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We propose a model describing electronic transport through a boson cavity. We use the Jaynes–Cummings model dealing with a two-level

quantum dot coupled to a quantized electro-magnetic field and two semi-infinite wires. The mathematical background of our model is given

by the theory of self-adjoint extensions of symmetric operators. Using the boundary triplets approach, the gamma-field and the Weyl function

were calculated. In addition, we obtained the scattering matrix for the model system.
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1. Introduction

To study the steady state current flowing through a quantum device in the framework of Landauer–Büttiker
approach, it is necessary to consider a quantum system as an inner system (quantum dot) with left and right leads
attached to it, i.e. free-fermion reservoirs with two different electro-chemical potentials. The goal was to calculate
the steady electron current going from one lead through the dot the other one. This current is directly related
to the transmission coefficients of some natural scattering system related to this particle transport problem. This,
approach was justified a few years ago [1–3]. It, effectively, reduces the problem to investigation of a one-particle
Hamiltonian.

In the present paper we consider the Jaynes–Cummings model [4, 5]. The Jaynes–Cummings model serves to
determine how quantization of the radiation field affects the predictions for the evolution of the state of a two-level
system in comparison with semi-classical theory of light-atom interaction. It is often applied to description of the
interaction between an atom and a laser field [6]. We used a version suggested in [7,8]. More precisely, the authors
of [7,8] use the discrete Hamiltonian. In contrast, we use the continuous Hamiltonian. Namely, we have a two-level
quantum dot coupled, from one side, to the standard Jaynes–Cummings one-mode photon resonator, and from the
other side to two semi-infinite leads. To construct the model, we use the operator extensions theory approach (see,
e.g., [9–11] and references in [12]) in the framework of boundary triplet approach (see, e.g., [13–16]). Detailed
mathematical background of the model is developed in [17].

2. Preliminaries

2.1. Linear relations

A linear relation Θ in H is a closed linear subspace of H⊕H. The set of all linear relations in H is denoted
by C̃(H). We denote also by C(H) the set of all closed linear (not necessarily densely defined) operators in H.
Identifying each operator T ∈ C(H) with its graph gr (T ), we regard C(H) as a subset of C̃(H).

The role of the set C̃(H) in extension theory becomes clear from Proposition 2.3. However, it’s role in the
operator theory is substantially motivated by the following circumstances: in contrast to C(H), the set C̃(H) is
closed with respect to taking inverse and adjoint relations Θ−1 and Θ∗. The latter is given by: Θ−1 = {{g, f} :
{f, g} ∈ Θ} and:

Θ∗ =

{(
k

k′

)
: (h′, k) = (h, k′) for all

(
h

h′

)
∈ Θ

}
.

A linear relation Θ is called symmetric if Θ ⊂ Θ∗ and self-adjoint if Θ = Θ∗.
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2.2. Boundary triplets and proper extensions

Let us briefly recall some basic facts on boundary triplets. Let S be a densely defined closed symmetric
operator with equal deficiency indices n±(S) := dim(N±i), Nz := ker (S∗ − z), z ∈ C±, acting on some
separable Hilbert space H.

Definition 2.1.
(i) A closed extension S̃ of S is called proper if dom (S) ⊂ dom (S̃) ⊂ dom (S∗).
(ii) Two proper extensions S̃′, S̃ are called disjoint if dom (S̃′) ∩ dom (S̃) = dom (S) and transversal if in
addition dom (S̃′) + dom (S̃) = dom (S∗).

we denote by ExtS the set of all proper extensions of S completed by the non-proper extensions S and S∗ is
denoted. For instance, any self-adjoint or maximal dissipative (accumulative) extension is proper.

Definition 2.2 ( [18]). A triplet Π = {H,Γ0,Γ1}, where H is an auxiliary Hilbert space and Γ0,Γ1 : dom (S∗)→
H are linear mappings, is called a boundary triplet for S∗ if the ”abstract Green’s identity”:

(S∗f, g)− (f, S∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ dom (S∗). (1)

is satisfied and the mapping Γ := (Γ0,Γ1)> : dom (S∗)→ H⊕H is surjective, i.e. ran (Γ) = H⊕H.

A boundary triplet Π = {H,Γ0,Γ1} for S∗ always exists whenever n+(S) = n−(S). Note also that
n±(S) = dim(H) and ker (Γ0) ∩ ker (Γ1) = dom (S).

With any boundary triplet Π one associates two canonical self-adjoint extensions Sj := S∗ � ker (Γj), j ∈
{0, 1}. Conversely, for any extension S0 = S∗0 ∈ ExtS, there exists a (non-unique) boundary triplet Π =
{H,Γ0,Γ1} for S∗ such that S0 := S∗ � ker (Γ0).

Using the concept of boundary triplets one can parametrize all proper extensions of A in the following way.

Proposition 2.3 ( [19]). Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗. Then the mapping

ExtS 3 S̃→ Γdom (S̃) = {(Γ0f,Γ1f)> : f ∈ dom (S̃)} =: Θ ∈ C̃(H) (2)

establishes a bijective correspondence between the sets ExtS and C̃(H). We write S̃ = SΘ if S̃ corresponds to Θ
by (2). Moreover, the following holds:
(i) S∗Θ = SΘ∗ , in particular, S∗Θ = SΘ if and only if Θ∗ = Θ.
(ii) SΘ is symmetric (self-adjoint) if and only if Θ is symmetric (self-adjoint).
(iii) The extensions SΘ and S0 are disjoint (transversal) if and only if there is a closed (bounded) operator B
such that Θ = gr (B). In this case (2) takes the form

SΘ := Sgr (B) = S∗ � ker (Γ1 −BΓ0). (3)

In particular, Sj := S∗ � ker (Γj) = SΘj , j ∈ {0, 1}, where Θ0 :=

(
{0}
H

)
and Θ1 :=

(
H
{0}

)
= gr (O) where

O denotes the zero operator in H. Note also that C̃(H) contains the trivial linear relations {0} × {0} and H×H
parameterizing the extensions S and S∗, respectively, for any boundary triplet Π.

2.3. Gamma field and Weyl function

It is well known that Weyl function is an important tool in the direct and inverse spectral theory of Sturm–
Liouville operators. In [19], the concept of Weyl function was generalized to the case of an arbitrary symmetric
operator S with n+(S) = n−(S) ≤ ∞. Following [19], we briefly recall basic facts on Weyl functions and γ-fields
associated with a boundary triplet Π.

Definition 2.4 ( [19]). Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗ and S0 = S∗ � ker (Γ0). The operator
valued functions γ(·) : ρ(S0)→ [H,H] and M(·) : ρ(S0)→ [H] defined by:

γ(z) :=
(
Γ0 � Nz

)−1
M(z) := Γ1γ(z), z ∈ ρ(S0), (4)

are called the γ-field and the Weyl function, respectively, corresponding to the boundary triplet Π.

Clearly, the Weyl function can equivalently be defined by:

M(z)Γ0fz = Γ1fz, fz ∈ Nz, z ∈ ρ(S0).
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The γ-field γ(·) and the Weyl function M(·) in (4) are well defined. Moreover, both γ(·) and M(·) are holomorphic
on ρ(S0) and the following relations:

γ(z) =
(
I + (z − ζ)(S0 − z)−1

)
γ(ζ), z, ζ ∈ ρ(S0), (5)

and
M(z)−M(ζ)∗ = (z − ζ)γ(ζ)∗γ(z), z, ζ ∈ ρ(S0), (6)

hold. Identity (6) yields that M(·) is [H]-valued Nevanlinna function (M(·) ∈ R[H]), i.e. M(·) is [H]-valued
holomorphic function on C± satisfying:

M(z) = M(z)∗ and
Im(M(z))

Im(z)
≥ 0, z ∈ C+ ∪ C−.

It follows also from (6) that 0 ∈ ρ(Im(M(z))) for all z ∈ C±.

2.4. Krein-type formula for resolvents

Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗, M(·) and γ(·) the corresponding Weyl function and γ-field,
respectively. For any proper (not necessarily self-adjoint) extension S̃Θ ∈ ExtS with non-empty resolvent set
ρ(S̃Θ) the following Krein-type formula holds (cf. [19]):

(SΘ − z)−1 − (S0 − z)−1 = γ(z)(Θ−M(z))−1γ∗(z), z ∈ ρ(S0) ∩ ρ(SΘ). (7)

Formula (7) extends the known Krein formula for canonical resolvents to the case of any SΘ ∈ ExtS with
ρ(SΘ) 6= ∅. Moreover, due to relations (2), (3) and (4) formula (7) is related to the boundary triplet Π. We
emphasize, that this relation makes it possible to apply the Krein-type formula (7) to boundary value problems
(see, e.g., [14] and references in [12]).

2.5. Scattering and Weyl function

Let S be a densely defined closed symmetric operator with finite equal deficiency indices n±(S) and Π =
{H,Γ0,Γ1} is a boundary triplet for S∗, Let S0 = S∗ � ker Γ0 and SΘ is a self-adjoint extension corresponding to
Θ ∈ C̃(H). As dimH is finite, by (7) (SΘ − z)−1 − (S0 − z)−1 is a finite rank operator and the system {SΘ, S0}
is a so-called complete scattering system, i.e. the wave operators:

W±(SΘ, S0) = s− lim
t→±∞

eitSΘe−itS0P ac(S0),

exists and they are complete, i.e. their ranges coincide with the absolutely continuous subspace Hac(SΘ) of SΘ

(see, e.g. [20], [21], [22]). By P ac(S0) we denote the orthogonal projection on absolutely continuous subspace
Hac(S0) of S0. The scattering operator S(SΘ, S0) of a scattering system {SΘ, S0} is defined as:

S(SΘ, S0) = W+(SΘ, S0)∗W−(SΘ, S0).

If we regard the scattering operator as an operator in Hac(S0) then it becomes unitary and commutes with absolutely
continuous part Sac0 = S0 � Hac(S0)∩dom (S0). of S0 and thus it is unitarily equivalent to a multiplication operator
induced by a family {SΘ(z)} of unitary operators in a spectral representation of Sac0 ( [20], Proposition 9.57). This
family is called a scattering matrix of a scattering system S(SΘ, S0).

Since the dimension dimH is finite, then the Weyl function M(·) corresponding to boundary triplet Π =
{H,Γ0,Γ1} is a matrix-valued Nevanlinna function. By Fatous theorem ( [23]), the limit M(λ+i0) = lim

ε→0+0
M(λ+

iε) exists for almost all λ ∈ R. We denote the set of real point where the limit exists by ΣM . We will use the
notation HM(λ) = ran (M(λ)), λ ∈ ΣM . By PM(λ) we will denote the orthogonal projection on HM(λ). We
will also use the notation NΘ(z) = (Θ −M(z))−1, z ∈ C \ R, where Θ ∈ C̃(H) is a self-adjoint relation
corresponding to SΘ. This function is well defined and the limit NΘ(λ+ i0) = (Θ−M(λ+ i0))−1 exists almost
for every λ ∈ R. This set we will denote as ΣN .

Theorem 2.5. ( [13]) Let S be a densely defined symmetric operator with finite deficiency indices in separable
Hilbert space H, let Π be a boundary triplet corresponding to S∗ with corresponding Weyl function M(·), SΘ is
a self-adjoint extension of S, S0 = S∗ � ker Γ0, Θ ∈ C̃(H), then in L2(R, dλ,HM(λ)) the scattering matrix of
the complete scattering system {SΘ, S0} is given by:

SΘ(λ) = IHM(λ)
+ 2i

√
=(M(λ+ i0))Nθ(λ+ i0)

√
=(M(λ+ i0))

for λ ∈ ΣM ∩ ΣN .
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3. Scattering

3.1. Model description

A rigorous construction of a proposed model can be found in [17]. We will show here only the main
results. We consider the Hilbert space H = L2(R−) ⊕ L2(R+) where R− = (−∞, 0) and R+ = (0,∞). On the

subspaces Hl := L2(R−) and Hr := L2(R+) we consider the closed symmetric operators Hl = − d2

dx2
+ vl and

Hr = − d2

dx2
+ vr. We set H := Hl ⊕ Hr = L2(R) and H := Hl ⊕ Hr. Operator H can be regarded as the

symmetric operator:

A = − d2

dx2
+ v(x), v(x) :=

{
vl x ∈ R−
vr x ∈ R+

with domain dom (A) = W 2,2
0 (R) := {f ∈ W 2,2(R) : f(0) = f ′(0) = 0}. The operator A is symmetric and has

deficiency indices n±(A) = 2. For simplicity we assume that 0 ≤ vr ≤ vl. It can be checked (see [17]) that the
triplet ΠA = {HA,ΓA0 ,ΓA1 } with:

HA :=

HHl
⊕
HHr

=

C
⊕
C ,

ΓA0 f :=

(
f(−0)

f(+0)

)
, ΓA1 :=

(
−f ′(−0)

f ′(+0)

)
,

defines a boundary triplet for A∗. The Weyl function MA(z) of the boundary triplet ΠA is given by:

MA(z) =

(
mHl(z) 0

0 mHr (z)

)
=

(
i
√
z − vl 0

0 i
√
z − vr

)
, z ∈ ρ(A0),

where A0 := A∗ � ker (ΓA0 ). Notice that A0 has Dirichlet boundary conditions.
We will view the point zero as a quantum dot or quantum cavity. In particular, the Hilbert space HA = C2 is

considered to be the state space of the quantum dot and the self-adjoint operator B as the Hamiltonian of the dot,
where AB := A∗ � ker (ΓA1 − BΓA0 ) is a self-adjoint extension of A. The Hamiltonian B describes a two level
system to which we are going to couple bosons. The state space of the bosons is the Hilbert space T = l2(N0),
N0 := N ∪ {0}. The boson operator T is given by:

T ~ξ = T{ξk}k∈N0
= {kξk}k∈N0

,

~ξ = {ξk}k∈N0 ∈ dom (T ) := {{ξk}k∈N0 ∈ l2(N0) : {kξk}k∈N0 ∈ l2(N0)}.
The Hamiltonian T describes a system of bosons which do not interact mutually. The number of bosons is not
fixed and varies from zero to infinity. The Hilbert space T has a natural basis given by ek = {δkj}j∈N0

. Let us
introduce the creation and annihilation operator b∗ and b, respectively, defined by:

b∗ek =
√
k + 1ek+1, k ∈ N0, and bek =

√
kek−1, k ∈ N0,

where e−1 = 0. One easily checks that T = b∗b.
In order to couple these two systems let us consider the closed symmetric operator:

S := A⊗ IT + IH ⊗ T (8)

in the Hilbert space K := H⊗ T. Setting the following:

Kl := Hl ⊗ T, Sl := Hl ⊗ IT + IHl ⊗ T,
Kr := Hr ⊗ T, Sr := Hr ⊗ IT + IHr ⊗ T,

we obtain:
K = Kl ⊕ Kr and S = Sl ⊕ Sr.

The corresponding Weyl function MS(·) is given by:

MS(z) =

(
MSl(z) 0

0 MSr (z)

)
, z ∈ ρ(S0), S0 = SDl ⊕ SDr ,

where SDl = HD
l ⊗ IT + IHl ⊗ T and SDr = HD

r ⊗ IT + IHl ⊗ T – the extensions with the Dirichlet boundary
conditions and:

MSl(z) =
mHl(z − T )− Re(mHl(i− T ))

Im(mHl(i− T ))
, z ∈ C±,



A model of electron transport through a boson cavity 175

MSr (z) =
mHr (z − T )− Re(mHr (i− T ))

Im(mHr (i− T ))
, z ∈ C±.

Moreover, we have: √Im(mHl(i− T )) 0

0
√

Im(mHr (i− T ))

 =
1
4
√

2

(
Z
−1/2
l 0

0 Z−1/2
r

)

and: (
Re(mHl(i− T )) 0

0 Re(mHr (i− T ))

)
=

(
Zl 0

0 Zr

)
where:

Zl :=

√√
IT + (T + vl)2 + T + vl,

Zr :=

√√
IT + (T + vr)2 + T + vr.

3.2. Scattering matrix

We want to show that the limit lim
ε→0

MS(λ + iε) exists. The candidate for this limit is the function MS(λ),

λ ∈ R.

Lemma 3.1. The operator-function MS(λ), λ ∈ R is a bounded operator.

Consider:

MSl(λ) =
mHl(λ− T )− Re(mHl(i− T ))

Im(mHl(i− T ))
=

∞⊕
n=0

mHl(λ− n)− Re(mHl(i− n))

Im(mHl(i− n))
.

We then rewrite as follows:

mHl(λ− n)− Re(mHl(i− n))

Im(mHl(i− n))
=
i
√
λ− n− vl + 1√

2

√√
1 + (n+ vl)2 + n+ vl

1√
2

(√√
1 + (n+ vl)2 + n+ vl

)−1

and consider this sequence when n > λ− vl, then the numerator can be rewritten as:

1√
2

√√
1 + (n+ vl)2 + n+ vl −

√
n− λ+ vl =

1

2

√
1 + (n+ vl)2 − (n+ vl − 2λ)

1√
2

√√
1 + (n+ vl)2 + n+ vl +

√
n− λ+ vl

Notice that:
√

2
√√

1 + (n+ vl)2 + n+ vl

2√
2

√√
1 + (n+ vl)2 + n+ vl +

√
n− λ+ vl

has the finite limit, so it is bounded and we have to examine:√
1 + (n+ vl)2 − (n+ vl − 2λ) =

1 + 4nλ− 4λ2 + 4vlλ√
1 + (n+ vl)2 + (n+ vl − 2λ)

which also has the finite limit and so bounded. Thus, the sequence is bounded for n > λ− vl, so it is bounded for
n ∈ N0. Analogously, we deal with MSr .

Lemma 3.2. lim
ε→0

MS(λ+ iε) = MS(λ), λ ∈ R.

Consider: ∣∣∣∣MSl(λ)−MSl(λ+ iε)
∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∞⊕
n=0

mHl(λ− n)− (mHl(λ+ iε− n))

Im(mHl(i− n))

∣∣∣∣∣
∣∣∣∣∣ .
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We obtain:

∣∣∣∣∣∣∣∣mHl(λ− n)− (mHl(λ+ iε− n))

Im(mHl(i− n))

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
i
√
λ− n− vl − i

√
λ+ iε− n− vl

1√
2

(√√
1 + (n+ vl)2 + n+ vl

)−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
√

2
√√

1 + (n+ vl)2 + n+ vl
√
λ− n− vl +

√
λ+ iε− n− vl

∣∣∣∣∣∣
∣∣∣∣∣∣ ε ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
√

2
√√

1 + (n+ vl)2 + n+ vl

2
√
λ− n− vl

∣∣∣∣∣∣
∣∣∣∣∣∣ ε.

The norm in the right hand side is bounded for integer n, so:

mHl(λ− n)− (mHl(λ+ iε− n))

Im(mHl(i− n))
→ 0, ε→ +0,

uniformly with respect to n. Analogously we deal with MSr .
Let us show that the operator:

(Θ−MS(λ+ iε))−1

exists. It is sufficient to show that (Im(MS(λ)))−1 exists.

Lemma 3.3. (Im(MS(λ)))−1 exists for λ 6= n+ vl and λ 6= n+ vr.

Consider:

Im(MSl(λ)) =
Im(mHl(λ− T ))

Im(mHl(i− T ))
=

∞⊕
n=0

Im(i
√
λ− n− vl)

Im(mHl(i− n))
=

∞⊕
n=0

Re(
√
λ− n− vl)

Im(mHl(i− n))

and Re(
√
λ− n− vl) = 0 when n ≥ λ−vl and Re(

√
λ− n− vl) =

√
λ− n− vl when n < λ−vl. If λ 6= n+vl

then:

Im(MSl(λ))−1 =

n<λ−vl⊕
0

Im(mHl(i− n))√
λ− n− vl

.

Analogously, we deal with MSr .
For scattering matrix description, we need to calculate

√
Im(M(λ+ 0i)) =

√
Im(M(λ)).

Lemma 3.4. Operator
√

Im(M(λ)) has the following form:

√
Im(M(λ)) =



√√√√n<λ−vl⊕
n=0

√
λ− n− vl

Im(mHl(i− n))
⊕

⊕
n≥λ−vl

0 0

0

√√√√n<λ−vr⊕
n=0

√
λ− n− vr

Im(mHr (i− n))
⊕

⊕
n≥λ−vr

0

 ,

Im(MSl(λ)) = Im

(
mHl(λ− T )− Re(mHl(i− T ))

Im(mHl(i− T ))

)
=

Im(mHl(λ− T ))

Im(mHl(i− T ))
.

Now, as far as mHl = i
√
z − vl, we obtain:

Im(mHl(λ− T ))

Im(mHl(i− T ))
=

∞⊕
n=0

Im(mHl(λ− n))

Im(mHl(i− n))
=

∞⊕
n=0

Im(i
√
λ− n− vl)

Im(mHl(i− n))
.

As far as when n < λ − vl we have Im(i
√
λ− n− vl) =

√
λ− n− vl) and when n ≥ λ − vl we have

Im(i
√
λ− n− vl) = 0, we obtain that:

Im(mHl(λ− T ))

Im(mHl(i− T ))
=

n<λ−vl⊕
n=0

√
λ− n− vl

Im(mHl(i− n))
.
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Then,

Im(MS(λ)) =


n<λ−vl⊕
n=0

√
λ− n− vl

Im(mHl(i− n))
⊕

⊕
n≥λ−vl

0 0

0

n<λ−vr⊕
n=0

√
λ− n− vr

Im(mHr (i− n))
⊕

⊕
n≥λ−vr

0


and

√
Im(MS(λ)) =



√√√√n<λ−vl⊕
n=0

√
λ− n− vl

Im(mHl(i− n))
⊕

⊕
n≥λ−vl

0 0

0

√√√√n<λ−vr⊕
n=0

√
λ− n− vr

Im(mHr (i− n))
⊕

⊕
n≥λ−vr

0

 .

Let Θ be a matrix of the form:

Θ =


∞⊕
n=0

(
αn γn
γn βn

)
0

0

∞⊕
n=0

(
κn ηn
ηn ωn

)
 .

Then Θ−M(λ) is a block-diagonal matrix with the first block of the form

∞⊕
n=0

αn −
i
√
λ− 2n− vl − Re(mHl(i− 2n))

Im(mHl(i− 2n))
γn

γn βn −
i
√
λ− 2n− 1− vl − Re(mHl(i− 2n− 1))

Im(mHl(i− 2n− 1))


and the second block of the form:

∞⊕
n=0

κn −
i
√
λ− 2n− vl − Re(mHr (i− 2n))

Im(mHr (i− 2n))
ηn

ηn ωn −
i
√
λ− 2n− 1− vl − Re(mHr (i− 2n− 1))

Im(mHr (i− 2n− 1))

 .

Let:

∆1(n) =

(
αn −

i
√
λ− 2n− vl − Re(mHl(i− 2n))

Im(mHl(i− 2n))

)
×(

βn −
i
√
λ− 2n− 1− vl − Re(mHl(i− 2n− 1))

Im(mHl(i− 2n− 1))

)
− γnγn

and:

∆2(n) =

(
κn −

i
√
λ− 2n− vl − Re(mHr (i− 2n))

Im(mHr (i− 2n))

)
×(

ωn −
i
√
λ− 2n− 1− vl − Re(mHr (i− 2n− 1))

Im(mHr (i− 2n− 1))

)
− ηnηn.

Theorem 3.5. The operator (Θ −MS(λ + iε))−1 exists. It has the block structure with the first block of the
form:

∞⊕
n=0

1

∆1(n)

βn −
i
√
λ− 2n− 1− vl − Re(mHl(i− 2n− 1))

Im(mHl(i− 2n− 1))
−γn

−γn αn −
i
√
λ− 2n− vl − Re(mHl(i− 2n))

Im(mHl(i− 2n))


and the second block of the form:

∞⊕
n=0

1

∆2(n)

ωn −
i
√
λ− 2n− 1− vl − Re(mHr (i− 2n− 1))

Im(mHr (i− 2n− 1))
−ηn

−ηn κn −
i
√
λ− 2n− vl − Re(mHr (i− 2n))

Im(mHr (i− 2n))

 .



178 A. A. Boitsev, J. Brasche, H. Neidhardt, I. Y. Popov

The expression for the scattering matrix is given in Theorem 2.5.

4. Conclusion

An extended Jaynes–Cummings model using the ideas of [8] is constructed. It is based on the theory of
self-adjoint extensions of symmetric operators. The theory gives one a rigorous mathematical methodology for
introducing coupling between bosons (photons), two-level quantum dot (quantum resonator) and two semi-infinite
wires. Boundary triplets, gamma-field and Krein Q-functions are found. We obtain the Weyl function. This allows
us to determine the scattering matrix. Mathematical details of the model are thoroughly investigated in [17].
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