFa†, (8)

obey commutation relations on SU(1, 1) algebra with Casimir operator N :

[K−,K+] = 2K0, [K0,K+] = K+, [K0,K−] = −K−, (9)

[K0, N ] = [K+, N ] = [K−, N ] = 0. (10)

To rewrite system (6) using definitions (7) and (8), we use the following expansion for evolution super-operator
of total system:

ρAF (t) = U (t) ρAF (0) =
∑

µ,ν∈{g,e}

Mµ,ν (t)⊗ |µ〉〉 〈〈ν| ρAF (0), (11)

where we use notations |µ〉〉 〈〈µ| ρAF = |µ〉 〈ν| ρAF |ν〉 〈µ| and Mµν(t) is taken for super-operator of conditional
evolution (Kraus operator) of mode state corresponding to the case when atom prepared in state |µ〉 was detected
in state |ν〉.
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Substituting elements ρFgg and ρFee of matrix ρAF (t) in form (11) into (6) we obtain two independent systems
for maps Mgg(t), Meg(t) and Mge(t), Mee(t). The first one (which will be the subject of our interest) satisfies
the following system: 

d

dt
Mgg = − (αK0 + β + γge)Mgg + (αK+ + γeg)Meg,

d

dt
Meg = − (αK0 − β + γeg)Meg + (αK− + γge)Mgg.

(12)

Here, α = 2κΓ, β = −κ (i∆N + Γ).

4. Time evolution of maps Mgg(t) and Meg(t)

For simplification of the following discussion, we assume resonance condition ∆ = 0 for interaction between
atom and intra-cavity mode. These immediately give simplified expressions for parameters α and β:

α = −2β = 2
Ω2

Γ
≡ 2Ωε, (13)

where ε = Ω/Γ � 1. Also, we assume that spontaneous relaxation and excitation rates are small compared to
parameters α and β, which means that

γeg, γge � εΩ, (14)

and apply perturbation theory to solve system (12) up to the first order.
For the zero-order approximation, the solution was found in [5]. Using definitions:

Mg = Mgg exp [(αK0 + β + γge) t] , (15)

Me = Meg exp [(αK0 − β + γeg) t] , (16)

and setting γeg = γge = 0 system (12) was reduced to exactly solvable one:
d

dt
Mg = αK+Me,

d

dt
Me = αK−Mg,

(17)

with solution of the form:

Mg = coshα
√
K+K−t, (18)

Me = (K−K+)
−1
K−
√
K+K− sinhα

√
K+K−t. (19)

Using (15) and (16), one rewrite system (12) in the form:
d

dt
Mg = e(γge−γeg)t

(
αK+ + γege

−αt)Me,

d

dt
Me = e(γge−γeg)t

(
αK− + γgee

αt
)
Mg.

(20)

and solution of this system will be obtained using perturbation theory by parameters γeg/Ω and γge/Ω:Mg = M (0)
g +M (1)

g ,

Me = M (0)
e +M (1)

e ,
(21)

starting from (18), (19) and with initial conditions Mg(0) = E,
d

dt
Mg(0) = 0.

Using previous results for zero-order terms M (0)
g and M (0)

e we have:

d

dt
M (1)
g =[

γege
−αt +

(
αK+ + γege

−αt) (γge − γeg)t
]
M (0)
e +

[
αK+ + γege

−αt +
(
αK+ + γege

−αt) (γge − γeg)t
]
M (1)
e ,

d

dt
M (1)
e =[

γgee
αt −

(
αK− + γgee

αt
)

(γge − γeg)t
]
M (0)
g +

[
αK− + γgee

αt −
(
αK− + γgee

αt
)

(γge − γeg)t
]
M (1)
g .

(22)
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For very short time intervals t� τ = 1/Ω value (γge − γeg) t is negligibly small compared to γge and γeg , which
allows elimination of terms (γge − γeg) tM (1)

e,g , γge,eg (γge − γeg) tM (0)
e,g and replacement of terms γege

−αtM (1)
e,g

and γgee
αtM (1)

e,g by γegM
(1)
e,g and γgeM

(1)
e,g correspondingly. From this, we obtain:

d

dt
M (1)
g = γege

−αtM (0)
e + (αK+ + γeg)M

(1)
e ,

d

dt
M (0)
e = γgee

αtM (0)
g + (αK− + γge)M

(1)
g .

(23)

This inhomogeneous system may be reduced to a second-order linear differential equation for M (1)
g :

d2

dt2
M (1)
g − (αK+ + γeg) (αK− + γge)M

(1)
g =[
αγgeK+e

αt + αγegK−e
−αt + γegγge

]
M (0)
g − αγege−αtM (0)

e (24)

with initial conditions M (1)
g (0) = 0 and

dM
(1)
g

dt
(0) = 0.

Using the fact that t� τ , we can expand the solution of (24) by the power series of the form:

M (1)
g (t) = A0 +A1t+A2t

2 + . . . . (25)

From the initial conditions, it immediately follows that A0 = A1 = 0. To find A2, we compare coefficients of the
zero-order degree by t in the left and right sides of (24). From here, we obtain:

M (1)
g (t) =

1

2

[
αγegK− + αγgeK+ + γgeγeg

]
t2 + . . . . (26)

Finally, for the map Mgg(t), we obtain:

Mgg(t) = 1− (αK0 + β + γge) t+
1

2

[
α2K+K− + (αK0 + β)

2
+ αγegK− + αγgeK+ + γgeγeg

]
t2 + . . . .

(27)

5. Ground state counting rate

Formula (27) gives expression for conditional evolution of the intra-cavity field state for the case when atom-
pointer prepared in its ground state |g〉 after interaction with the mode was detected in the same state. To calculate
probability Pgg(t) = 〈Mgg(t)〉 of this event let us calculate corresponded quantities for operators K± and K0:

〈K−〉 = Tr (K−ρ) = Tr
(
aρa†

)
= Tr

(
a†aρ

)
=
〈
a†a
〉
,

〈K+〉 = Tr (K+ρ) = Tr
(
a†ρa

)
= Tr

(
aa†ρ

)
=
〈
aa†
〉

=
〈
a†a
〉

+ 1,

〈K0〉 = Tr (K0ρ) =
1

2
Tr
(
a†aρ+ aa†ρ

)
=
〈
a†a
〉

+
1

2
.

(28)

Then, for probability Pgg(t), we will have:

Pgg(t) = 〈Mgg(t)〉 = Tr(Mgg(t)ρ) =

1−
(
α
〈
a†a
〉

+ γge
)
t+

[
α2
〈(
a†a
)2〉

+
1

2

(
α (γge + γeg)

〈
a†a
〉

+ αγge + γgeγeg
)]
t2 + . . . , (29)

or in symmetrical form:

Pgg(t) = 1 −
(
α
〈
a†a
〉

+ γge
)
t +

[
α2
〈(
a†a
)2〉

+
α

2
γeg
〈
a†a
〉

+
α

2
γge
〈
aa†
〉

+
γgeγeg

2

]
t2 + . . . . (30)

From this expression, the mean value of photon number operator
〈
a†a
〉

and its square
〈(
a†a
)2〉

may be obtained

by differentiating probability function Pgg (t) over t for t = 0:〈
a†a
〉

= − 1

α

(
dPgg(0)

dt
+ γge

)
, (31)

〈(
a†a
)2〉

=
1

2α2

[
d2

dt2
Pgg(0) +

d

dt
Pgg(0) (γeg + γge) + γge (γge − α)

]
. (32)
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6. Numerical results and discussion

In this section, we compare obtained analytical results with numerical simulation of photo-detection procedure.
Fig. 1 contains this comparison for probability to detect atom in its ground state |g〉 for Fock state with n = 4
photons, Γ = 10 and γeg = γge = 0.5 in frequency units of Ω. Three cases are under consideration: numerical
simulation (blue solid line), zero-order (green doted line) and first-order (red dashed line) approximation of the
solution. All three lines are quite close nearby the origin and first order approximation shows familiar behaviour
with exact solution on considered time interval.

FIG. 1. Probability Pgg to detect atom in its ground state: numerical simulation (blue solid line),
zero-order (green dotted line) and first-order (red dashed line) approximation

FIG. 2. Relation between actual nact and detected ndet mean photon number as a function of
spontaneous decay and excitation rates

In Fig. 2, we show the relation between actual nact and detected ndet mean photon number as a function of
spontaneous decay and excitation rates for the case γeg = γge when other parameters are taken the same as in
previous figure. All values were calculated for probability function Pgg(t) obtained from exact solution. From
here, we can see that number of detected intra-cavity photons decrease with increasing spontaneous decay and
excitation rates.

Figure 3 shows the relation between actual nact and detected ndet mean photon number as a function of
interaction time between atom and mode prepared in Fock state with n = 4. Calculations are made for different
values of the coefficient of spontaneous excitation (γeg , first number in the legend) and decay (γge, second number
in the legend). We can see that curves are grouped in threes according to the same value of γge which determines
accuracy.
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FIG. 3. Relation between actual nact and detected ndet mean photon number as a function of
spontaneous decay and excitation rates

FIG. 4. Estimated value of Mandel’s parameter as a function of spontaneous decay and excitation rates

Finally, we investigate estimated value of Mandel’s parameter:

Q =

〈
n2
〉
− 〈n〉2

〈n〉
− 1, n = a†a, (33)

as a function of spontaneous decay and excitation rates for the case of initial Fock state with n = 4 and γeg = γge.
When losses are absent, we have typical value Q = −1 for the state with definite photon number. For non-zero
values of γeg and γge parameter Q increases reaching the value corresponding to thermal fields. This means that
thermal radiation originated from decaying process become predominant.

7. Conclusion

In present paper we suggest and analyze an indirect photo-detection protocol of intra-cavity mode statistical
properties which may be obtained from statistics of atomic state detector clicks. The obtained probability distribu-
tion for detecting atom in its ground state contains, in general, all degrees of photon number operator and allows
in principle to restore full statistics of the mode calculating all elements of power series for Pgg . However, this
process is bounded by the finite duration of interaction time between the atom and the mode because calculation
accuracy of time derivative is degrades with higher order derivatives.

The estimated number of experiments required for obtaining appropriate statistics for atomic detector clicks
at point t0 = 0.1 mcs is N = 100 (where Pgg(0.1) = 0.99 is theoretical estimation). We repeat this cycle of
measurements at each point for about 100-200 points and in that way, the overall number of measurement cycles
is on the order of 104.
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Indirect photo-detection with atom-pointer in use gives beautiful model of quantum measurement due to the
possibility of controlling interaction strength and inclusion relaxation process into the model. From this point of
view, formulation protocols analogous to well known homodyne and heterodyne detection in terms of indirect
model would be very interesting.
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