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1. Introduction

It is well known that nonlinear physical phenomena are related to nonlinear partial differential equations, which
are employed in natural and applied science fields such as fluid dynamics, plasma physics, biology, etc. One of the
most fundamental and charming phenomena in plasma physics is Langmuir turbulence [1,2]. Although, in the low-
amplitude linear limit, this turbulence consists only of high-frequency electron oscillations, the presence of larger
amplitude waves induces nonlinearities which couple the high-frequency electron oscillations to low-frequency
ion oscillations. These nonlinearities lead to parametric instabilities, including a three-wave interaction called
the parametric decay instability and a four-wave interaction called the modulational instability or oscillating two
stream instability [3]. The strongly nonlinear state leads to the formation of coherent structures called solitons [4];
these structures are stable in one dimension and can collapse catastrophically in two or three dimensions [5–9].
Zakharov [5] introduced a relatively simple set of fluid equations to describe all of these physical phenomena. In
the single spatial dimension, the Zakharov equations are:

iEt + Exx − ηE = 0,

ηtt − ηxx − |E|2xx = 0,
(1)

where t is dimensionless time, x is dimensionless distance, E(x, t) is the dimensionless slowly varying envelope of
the high-frequency electric field, and η (x, t) is the dimensionless low-frequency density variation. The numerical
and analytic study of the properties of equation (1) is a very active area of research in fundamental plasma
physics [5–13]. Much effort has been spent on the construction of exact solutions of nonlinear equations for
their important role in understanding the nonlinear problems. Physically, the wave-wave interaction or the wave
collisions are common phenomena in science and engineering for both solitary and non-solitary waves. At
the classical level, a set of coupled nonlinear wave equations describing the interaction between high-frequency
Langmuir waves and low-frequency ion-acoustic waves were firstly derived by Zakharov [5]. Since then, this
system has been the subject of a large number of studies. Currently, there are many methods of constructing exact
solutions, for instance, the inverse scattering transform [14], the Hirota method [15], the Backlund method [16], the
extended tanh-function method [17], the variational method [18], the Adomian methods decomposition method [19–
22] and several other numerical [23–27]. In this article, we will present some new solutions of Jacobi elliptic
function type of CNLSZ equation by using an extended Jacobi elliptic function method.
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2. The extended Jacobi elliptic function expansion method

We now present briefly the main steps of the extended Jacobi elliptic function expansion strategy that will be
applied. Consider a given (second order and cubic nonlinear) nonlinear wave equation

P (u, ut, ux, utt, uxx, ...) = 0, (2)

can be converted to an ODE
P (u, u′, u′′, u′′′, ...) = 0, (3)

upon using a wave variable ξ = α (x− ct), where α and c are the wave number and wave speed, respectively
equation (3) is then integrated as long as all terms contain derivatives where integration constants are considered
zeros. Introducing a new independent variable Y = Y (ξ), by the Jacobi elliptic function expansion method, Y (ξ)
can be expressed as a finite series of Jacobi elliptic functions,

Y (ξ) =

n∑
i=0

ai (sn (ξ) + λdn (ξ))
i (4)

is made and ai(i = 1, 2, 3, . . . n) and λ 6= 0 are constant. Its highest degree is O {Y (ξ)} = n, n is positive number
can be determined by consisting the homogeneous balance the highest order derivative and highest nonlinear
appearing the ODE.

sn (ξ) = sn (ξ,m), dn (ξ) = dn (ξ,m) and cn (ξ) = cn (ξ,m) are the Jacobi elliptic function with modulus
m, where 0 < m < 1. These functions satisfy the following formulas:

sn2 (ξ) + cn2 (ξ) = 1, dn2 (ξ) +m2sn2 (ξ) = 1 and sn′ (ξ) = cn (ξ) dn (ξ) , dn′ (ξ) = −m2cn (ξ) sn (ξ) .

These functions degenerate into hyperbolic functions when m > 1 as follows:

sn (ξ)→ tanh (ξ) , cn (ξ)→ sech (ξ) , dn (ξ)→ sech (ξ) .

We can select n in (4) to balance the derivative term of the highest order and the nonlinear term. So, the
Jacobi elliptic function expansion method is more general than the hyperbolic tangent function expansion method.

3. Application extended Jacobi elliptic function expansion method for CNLSZ system

We introduce a transformation for (GZE) equation (1):

E (x, t) = U (ξ) eiθ, η (x, t) = V (ξ) ,

θ = kx− ωt, ξ = p (x− 2kt) ,

where k, ω and p are real constant. Put these transformation in equation (1), we have the ordinary differential
equation (ODE) for U (ξ) and V (ξ):

p2U ′′ (ξ)− U (ξ)
(
k2 − ω

)
− V (ξ)U (ξ) = 0,(

4k2 − 1
)
V ′′ (ξ) + U ′′ (ξ) = 0,

(5)

where prime denotes the differential with respect to ξ. Integration of second equation of system (5) twice with
respect to ξ affords:

V (ξ) =
C1 − U2 (ξ)

(4k2 − 1)
, (6)

where C is second integration constant and the first one is taken to zero. The value of V (ξ) is put in first
equation (5):

p2U ′′ (ξ)− U (ξ)

(
k2 − ω +

C1

4k2 − 1

)
+

U3 (ξ)

4k2 − 1
= 0,

AU ′′ (ξ)− βU (ξ) + cU3 (ξ) = 0,

(7)

where β =

(
k2 − ω +

C1

4k2 − 1

)
, c =

1

4k2 − 1
, A = p2 is obtained after integrating the ODE once and setting

the constant of integration equal to zero. Balancing U ′′ with U3 in equation (7) gives m+ 2 = 3m i.e. m = 1.
The new Jacobi elliptic function expansion method (5) admits the use of the finite expansion:

U (ξ) = a0 + a1sn (ξ) + a1λdn (ξ) . (8)
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Substituting equation (8) into equation (7) and:

A
[
−
(
1 +m2

)
a1sn (ξ) + 2m2sn3 (ξ) +

(
2−m2

)
a1dn (ξ)− 2a1λdn

3 (ξ)
]
− β [a0 + a1sn (ξ) + a1λdn (ξ)] +

c
[
a30 + a31sn

3 (ξ) + a31λ
3dn3 (ξ) + 3a31λsn

2 (ξ) dn (ξ) + 3a31λ
2sn (ξ) dn2 (ξ) + 3a20a1sn (ξ)+

3λa20a1λdn (ξ) + 3a21a0sn
2 (ξ) + 6a21a0λsn (ξ) dn (ξ) + 3a21a0λdn

2 (ξ)
]
= 0

equating all coefficients with the powers in sn (ξ), dn (ξ) and constant setting each of the obtained coefficients for
functions to zero, yields the set of algebraic equations for a0, a1, p, k, ω and λ,

−βa0 + ca31 = 0,

−
(
1 +m2

)
Aa1 − βa1 + c

(
3a20a1

)
= 0,

A
((
2−m2

)
a1
)
− βa1λ+ 3cλa20a1 = 0,

2Am2a1λ+ ca31 = 0,

−2Aa1λ+ ca31λ
3 = 0,

we obtain the sets of solutions.
Solutions – 1:

λ2 = a1, a20 =

(
β −A(2−m2)

)
3c

, a21 =
2β +A(2−m2)

9c
.

Thus:

U (ξ) =

√
(β −A(2−m2))

3c
+

√
2β +A(2−m2)

9c
{sn (p (x− 2kt)) + λdn (p (x− 2kt))} . (9)

If m→ 1 then equation (9):

U (ξ) =

√
(β −A)

3c
+

√
2β +A

9c
{tanh (p (x− 2kt)) + λ sech (p (x− 2kt))} . (10)

If m→ 0 then equation (9):

U (ξ) =

√
(β −A)

3c
+

√
2β + 2A

9c
{tan (p (x− 2kt)) + λ sec (p (x− 2kt))} . (11)

Solutions – 2:

λ2 = a1, a20 =

(
β −A(2−m2)

)
3c

, a21 =
1 +m2

m2 − 2
.

Thus:

U (ξ) =

√
(β −A(2−m2))

3c
+

√
1 +m2

m2 − 2
{sn (p (x− 2kt)) + λdn (p (x− 2kt))} . (12)

If m→ 1 then equation (12):

U (ξ) =

√
(β −A)

3c
+
√
−2 {tanh (p (x− 2kt)) + λ sech (p (x− 2kt))} . (13)

If m→ 0 then equation (12):

U (ξ) =

√
(β − 2A)

3c
+

√
−1

2
{tan (p (x− 2kt)) + λ sec (p (x− 2kt))} . (14)

Solutions – 3:

λ = ±m, a21 =
2A

m2c
, a20 = 1− 6A

βm2
.

U (ξ) =

√
1− 6A

βm2
+

√
2A

m2c
{sn (p (x− 2kt))±mdn (p (x− 2kt))} . (15)

If m→ 1 then equation (15):

U (ξ) =

√
1− 6A

β
+

√
2A

c
{tanh (p (x− 2kt))± sech (p (x− 2kt))} . (16)

Solutions – 4:

a21 =
A
(
m2 − 2

)
− 2β

3c
, a20 =

β

c
, λ2 =

6A+ 3m2
[
A
(
m2 − 2

)
− 2β

]
(A (m2 − 2)− 2β)

,
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U (ξ) =

√
β

c
+

√
A (m2 − 2)− 2β

3c

{
sn (p (x− 2kt)) +

√
6A+ 3m2 [A (m2 − 2)− 2β]

A (m2 − 2)− 2β
dn (p (x− 2kt))

}
.

(17)
If m→ 1 then equation (17):

U (ξ) =

√
β

c
+

√
−A+ 2β

3c

{
tanh (p (x− 2kt)) +

√
2β − 3A

A+ 2β
sech (p (x− 2kt))

}
. (18)

If m→ 0 then equation (17):

U (ξ) =

√
β

c
+

√
−2(A+ β)

3c

{
tan (p (x− 2kt)) +

√
−3A
A+ β

sec (p (x− 2kt))

}
. (19)

4. Conclusion

The Jacobi elliptic function expansion method is proposed and applied to the coupled 1D nonlinear Schrödinger–
Zakharov (CNLSZ) system. Using this method, we found some new solutions for the Jacobi elliptic function type
that were not obtained by the sine-cosine method, the extended tanh-method, the mapping method, and other
methods. In the limiting case of the Jacobi elliptic function (namely, modulus setting 0 or 1), we also obtained
the solutions of sin-type, cos-type, tanh-type, sech-type. In the applications, the solutions are completely new and
have not found in earlier. But the solutions found in the Ref. [27] are the same to our obtain solutions −3. By
means of this scheme, we found some new solutions of the above mentioned equations. Therefore, the scheme can
be easily applied to solve the NLDEs and provides some new solutions. The solutions obtained in this article have
been verified by plugging them back into the original equation and found correct. It is shown that this scheme can
be applied to more coupled equations. So many new shock wave or solitary wave solutions can also be obtained.
Actually, this method can be applied to obtain solutions and classify modulational instability to more nonlinear
wave equations, as long as the odd- and even-order derivative terms do not coexist in the nonlinear wave equations.

FIG. 1. Exact solitary wave solution of E(x, t) with fixed value of k = 1/2 for different values of time

FIG. 2. Time evolution of the Nonlinear equation by the variational approach for k = 1
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