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Mathematical modeling of sedimentation of nanoparticles
in the vessel of finite depth
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The sedimentation of nanoparticles in a liquid considering their Brownian diffusion was investigated by using mathematical modeling. The

main purpose of this work is investigation of the particles’ behavior in the area adjoining to the bottom of the vessel – the boundary layer.
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1. Introduction

The problem of the influence of Brownian diffusion of nanoparticles on their sedimentation remains rele-
vant [1]. Since the experiment of Robert Brown (the movement of pollen particles in a liquid drop), many
scientists have studied the behavior of particles in different types of environments. The method of nanoparticle
synthesis plays an important role in the distribution of nanoparticles’ sizes [2]. Theoretical investigation of the
sedimentation of nanoparticles is described in [3, 4], Brownian motion of nanoparticles is described in [5–7].

In this work, we discuss the effect of the nanoparticles’ diffusion on their sedimentation along the lower
boundary of the vessel bottom, called the boundary layer [8]. To find the solution of the diffusion equation, the
Newton polygon method is used – a method allowing one to find the solution of the equation with perturbed
coefficients.

2. The calculation of particles density distribution in the boundary layer

We consider the sedimentation process of spherical nanoparticles in a liquid taking into account the Brownian
diffusion between them. The equation of convective diffusion has the form:

∂f

∂t
+ v(R)

∂f

∂x
= D(R)

∂2f

∂x2
, (1)

where v(R) is the velocity of sedimentation, f is the particle distribution function, D is the diffusion coefficient,
x is the coordinate, t is the time of sedimentation.

The initial condition:
f |t=0 = f0(R)Θ(x) ,

where f0(R) is the size distribution function, Θ(x) is the coordinate distribution function (the Heaviside step
function).

The boundary conditions:
j|x=0 = 0,

j|x=L = 0, (2)

where j = v(R)f −D df

dx
is the particles’ flux density, L is the height of the vessel.

To find the solution inside the boundary layer, we transform (1) into dimensionless form. For this, we introduce
the dimensionless parameters for variables x, t and some small parameter ε:

x = Lx̄, t = T t̄, ε =
D(R)

v(R)L
,

where T =
L

v(R)
, v(R) = γR2 =

2

9

g(ρ− ρp)
µ

R2 is the velocity of sedimentation, ρ, ρp is the liquid density and

particle density, µ is the viscosity, D =
kBT

6πµR
is the diffusion coefficient, where kB is the Boltzmann constant, T

is the temperature, R is the radius of particle, g is the gravitational constant.
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Here, the value of ε is a small considering the fact that the diffusion of the particles is small: the larger the
radius of the particle, the lower its diffusion.

Then, we rewrite the equation in the new form:

ε
∂2f

∂x̄2
− ∂f

∂x̄
− ∂f

∂t̄
= 0,

and introduce a new coordinate ξ = e−λ (1− x̄), where λ is the indefinite parameter.
After all this transformation, (1) takes the form:

ε1−2λ ∂
2f

∂ξ2
+ ε−λ

∂f

∂ξ
− ε0 ∂f

∂t̄
= 0. (3)

For sewing the solution fp(ξ) inside the boundary layer with the solution f0(x̄, t̄) outside the boundary layer, the
following asymptotic equality must hold:

lim
x̄→1

f0(x̄, t̄) = lim
ξ→∞

fp(ξ). (4)

Firstly, we consider the behavior of individual members of (3) taking into account ε→ 0 for different values of λ.
For this, we use the Newton polygon.

(1) When 0 < λ < 1, the leading term of the equation has the degree −λ. In this case, the solution of (3) has
only one arbitrary constant and satisfies only one of two boundary conditions (2);

(2) When λ > 1 the leading term of the equation has the degree 1 − 2λ. In this case, the solution of (3)
has two arbitrary constants and is satisfied by two boundary conditions (2), but in this case lim

ξ→∞
fp(ξ),

does not exist for this solution. Consequently, this solution cannot be sewed with the solution outside the
boundary layer;

(3) When λ = 1 there are two leading terms with the degrees 1− 2λ and −λ which satisfy (2).

After this, we find the solution of (3) outside the boundary layer:

f0(x, t) = ARe−λR
2

Θ(x̄− t̄),

and the solution of (3) inside the boundary layer:

fp(ξ) = A+Be−ξ,

where A = f0(R)Θ(1− t̄), B =
f0(R)Θ(1− t̄)

ε−1 + 1
, λ = 1, and carry out the sewing of this solutions in accordance

with (4).
In the result, we have the final formula for the particle size distribution:

f = f0(R)Θ

(
1− tv(R)

L

)(
1 +

D(R)

D(R) + v(R)L
e−

v(R)
D(R)

(L−x)

)
. (5)

This equation allows us to see influence of diffusion localization along the lower boundary at the bottom of
the vessel. The exponential dependence of the concentration of particles on the coordinate arises in the localization
region, while in an area remote from the bottom, conventional particle sedimentation occurs. The order of the width

of the boundary layer is
D(R)

v(R)
for different particle sizes. Sedimentation velocity and diffusion are the functions

of the particles radius. In this regard, if the thickness of the boundary layer is visually observed (optically, for
example), then it makes it possible to estimate the particle sizes without taking measurements.
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