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Calculations of the onset temperature for tunneling in multispin systems
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Transitions between magnetic states of a system coupled to a heat bath can occur by exceeding the energy barrier, but as temperature is lowered

quantum mechanical tunneling through the barrier becomes the dominant transition mechanism. A method is presented for estimating the onset

temperature for tunneling in a system with an arbitrary number of spins using the second derivatives of the energy with respect to the orientation

of the magnetic vectors at the first order saddle point on the energy surface characterizing the over-the-barrier mechanism. An application to

a monomer and a dimer of molecular magnets containing a Mn4 group is presented and the result found to be in excellent agreement with

reported experimental measurements.
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1. Introduction

An assessment of the stability of magnetic states is an important problem in the theory of magnetism [1, 2].
Magnetic nanosystems are candidates for spintronics and high density storage devices where a critical issue is the
lifetime of prepared magnetic states. A given magnetic state of a nanosystem coupled to a heat bath can have a
finite lifetime because of thermally activated transitions involving leaps over an energy barrier separating it from
other magnetic states of the system. But, at low enough temperature, quantum mechanical tunneling through the
barrier will become the dominant transition mechanism. It is important to have a tool to estimate the temperature at
which the tunneling mechanism becomes predominant, thereby reducing the lifetime from what would be expected
based on the over-the-barrier mechanism.

Quantum tunneling in spin systems has been the topic of many theoretical [3] and experimental studies [4–7]
over the past few decades. At high enough temperature, quantum effects are not significant and transitions are due
to thermal activation described by the Arrhenius law. However, in the limit of zero temperature, only tunneling
out of the lowest energy level of the initial state can occur. In an intermediate temperature range, tunneling
can be thermally assisted, i.e. occurring from thermally activated levels of the initial state. The crossover from
over-the-barrier to quantum tunneling can, in such cases, be relatively smooth. The shape of the energy surface
affects how sharp this crossover is [8].

Several theoretical studies of the crossover in simple spin models containing one [9–12] or two [13] spins have
been carried out using the effective potential method [14]. The effective potential method uses an exact mapping
of a spin system onto a particle system with an effective potential and mass that can be coordinate dependent.
However, this method is not general and can only be applied to simple model systems. High-order anisotropy
terms, such as (Ŝ2

+ + Ŝ2
−) and (Ŝ4

+ + Ŝ4
−), have not been incorporated in the mapping approach [15], but can

significantly affect the tunneling rate [5, 16]. So far, systems with high-order anisotropy have only been studied
numerically by direct diagonalization of the Hamiltonian [17, 18].

Here, a method for calculating the onset temperature of thermally assisted tunneling in a multispin system is
presented and applied to two systems: a monomer and a dimer of molecular magnets containing Mn4 groups. The
method involves an analysis of the shape of the energy surface in the vicinity of the first order saddle point on
the energy surface representing the transition state of the over-the-barrier mechanism. The present article extends
a previous report on systems consisting of a single magnetic vector (a single spin, or multiple spins within the
macro-spin approximation) [19]. With the present formulation, the onset temperature for tunneling in systems
consisting of an arbitrary number of spins can be estimated.
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The article is organized as follows: In the next section, the methodology for estimating the lifetime of a
magnetic state due to over-the-barrier transitions is briefly reviewed. Then, the expression for the onset temperature
for quantum mechanical tunneling is derived in section 3. Applications are presented in section 4, first to a monomer
and then to a dimer of molecular magnets. The article concludes with a summary in section 5.

2. Over-the-barrier transitions

A system of N spins is described by the orientation of each of the spins, ω = {θ1, φ1, θ2, . . . φN , }, where θ
and φ are spherical polar coordinates. The energy as a function of these variables, U(ω), represents an energy
surface and the magnetic states of the system correspond to local minima on this surface. The mechanism of a
transition from one state to another involving a jump over an energy barrier is characterized by a minimum energy
path (MEP) connecting the corresponding minima. At every point on an MEP, the gradient of the energy point is
along the path. The MEP is a transition path with maximal statistical weight, assuming a Boltzmann distribution
is established and maintained in the initial state. The MEP can be found using the geodesic nudged elastic band
method where the path is discretized by generating a set of replicas of the system and an optimization algorithm is
used to bring the replicas from some initial location to an MEP [20].

The point of highest energy along the MEP, ω†, represents a first order saddle point on the energy surface,
a point where the Hessian has one and only one negative eigenvalue. Within harmonic transition state theory
(HTST), the transition state is taken to be a hyperplane going through the saddle point with normal pointing along
the direction of the unstable mode (the eigenvector corresponding to the negative eigenvalue of the Hessian) [21,22].
An estimate of the activation energy for the transition is then obtained as ∆E = U(ω†)−U(ωm), where U(ω†) is
the energy at the first order saddle point and U(ωm) is the energy of the initial state minimum.

The rate of thermally activated transitions involving jumps over the energy barrier can be estimated using
HTST for magnetic systems [21]

ΓHTST = ν0e
−∆E/kBT , (1)

where ν0 is a pre-exponential factor that depends on the Hessian evaluated at the saddle point and at the minimum
of the energy surface. Calculations of transition rates in magnetic systems using this approach have been carried
out in studies of, for example, remagnetization in small islands adsorbed on a solid surface [23], analysis of
temperature dependence of hysteresis loops [24], annihilation of magnetic skyrmions [25, 26] and interaction of a
magnetic tip with a solid surface [27].

Quantum mechanical effects can influence the transition rate even at temperature above the onset temperature
for tunneling. This occurs because of the zero point energy (ZPE) which can raise the energy of the initial state
and the transition state to a different extent. Within the harmonic approximation, the correction is obtained by
adding the ZPE for each vibrational (magnon) mode to the initial state energy and the saddle point energy. As
there is one fewer vibrational mode at the transition state than at the initial state, this effect tends to reduce the
energy barrier and lower the activation energy for the transition, analogous to the so-called kinetic isotope effect
in atomic rearrangements (chemical reactions and atom diffusion). The ZPE corrected activation energy is

∆EZPEC =

(
U(ω†) +

1

2

N−1∑
i=1

ν†,i

)
−

(
U(ωm) +

1

2

N∑
i=1

νm,i

)
, (2)

where ν†,i and νm,i are the vibrational frequencies [28, 29] calculated at the saddle point and at the minimum,
respectively. As can be seen from the molecular magnet example below, the ZPE correction can significantly
change the acitvation energy and thereby the slope in the Arrhenius graf.

3. Onset temperature for tunneling

Tunneling through an energy barrier can take place because of quantum mechanical delocalization which
enables the system to avoid the top of the energy barrier. In a thermalized system, the effect of delocalization can
be described in a convenient way using statistical Feynman Path Integrals. The instanton technique can be used to
identify when quantum delocalization becomes large enough to make tunneling the dominant transition mechanism.
In instanton theory the transition rate is written in terms of the imaginary-time (τ = it) action, S, and a stationary
phase approximation [30–32]. The transition rate constant can be expressed as

Γ = D exp (−S[ω(τ)]inst/h̄) , (3)

where ω(τ) is a path corresponding to a periodic trajectory with period τ = βh̄ satisfying ω(0) = ω(βh̄), and the
pre-factor D takes into account the probability of paths deviating from ω(τ). This special path, often referred to
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as the instanton, corresponds to a stationary point of the action, a saddle point on the action surface where the path
is extended, corresponding to quantum delocalization [32–34].

In our previous work [19], we considered systems with a single spin. Here, a generalization to many-spin
systems is described. The Hilbert space of a many-spin system is a tensor product of the Hilbert space of the
individual spins. The Euclidean (imaginary-time) action for a system with N spins of length s is defined by [35–37]

S(Ω) = −is
β/2∫
−β/2

N∑
j=1

(1− cos θj)φ̇jdτ +

β/2∫
−β/2

U(ω(τ))dτ, (4)

where the first term is the sum of the Berry phase of the individual spins and Ω = ω(τ) represents a closed
trajectory with period β.

From here on we use atomic units with h̄ = 1, µB = 1/2 and the mass and charge of an electron have unit
value, e = 1 and me = 1. A scaled gyromagnetic ratio is defined as g̃ = g/2.

In order to find the onset temperature for tunneling, Tc, the action is expanded to second order in the vicinity
of the first order saddle point on the energy surface, Ω = ω† + εδΩ,

S(Ω) = βU(ω†) + δS +
1

2
δ2S, (5)

δ2S = −2is

β/2∫
−β/2

N∑
j=1

(
δθjδφ̇j sin θj

)
dτ +

β/2∫
−β/2

δΩ H δΩT dτ, (6)

where H is the Hessian matrix of the energy surface U(ω) at the saddle point ω†. As ε → 0, δ2S becomes a
quadratic form of the Hessian, H, which has one and only one real negative eigenvalue.

The task is to find the temperature at which Ω becomes an instanton, i.e. a saddle point at the action surface
with quantum delocalization. At that point, a zero mode appears corresponding to displacement along the path and
thus constant S. This signals the transition from thermally activated jumps to quantum tunneling [32, 33].

Since the instanton is a closed path, δθk and δφk can be expanded in a Fourier series and δ2S in eqn. (6)
rewritten as

1

2
δ2S(θ†, φ†) = β

∞∑
n=0

(
N∑
k=0

[
2πs sin θ†k

β
n(φknθ

k∗

n − φk
∗

n θ
k
n)

]
+

∑
j,k

[
aθknθ

j∗

n + b
(
φknθ

j∗

n + φk
∗

n θ
j
n

)
+ cφknφ

j∗

n

])
. (7)

The matrix representing the quadratic form of the action is infinite and has a block diagonal form

G =



γ0

γ1

. . .

γn
. . .


, (8)

where

γn = H+



0 · · · 0 −kn1 · · · 0

0
. . . 0 0

. . . 0

0 · · · 0 0 · · · −knN
kn1 · · · 0 0 · · · 0

0
. . . 0 0

. . . 0

0 · · · knN 0 · · · 0


, (9)

where knj = 2πnTs sin θ†j .
An expression for the onset temperature for tunneling can be obtained by analyzing the determinant of G:

det(G) =

∞∏
n=0

det(γn). (10)
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Consider first γ0 which is the Hessian of the energy surface at the first order saddle point. There, γ0 contains one
negative eigenvalue so det(γ0) < 0. However, the other blocks, γn (for n > 0), depend on temperature and at
T � Tc are positive definite

det(γn) ∼ (2πsn)2N
N∏
j=1

sin2 θ†j > 0, (11)

and det(G) < 0. As the temperature is lowered to Tc, a zero of G appears signaling a stationary point involving
quantum delocalization. This must arise from γ1 since the temperature in each γn is scaled by n and blocks with
n > 1 thus have zeros at even lower temperature. The onset temperature for tunneling is, therefore, found by
solving

det(γ1(Tc)) = 0. (12)

This can be easily done numerically for multi-spin systems. All that is required for the calculation are the second
derivatives of the energy at the first order saddle point corresponding to the over-the-barrier mechanism.

For a single-spin system, an analytical expression for the onset temperature can be obtained

Tc =

√
b2 − ac

2πskB sin θ†
, (13)

where

a ≡ ∂2U(θ†, φ†)

∂θ2

∣∣∣∣
θ†, φ†

, c ≡ ∂2U(θ†, φ†)

∂φ2

∣∣∣∣
θ†, φ†

, b ≡ ∂2U(θ†, φ†)

∂θ∂φ

∣∣∣∣
θ†, φ†

. (14)

The pair of eigenvalues of the γ1 block are

λ =
a+ c

2
±
√

(a− c)2 + 4b2 − 4k2

2
. (15)

In addition to the crossover temperature, we can define the temperature T0 at which the two eigenvalues
become complex conjugates

T0 =

√
(a− c)2 + 4b2

4πskB sin θ†
. (16)

At this temperature, both eigenvalues are equal to (a + c)/2 and could be negative. At higher temperature, the
eigenvalues are complex. In the temperature range between Tc and T0 the two eigenvalues are real, either both are
positive or both are negative.

4. Applications. Molecular magnets

Previously, we have presented calculations and compared with experimental results for the single molecular
magnet containing a Mn4 group [19]. We briefly review those calculations here before discussing the dimer. The
molecular magnet has a total spin of s = 9/2 and can be described with the following Hamiltonian

Ĥ = −DŜ2
z −BŜ4

z − gµ0Ŝ ·H + Ĥtrans, (17)

where D and B are axial anisotropy constants, B is an applied magnetic field and Htrans gives the in-plane
anisotropy which is small compared with D. The values of the parameters have been determined from experimental
measurements (not involving tunneling) [38]: D = 0.74 K, B = −3.8 mK and g = 2. The transverse term is
chosen to be fourth-order E(Ŝ4

+ + Ŝ4
− with E = 9.8× 10−4 K [38].

For the single molecular magnet it is possible to give an analytical formula for the onset temperature. Expand-
ing (12) with the Mn4 system Hamiltonian (17) at the saddle point gives

Tc =
4s2
√
DE − 4E2s2

π
, (18)

and Tc = 0.61 K. This result is in close agreement with the reported experimental results giving 0.67 K [38]. The
dependence of eigenvalues on temperature is shown in Fig. 1.

The calculated transition rate using HTST (applicable for T > Tc) and the predicted onset temperature for
tunneling in the monomer are shown in Fig. 2, along with experimental data. At temperature below Tc, the
tunneling rate is expected to be similar to the HTST rate at Tc. The agreement between the calculations and
measurements is good.
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FIG. 1. Eigenvalues of the γ1 matrix block for the monomer (eq. (17)) Mn4 molecular magnet.
Solid line: real part. Dashed line: imaginary part. At temperature above T0 the eigenvalues are
complex conjugates and give a positive contribution into the determinant. At temperature below
the Tc, γ1 has only one negative eigenvalue, therefore the determinant changes sign at Tc. In the
temperature interval Tc < T < T0 γ1 has two negative eigenvalues

FIG. 2. The calculated lifetime for a monomer and a dimer of molecular magnets containing Mn4

groups. Results of calculations using harmonic transition state theory with zero point energy cor-
rection for the monomer (solid gray line) and the dimer (solid black line) are shown. Calculated
lifetime for the dimer without ZPE correction (dashed line) is also shown for comparison. Calcu-
lated values for the onset temperature for tunneling calculated from (18) using the Hamiltonian
in (17) for the monomer and (19) for the dimer (dashed vertical lines) with parameters taken
from experimental measurements are also shown. Experimentally measured transition rate for the
monomer [38] is shown with gray triangles and for the dimer [40] with black triangles. Below
Tc, the tunneling rate is expected to be similar to the HTST rate at Tc. Excellent agreement is
obtained between the calculated and measured results. Inset: The determinant of the γ1 matrix
block for the dimer, showing how it becomes negative at Tc
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We turn now to calculations for a dimer of Mn4 molecular magnets and compare with experimental measure-
ments on [Mn4O3Cl4(O2CEt)3(py)3]2. Each unit of the dimer is described with a magnetic moment of s = 9/2,
and the Hamiltonian of the system is taken to be

Ĥ = Ĥ1 + Ĥ2 + J Ŝ1 · Ŝ2, (19)

where both Ĥ1 and Ĥ2 have the same form as (17) with the parameters taken from [39] and J = 0.12 K is isotropic
superexchange [40]. The transverse term is chosen to include both 4th- and 2nd-order anisotropies: C(Ŝ2

+ + Ŝ2
−)

and E(Ŝ4
+ + Ŝ4

−), with C = 0.032 K and E = −7.5 × 10−5 K, in order to match the experimental results of the
rate above Tc. The energy surface and a minimum energy path for a transition are shown in Fig. 3.

FIG. 3. Energy surface for a dimer molecular magnets containing Mn4 group when θA = θB =
π/2. The minimum energy path for a remagnetization transition is shown with black dots. The
insets show the orientation of the 9/2 spins of each Mn4 unit at the initial state (left), first order
saddle point (middle), and product state (right).

The calculated crossover temperature for the dimer is Tc = 0.40 K in close agreement with experimental
measurements [40]. Due to the weak exchange interaction every spin flips almost independently.

In order to see the effect of coupling between the two units more clearly, we also calculated and analyzed a
system with larger exchange interaction, taken to be of the same order as the anisotropy, J = 0.6 K. The calculated
onset temperature for the tunneling is found to be Tc = 0.35 K. Due to the strong exchange interaction between
spins eigenvalues of γ1 behave differently, but we still can see the temperature at which one of them crosses zero
(see Fig. 4).

The result of calculation of the HTST transition rate and onset temperature for tunneling of the dimer (19)
using experimentally determined parameter values is shown in Fig. 2. The ZPE correction changes the slope in the
Arrhenius graph, bringing the calculated HTST results closer to the experimental values.

5. Summary

A method is presented for finding the onset temperature of thermally activated tunneling in magnetic systems
that are characterized by spin vectors with orientation prescribed by continuous angular variables. A study is made
for the Mn4 molecular magnets where both the high temperature jump rate and the onset temperature for tunneling
are calculated and compared with experimental data. Excellent agreement is obtained. The rate calculated above
the onset temperature for tunneling includes zero point energy correction. The onset temperature for tunneling is
found by analyzing eigenvalues of the γ1 matrix block at the first order saddle point on the energy surface.

Previously, the onset temperature for tunneling in single-spin or simple (without higher-order anisotropy) two-
spin systems can be assessed by other methods, such as the effective potential method or numerical methods
involving direct diagonalization of the Hamiltonian, but the method presented here is applicable to systems with
an arbitrary number of spins. The method presented here, makes it possible to estimate the onset temperature for
tunneling in a magnetic system described by spin vectors as long as the second derivatives of the energy with
respect to the angles describing the orientation of vectors can be evaluated at the saddle point on the energy surface.
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FIG. 4. Eigenvalues of the γ1 matrix block of the dimer (eq. (19)) when the exchange parameter
is chosen to be J = 0.6 K. Solid line: real part. Dashed line: imaginary part. The eigenvalues
depend on temperature in a similar way as is shown for the monomer in Fig. 1. A pair of
eigenvalues becomes real and remains positive, while a second pair of eigenvalues changes sign
at Tc from negative to positive as temperature is lowered

The most peculiar characteristic of magnetic systems is that the onset temperature for tunneling depends not
only on second derivatives along the unstable mode at the first order saddle point, as in particle systems, but on
the curvature of the energy surface at the first order saddle point. This is due to the inseparability of the spin
Hamiltonian.
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