
NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2017, 8 (6), P. 740–745

Kinetic coefficients of semiconductor superlattices in high-frequency electromagnetic
fields

A. V. Shorokhov1, N. S. Prudskikh1, M. B. Semenov2, V. D. Krevchik2,
M. A. Pyataev1, S. E. Golovatyuk1, Tian-Rong Li3, Yu-Hua Wang3

1 National Research Mordovia State University, Bolshevistskaya, 68, Saransk, 430005, Russia
2Penza State University, Krasnaya, 40, Penza, 440026, Russia

3Institute of Functional and Environmental Materials, Lanzhou University, Lanzhou, China

alex.shorokhov@mail.ru

PACS 73.63.-b DOI 10.17586/2220-8054-2017-8-6-740-745

Kinetic coefficients of semiconductor superlattice are obtained from the Boltzmann transport equation with Bhatnagar–Gross–Krook (BGK)

collision term and Poisson equation. Using the universal analytic procedure, we found kinetic coefficient in the quasistatic limit starting from

the exact solution of the Boltzmann transport equation. It is shown that the Einstein relation for the diffusion coefficient is applicable only for

weak fields and it is not valid in the general case. As a consequence, a drift-diffusion model of miniband transport in the case of strong dc and

ac fields should be corrected, taking into account the kinetic coefficients obtained from the Boltzmann equation.
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1. Introduction

The problem of electric stability for a semiconductor superlattice is a crucial one for the practical realization
of sub-THz- and THz-based devices. For example, it is well-known that the development of instabilities and the
formation of electric domains in a superlattice placed in a dc electric field leads to the destruction of the THz
gain [1]. Therefore, the main problem in the realization of superlattice-based THz devices is finding operational
conditions which simultaneously allow one to achieve gain at THz frequencies and to avoid destructive space-
charge instabilities. Correct description of instability effects requires taking into account spatial-dispersion effects.
Such approach for the case of dc biased superlattice was formulated by Ignatov and Shashkin [1–3] and Bonilla
et al. [4–6]. As a rule, a drift-diffusion model is used to describe transport and high-frequency properties of
superlattices in the quasistatic case. In particular, this model allows taking into account spatial-dispersion effects.
However, as it will be shown below, this model can give incorrect results because the correct dependence of kinetic
coefficients on the amplitudes of dc and ac fields as well as temperature in the quasistatic case can be obtained
only from the Boltzmann and Poisson equations. Note that the analysis of kinetic coefficients of superlattice can
give the important information about spatial-dispersion effects and instabilities by analogy with the Gunn effect.

In this paper, we present an approach from which general expressions for the field-dependent average drift
velocity, Maxwell frequency and diffusion coefficient are derived starting from the exact solution of Boltzmann
equation. As a rule the diffusion coefficient is obtained from the Einstein relation in the framework of drift-
diffusion model. However the Einstein relation is not always applicable for strong fields [5, 7]. In connection
with it, the calculation of the diffusion coefficient is an important separate question. In this paper we obtain the
diffusion coefficient from the exact solution of Boltzmann equation and show that it is sufficiently different from
the diffusion coefficient obtained from the Einstein relation.

Let us consider a superlattice under the action of the dc field E0 directed along the x-axis and the strong
ac field E1 cos(ω1t). Our main goal is to find and analyze the kinetic coefficients of semiconductor superlattice
in quasi-static approximation starting from the exact solution of the kinetic equation and taking into account
spatial-dispersion effects connected with a small perturbation E2 cos(ω2t− k2x).

In the following, we will use the standard dispersion relation in the tight-binding approximation:

ε(p) =
∆

2

[
1− cos

(
pd

h̄

)]
, (1)

where d is the period of a superlattice, ∆ is the miniband width, p is the quasimomentum.
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2. Boltzmann equation

In this paper, we will use the traditional method for calculating a high-frequency current based on the use
of kinetic equation for miniband electrons with BGK (Bhatnagar-Gross-Krook) collision integral, which permits
adequate allowance for the particle-number conservation law for scattering in inhomogeneous field and, as a
consequence, makes it possible to take into account the influence of the carrier drift and diffusion effects on the
space-charge wave spectrum:

∂f

∂t
+ V (p)

∂f

∂x
+ eE(x, t)

∂f

∂p
= −1

τ

(
f − n(x)

n0
f0

)
, (2)

where V (p) = V0 sin (pd/h̄), V0 = d∆/2h̄ is the maximum electron velocity in the miniband, E(x, t) = E0 +
E1 cos(ω1t) + E2 cos(ω2t − k2x) is the total electric field, n(x) is the electron density, f0 = (n0d/2πh̄I0)
exp [(∆/2T ) cos (pd/h̄)] is the equilibrium distribution function normalized to the equilibrium electron density
n0, Im (m ∈ Z) is the modified Bessel function of argument ∆/2T , τ is the relaxation time, T is the lattice
temperature.

The electron distribution functions, due to the periodicity of the quasimomentum, permit representation in the
form of a Fourier series:

f(p) =

∞∑
m=−∞

fm(x)eimϕ, f0(p) =

∞∑
m=−∞

f0me
imϕ, (3)

where ϕ = pd/h̄, f0m = n0dIm/2πh̄I0.
In its turn, fm(x) as well as n(x) permits in the segment 0 < x < L (L is the superlattice lenght) a

representation in the form of the following Fourier series:

fm(x) =

∞∑
s=−∞

fmse
ikx, n(x) =

∞∑
s=−∞

nse
ikx, (4)

where k = 2πs/L is the wave number, s ∈ Z.
Substituting (3) and (4) into (2), we get:

∂fms
∂t

+ ikV (ϕ)fms +
ed

h̄
E(x, t)imfms + νfms = ν

ns
n0
f0m. (5)

To find ns(t) we need to use the Poisson equation:

∂E(x, t)

∂x
=

4πe

ε
(n(x)− n0), (6)

where ε is the lattice dielectric constant.
As a result we get the exact solution of the kinetic equation (2) in the form:

f =

∞∑
m=−∞

f0m

∞∑
l1,l2=−∞

∞∑
ν1,ν2=−∞

Jl1(mβ1)Jl2(mβ2)Jl1+ν1(mβ1)Jl2+ν2(mβ2)×

×
[
εk2E2

8iπen0

(
exp[−i(ν1ω1 + (ν2 − 1)ω2)t] exp(−ik2x)

−ik2τV (ϕ) + 1 + imΩ0τ + i(l1ω1 + (l2 + 1)ω2)τ
−

− exp[−i(ν1ω1 + (ν2 + 1)ω2)t] exp(ik2x)

ik2τV (ϕ) + 1 + imΩ0τ + i(l1ω1 + (l2 − 1)ω2)τ

)
+

+
exp[i(ν1ω1 + ν2ω2)t]

1 + imΩ0τ + i(l1ω1 + l2ω2)τ

]
exp[i(νk2x+mϕ)]. (7)

Here ν = 1/τ , βi = Ωi/ωi (i = 1, 2), Ωj = edEj/h̄ (j = 0, 1, 2), Jl(β) is the Bessel function.
Using the distribution function (7), one can find the average electron velocity:

Va(t) = 〈V (ϕ)〉ϕ =
h̄

d

2π∫
0

V (ϕ)f(ϕ)dϕ (8)

and the average complex current on the frequency ω2

j = 2e〈Va(t) exp[i(ω2t− k2x)]〉t, (9)
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In the case of a small perturbation β2 � 1 and a small k2, we get the following expression for the complex
current:

j = −εk2E2V0I1
8πI0

∞∑
l1=−∞

J2
l1(β1)

[
1− i(l1ω1 − ω2 + Ω0)τ
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]
+

+
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+
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+
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1 + (l1ω1 + ω2 − Ω0)2τ2

]
. (10)

3. Quasistatic limit

To find the quasistatic limit of the current we have to impose the additional limitation on ω1 and ω2: ω1τ � 1,
ω2τ � 1. Using the saddle-point method [8, 9] we get the formula for the current in quasistatic limit as a power
series in k2:

j =
ε

4π
E2(ωm + ik2Vd + k22D). (11)

In formula (11), the drift velocity can be written as [10]

Vd =
VpI1
πI0

2π∫
0

IET (Ω1 cos θ + Ω0)dθ, (12)

where:
IET (ω) =

ωτ

1 + ω2τ2
(13)

is the Esaki–Tsu characteristic, and Vp = V0/2 is the peak drift velocity.
The dependence of Vd on E0 is shown on Fig. 1. The ratio of Bessel functions in (12) takes into account

the effect connected with the thermal distribution of miniband electron. It follows from Eq. (12) that the effect of
temperature leads to a reduction of the drift velocity. The growth of amplitude of ac field leads to a shift of the
maximum of the dependence of the drift velocity on the dc bias to the region of higher static fields and reduction
of the drift velocity (Fig. 1).

The differential Maxwell frequency is expressed in terms of the drift velocity as:

ωm =
4πen0
ε

dVd
dE0

. (14)

The dependence of Maxwell frequency on the dc bias is shown on Fig. 2 at the different values of ac field.
The diffusion coefficient has the following form:

D =
V 2
0 τ

4

2− I2
4πτI0

∂

∂Ω0

2π∫
0

[
IET (2Ω1 cos θ + 2Ω0)− IET (2Ω1 cos θ − 2Ω0)

]
dθ

 . (15)

Note that the Einstein relation D(E) = TVd(E)/eE is not valid in this case. In connection with it, the use of
the Einstein relation is incorrect for systems with strong dc and ac fields, except in some particular cases.

In the limit of the pure dc field E1 = 0, we obtain for the Maxwell frequency:

ωm = ω2
pτ, NET (Ω0) = ω2

p

∂IET (Ω0)

∂Ω0
, (16)

for the drift velocity [11, 12] (this dependence is in a good agreement with experimental data [13]):

Vd = 2Vp
I1
I0
IET (Ω0), (17)
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FIG. 1. The dependence of the drift velocity on the dc bias E0 at T = 300 K. Solid line
corresponds to E1 = 0, the dash line corresponds to E1τ = 2.1. Ec = h̄/edτ (Ω0τ = E0/Ec) is
the critical field corresponding to the maximum of Esaki–Tsu I–V characteristic at E1 = 0

FIG. 2. The dependence of the Maxwell frequency on the dc bias E0 at T = 300 K. Solid line
corresponds to E1 = 0, the dash line corresponds to E1τ = 2.1, the dot line corresponds to
E1τ = 4.3. τ = 200 fs, ∆ = 40 meV, n0 = 0.5× 1016 cm−3, d = 6 nm

and for the diffusion coefficient:

D =
V 2
0 τ

4

[
1− I2

I0
NET (2Ω0)

]
. (18)

Here:

NET (ω) =
1− ω2τ2

(1 + ω2τ2)2
. (19)

The difference between the diffusion coefficients obtained from the Boltzmann equation and from the Einstein
relation is shown on Figs. 3 and 4 for the case of the pure dc field. One can see that the Einstein relation gives the
correct result only in the case of small dc fields Ω0τ < 0.1. At the same time, the diffusion coefficient obtained
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FIG. 3. The dependence of the diffusion coefficient on the dc bias E0 at T = 300 K. Solid line
corresponds to E1 = 0, the dash line corresponds to E1τ = 2.0, the dot line corresponds to
E1τ = 4.0. The other parameters are the same as in Fig. 2

FIG. 4. The dependence of the diffusion coefficient on the dc bias E0 at T = 300 K. Solid line
corresponds to the diffusion coefficient calculated by formula (18), the dash line corresponds to
the diffusion coefficient calculated by the Einstein relation. The other parameters are the same as
in Fig. 2
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from the Boltzmann equation increases with an increase in the dc field, while the diffusion coefficient obtained
from the Einstein relation decreases with the increasing of dc field.

In the opposite case of the ac pump field (E0 = 0), the kinetic coefficients have the form:

ωm =
ω2
pτ

(1 + Ω2
1τ

2)3/2
, (20)

Vd = 0, (21)

D =
V 2
0 τ

2

[
1− I2

I0

1

(1 + 4Ω2
1τ

2)3/2

]
. (22)

4. Conclusion

We have modified the drift-diffusion model for the semiconductor superlattice using the exact solution of the
Boltzmann equation. The obtained kinetic coefficient such as the Maxwell frequency, drift velocity and diffusion
coefficient differ from the common coefficients of standard drift-diffusion model. In particular, the Maxwell
frequency and drift velocity has the additional temperature factor though the relationship between these coefficients
are the same as in the drift-diffusion model. At the same time, the diffusion coefficient differs drastically from that
of the drift-diffusion model, and as a consequence, the Einstein relationship is not valid in this case.
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