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A method is presented for finding instantons in magnetic systems – optimal paths corresponding to tunneling from one magnetic state to another

at a finite temperature. The method involves analytical continuation of the energy to allow for complex values of the angle variables. First, a set

of discretization points are placed equally spaced on a chosen energy contour. Then, an estimate of the corresponding temperature is obtained

using Landau-Lifshitz dynamics in imaginary time along the contour. Finally, the distribution of the discretization points as well as the energy

are systematically refined by converging on the nearest stationary point of the Euclidean action, thereby obtaining a discrete representation of

the closest instanton at the given temperature. The method is illustrated with an application to a system consisting of a single spin subject

to uniaxial anisotropy and transverse external magnetic field. First-order and second-order crossovers from over-the-barrier mechanism to

tunneling are found depending on the applied field, and the difference in the dependence of the instanton temperature on the energy illustrated

for the two cases. By comparing the Boltzmann factors for over-the-barrier and tunneling transitions, the crossover temperature between the

two mechanisms is estimated for both first- and second-order crossover.
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1. Introduction

Transitions between (meta)stable states of atomic systems are typically thermally activated, i.e. they occur as a
result of thermal fluctuations due to coupling to a heat bath. The states are separated and can be identified because
of an energy barrier, an energy ridge on the multidimensional energy surface. At high enough temperature, the
transitions rely on large energy fluctuations in the right degrees of freedom that enable the system to overcome
the energy barrier. This is referred to as over-the-barrier transition mechanism. For high barriers, these are rare
events compared with the timescale of vibrations. The rate of such rare events can be estimated from statistical
rate theories, in particular, transition state theory and Kramers/Langer theory [1–3]. These theoretical tools make it
possible to predict and analyze the typically observed Arrhenius dependence of the transition rate on temperature,
where the activation energy is essentially the height of the energy barrier. This methodology was initially developed
in the context of atomic rearrangements such as chemical reactions, diffusion events and conformational changes
of molecules. More recently, statistical rate theories have been extended to describe transitions from one magnetic
state to another [4–8]. More generally, atomic coordinates and orientation of magnetic moments should be treated
on an equal footing.

At low enough temperature a different transition mechanism will eventually become dominant. There, the
system advances from one state to another by quantum mechanical tunneling through the energy barrier. The
crossover from over-the-barrier mechanism to tunneling is evident from a rapid drop in the activation energy as
the temperature is lowered. For atomic rearrangements and temperature close to room temperature, this kind of
behavior is mostly observed in transitions involving light atoms, such as hydrogen. Transition state theory for
atomic rearrangements has been extended by use of Feynman path integrals to take into account the possibility of
tunneling [9–13]. Full free energy calculations for determining transition rates have been carried out as well as
sampling based on dynamical approaches [14–17].

Most of the time, transition state theory is used within the harmonic approximation where the calculations
are simplified by approximating the energy surface with a quadratic expansion in the vicinity of the initial state
minimum and at a first-order saddle point on the energy ridge separating the initial state from the final state(s).
For over-the-barrier transitions, this leads to the widely used harmonic transition state theory expression for the
rate constant [18]. The main challenge in such calculations is finding the relevant first-order saddle point(s) and
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evaluating the energy there as well as its second derivatives. If both the initial and final states of the transition are
known, the minimum energy path on the energy surface connecting the two local energy minima can be found and
thereby the first-order saddle point – the highest energy point on that path. The nudged elastic band (NEB) method
is commonly used for this task [19–21]. A more challenging task is to find saddle points on the energy ridge given
only the initial state minimum. For this, the minimum mode following method can, for example, be used [22, 23].

An analogous harmonic approximation to quantum transition state theory has been developed [10–13, 24]. It
relies on finding special transition paths corresponding to thermally activated tunneling. Such paths are first-order
saddle points on an extended quantum mechanical energy surface underlying the statistical properties of Feynman
path integrals. These first-order saddle points are often referred to as ‘instantons’. Evaluation of the rate of
thermally activated tunneling within instanton theory requires much fewer computations than full quantum transition
state theory calculations. Efficient implementations of instanton theory calculations for atomic rearrangements have
recently been presented and applied to various chemical reactions [25–27]. Instantons can be found using saddle
point search methods, such as the minimum mode following method, or by using a line integral extension of the
NEB method.

Much less has been done on quantum mechanical rate theory for magnetic transitions. Most of this work has
relied on a mapping of the magnetic system onto a particle system with an effective Hamiltonian, however, this
can only be done for certain simple spin systems [28, 29]. One such system consists of a single spin with uniaxial
anisotropy and a transverse magnetic field [30]. In the particle mapping method, a spin wave function using the Ŝz
eigenstates is constructed and then transformed to an eigenvalue equation Ĥ|ψ〉 = E|ψ〉, a Schrödinger equation
with an effective potential and possibly coordinate dependent mass. The energy spectrum of the spin system
coincides with the first 2j+1 levels of the corresponding particle system, where j is the quantum number giving
the length of the magnetic momentum vector. Thereby, one can use techniques developed for particle systems to
study spin systems. This approach, however, is not universal, since a general way to construct the corresponding
particle Hamiltonian is not known. In fact, there are no known strategies for systems with multiple spins, as well
as for single spin systems with a Hamiltonian containing higher-order terms (cubic and higher) as is often the case
in molecular magnets, for example [31, 32]. As far as we know, there is only one study based on spin-particle
mapping for a two-spin system [33]. Furthermore, the action of the corresponding particle system does not contain
a topological term (14) that affects quantum interference in magnetic systems [34–36]. An efficient method for
finding instantons for magnetic systems without relying on spin-particle mapping is, therefore, needed.

Interesting results have, nevertheless, been obtained from studies using the spin-particle mapping technique.
It has, in particular, been shown that crossover from over-the-barrier to tunneling mechanism can be of two
different types, a smooth second-order crossover where the activation energy changes rather gradually and a more
abrupt first-order crossover, where the activation energy drops suddenly as temperature is lowered [30]. A general
expression has been presented recently for the second-order crossover temperature applicable to any system for
which the energy can be evaluated, including self-consistent field calculations [37, 38]. The calculations can be
carried out based on the second derivatives of the energy at the first-order saddle point. Such an estimate of
the crossover temperature can be useful when assessing the lifetime of magnetic states since it shows whether
tunneling needs to be taken into account, while classical rate theory would overestimate the lifetime. An estimate
of a first-order crossover temperature is more difficult, however, since it cannot be obtained from the vicinity of
the first-order saddle point. For this purpose, it is necessary to find the magnetic instantons for the temperature of
interest, but we are not aware of such calculations in the literature.

In this article, we present a method for finding instantons representing tunneling in magnetic systems. The
formulation is based on the Euclidean action obtained from the coherent state path integral formulation of the
partition function. A numerical technique is presented for finding instantons as stationary points of the action. This
approach is applied to a system consisting of a single spin with uniaxial anisotropy in the presence of a transverse
magnetic field, and a comparison made with results obtained from spin-particle mapping. The approach can in
principle be applied to any magnetic system, including multiple spins, as long as the energy of the system can be
described by an analytical function.

2. Theoretical background

A brief review of the theoretical background for coherent spin states and the formulation of path integrals and
Euclidean action for spin systems is given below for completeness. The reader is referred to the work by Fradkin
for more detailed discussion [39]. An alternative derivation has been given by Kochetov [40].



748 S. M. Vlasov, P. F. Bessarab, V. M. Uzdin, H. Jónsson

2.1. Coherent spin states

Coherent states are well known in the context of the quantum harmonic oscillator, where they have been used
to relate quantum mechanical dynamics as closely as possible to classical dynamics. They are in many cases a
useful addition to other descriptions of a quantum mechanical system, but in the case of spins, they are the only
known way to develop a path integral representation. The reason is that the Hilbert space of a spin does not have
continuously parameterized eigenstates corresponding to classical variables such as coordinates and momenta. For
a system with spin j, (for example, the total magnetic moment of an atom) there are 2j + 1 eigenstates of the Ŝz
operator: Ŝz|µ, j〉 = µ|µ, j〉, where µ runs from −j to j. They can be used to construct coherent states, |n̂〉, that
correspond to particular orientation of the spin specified by continuous spherical polar coordinates, θ and φ as:

|n̂〉 = |θ, φ〉 =

j∑
m=−j

√
(2j)!

(j +m)!(j −m)!

(
sin

θ

2

)j+m(
cos

θ

2

)j−m
e−i(j+m)φ|m, j〉. (1)

The coherent states satisfy the following closure relation:

1 =
2j + 1

4π

∫
dn̂ |n̂〉〈n̂|. (2)

Matrix elements of the spin operators in terms of coherent states are:

〈Ŝz〉 = −j + 2j sin2 θ

2
= −j cos θ, (3)

〈Ŝx〉 = −j sin θ cosφ,

〈Ŝy〉 = −j sin θ sinφ.
(4)

2.2. Path integral representation of the partition function

The partition function for a spin system can be written as:

Z = Tr(e−βĤ) =

∫
dn̂〈n̂|e−βĤ |n̂〉. (5)

As for Feynman path integrals for particles, the interval β is divided up into N parts:

〈n̂|e−βĤ |n̂〉 = lim
N→∞

〈n̂|
(

1− εĤ
)N
|n̂〉, (6)

where ε = β/N . Then, the resolution of the identity (2) is inserted between the segments of the interval and the
expression for the partition function takes the form:

Z = lim
N→∞

∫ N∏
k=1

dµ(n̂k)〈n̂k|
(

1− εĤ
)
|n̂k−1〉, (7)

where dµ(n̂k) =

(
2j + 1

4π

)
dn̂δ(n2− 1) is the invariant integration measure and n̂0 = n̂N , i.e. periodic boundary

conditions are fulfilled.

2.3. Euclidean action

The matrix elements in (7) can be approximated up to quadratic terms as:

〈n̂k|
(

1− εĤ
)
|n̂k−1〉 = 〈n̂k|n̂k−1〉

(
1− ε 〈n̂k|Ĥ|n̂k−1〉

〈n̂k|n̂k−1〉

)

' 〈n̂k|n̂k−1〉 exp

(
−ε 〈n̂k|Ĥ|n̂k−1〉
〈n̂k|n̂k−1〉

)
. (8)

The first term in (8) does not equal zero since coherent states are not orthogonal. It leads to an important feature
of the spin path integral, a topological phase equivalent to Berry phase [41]. This term can be rewritten as:

〈n̂k|n̂k−1〉 = 1− ε 〈n̂k|(|n̂k〉 − |n̂k−1〉)
ε

' exp

(
−ε 〈n̂k|(|n̂k〉 − |n̂k−1〉)

ε

)
. (9)
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which in the limit ε→ 0 gives the path integral expression for the partition function as:

Z =

∫
D[n̂(τ)]e−SE , (10)

where the Euclidean action:

SE(Ω) =

β∫
0

dτ

[
〈n̂| ∂

∂τ
|n̂〉+ 〈n̂|Ĥ|n̂〉

]
, (11)

is an integral over a closed path Ω = (θ(τ), φ(τ)) ≡ ω(τ) on the energy surface E(ω). The integration variable,
τ , can be interpreted as imaginary time.

The first term in the integrand can be rewritten using the expression for the coherent states, (1), as:

〈n̂| =
2j∑
p=0

√
(2j)!

p!(2j − p)!

(
cos

θ

2

)2j (
tan

θ

2

)p
eipφ〈−j + p, j|, (12)

|∂n̂

∂τ
〉 =

2j∑
p=0

√
(2j)!

p!(2j − p)!

(
cos

θ

2

)2j (
tan

θ

2

)p
e−ipφ[(

p csc θ − j tan
θ

2

)
θ̇ − ipφ̇

]
| − j + p, j〉, (13)

and

〈n̂| ∂
∂τ
|n̂〉 = −j tan

θ

2
θ̇ + j tan

θ

2
θ̇ − ij(1− cos θ)φ̇ = −ij(1− cos θ)φ̇. (14)

Hence, the partition function (10) affords the phase:

exp

 β∫
0

dτ〈n̂| ∂
∂τ
|n̂〉

 = exp

−ij β∫
0

dτ(1− cos θ)φ̇


= exp

−ij ∫
Γ

(1− cos θ)dφ

 , (15)

where Γ is a closed path described by the vector n̂ = {θ(τ), φ(τ)}. This term has a geometric interpretation. It is
proportional to the area bounded by the curve Γ.

The final expression for the Euclidean action of a system with a spin j can be written as:

S[Ω] =

β/2∫
−β/2

dτ
[
−ij(1− cos θ)φ̇+ E(ω)

]
. (16)

2.4. Instantons

Instantons are stationary paths for (16), i.e. they correspond to δS = 0. Differentiation gives the equations of
motion:

θ̇ =
i

j sin θ

∂E

∂φ
,

φ̇ = − i

j sin θ

∂E

∂θ
,

(17)

where θ and φ satisfy the boundary condition Ω(0) = Ω(β). These are the Landau-Lifshitz equations for spin
dynamics in imaginary time.

These equations of motion have two types of solutions. The first type corresponds simply to a stationary point
on the energy surface, Ω = ω0, with energy E(ω0). This can, in particular, be the first-order saddle point on the
energy surface ω† = (θ†, φ†). The corresponding action is:

Sjump = βE(ω†) = βE†. (18)

This solution characterizes the classical over-the-barrier transition mechanism which dominates at high enough
temperature.
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The second type of solutions are extended closed paths, so-called instantons. They correspond to tunneling
between two potential wells. In the limit of zero temperature T → 0, i.e. β → ∞, the instanton corresponds
to tunneling from the ground state, but at finite temperature, it corresponds to thermally assisted tunneling. An
instanton is a trajectory in imaginary time that conserves energy (analogous to Landau–Lifshitz dynamics in real
time) as can be shown by taking the time derivative of E and inserting into (17). This gives:

dE

dτ
=
∂E

∂θ
θ̇ +

∂E

∂φ
φ̇ =

i

j sin θ

∂E

∂φ

∂E

∂θ
− i

j sin θ

∂E

∂θ

∂E

∂φ
= 0. (19)

In contrast to particle systems, magnetic systems have no kinetic energy. As a result, in order to find paths
that satisfy the boundary conditions and solve (17), it is necessary to analytically continue the function E(ω) to
allow for complex values of the angles, ω.

3. Method for finding magnetic instantons

This section describes the method we have developed for finding instantons for magnetic transitions. Since the
instanton corresponds to a stationary point of the action, it corresponds to a periodic orbit described by Landau–
Lifshitz equations in imaginary time. As the dynamics conserve energy, the instantons lie on equienergy contours.
The first step is, therefore, to identify the contour for a given value of the energy. In order to map out the
dependence on temperature, the calculations need to be carried out for a grid of energy values in the interval
from the initial state minimum to the first-order saddle point. Once the energy contour has been identified and
represented by a set of discretization points, the corresponding temperature is estimated by evaluating the period
of the Landau–Lifshitz dynamics along the closed contour. The distribution of the discretization points along the
energy contour as well as a refinement of the value of the energy is then carried out using iterative zeroing of
the derivatives of the action. The resulting distribution of discretization points then represents an instanton for the
given temperature.

3.1. Energy contours

The method for finding and representing energy contours with an even distribution of discretization points is
essentially the one previously presented by Einarsdóttir et al. [26]. This procedure is a modification of the NEB
method [19,20]. The contour is represented with a set of discretization points, k = {1, N}. Each point corresponds
to a configuration of the system, i.e. a value of all variables, ωk. For a system with a single magnetic moment,
ωk = (θk, φk). More generally, for systems with more than one magnetic moment, ωk is a vector with values of
θ and φ for each one of the magnetic moments. For simplicity, the presentation here will be for a system with a
single magnetic moment, but it can be generalized easily. In order to find non-trivial instantons, the angles need
to be able to have complex values so a configuration can be written as ωk = (θRk , θ

I
k, φ

R
k , φ

I
k). The energy of the

system is some known function of the orientation, E(ω), analytically continued to the complex plane.
In order to find the energy contour corresponding to some particular value of the energy, E′, an objective

function, Siso, is defined as the sum of quadratic deviations of the energy:

Siso(ω1, . . . , ωN ) =
1

2

N∑
k=0

|E(ωk)− E′|2. (20)

Given some initial distribution of the discretization points, an iterative algorithm is used to converge on the energy
contour corresponding to energy E′. The iterative algorithm is based on zeroing the derivatives of Siso with
respect to the variables.

The negative gradient of the objective function with respect to the variables ωk:

gk = −∇kSiso = −(E(ωk)− E′)∇kE(ωk), (21)

gives the direction of steepest descent for discretization point k. It represents a force acting on the discretization
point that can be used to move it towards the energy contour. As in the NEB method, the displacements of the
discretization point parallel and perpendicular to the path are treated separately. A tangent to the path, t̂k, described
by the current location of discretization points is evaluated as in the NEB method [42]. It is used to distinguish
between displacements that represent changes in the shape of the path and displacements that are related to the
distribution of the discretization points along the path. The component of the gradient representing a change in the
shape of the path is given by the force component perpendicular to the path:

g⊥k = gk − (gk · t̂k)t̂k. (22)
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An even distribution of the discretization points along the path is obtained by including a spring force between
adjacent images in the direction parallel to the tangent:

gspk = (ksp(|ωk+1 − ωk| − |ωk − ωk−1|)) t̂k, (23)

where ksp is a spring force chosen in such a way that gspk is roughly of the same magnitude as g⊥k .
The total force acting on each discretization point is then:

goptk = g⊥k + gspk . (24)

A minimization procedure based on the velocity Verlet algorithm is then used to move all the discretization points
simultaneously in the direction given by the total force, analogous to what is often done in NEB calculations of
minimum energy paths [20].

Figure 1 shows an example calculation where an energy contour is found using the algorithm described above.
First, the discretization points are arranged arbitrarily in a circle. Then, they are moved iteratively in the direction
of goptk until an even distribution is obtained on the desired energy contour. This is an arbitrary test case where the
energy surface is generated by adding up a few Gaussians for illustration purposes only.

FIG. 1. Illustration of the method for finding and representing an energy contour of a model
energy surface. The target contour is shown by the bold red line. Starting with a discrete repre-
sentation of a circle in configuration space (left), the iterative algorithm moves the discretization
points towards the specified energy contour (middle) and eventually converges on it (right).

3.2. Temperature estimate

Given an even distribution of discretization points along an energy contour, the next task is to estimate what
temperature an instanton on this energy contour would correspond to. For this purpose, an approximate Landau–
Lifshitz dynamics calculation is carried out to estimate the imaginary time it takes to go from one discretization
point to another. From the total time it takes to go along the full path, the period, τ , can be estimated, and then
the temperature as T = 1/τ .

Let the closed path described by the set of N discretization points be denoted as Ωiso = {ωiso1 , ωiso2 . . . ωisoN }.
The time it takes to go from one discretization point to another can be estimated as:

∆τi =
|vi|
|di|

, (25)

where the distance between the two points is |di| = |ωisoi+1 − ωisoi | and the velocity can be estimated from Landau–
Lifshitz equations as:

vi =


i

j sin θi

∂E

∂φi

−i
j sin θi

∂E

∂θi

 . (26)

Recall that θ and φ are complex variables. The total time period corresponding to the closed path along the contour
is:

τ =

N∑
i=1

∆τi. (27)
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This approximate calculation gives an estimate of the instanton temperature associated with the given energy
contour. The even distribution of the discretization points along the contour and the temperature estimate are
subsequently used as initial conditions for a calculation where an accurate distribution of the discretization points
corresponding to an instanton is found, as well as a revised value of the energy for which the obtained temperature
value corresponds more closely. This refinement is described in the following section.

3.3. Refinement of discretization points and energy

Given the even distribution of discretization points along an energy contour and the value of the temperature
obtained as described above, a refinement calculation is carried out where the temperature is kept fixed but the
distribution of the discretization points and the value of the energy are refined so as to converge on a stationary
point of the action. This is done by zeroing the derivatives of the action with respect to all variables describing
the path, Ω = {ω1, ω2 . . . ωN}.

The scaled action, S̃ ≡ βS(Ω), is approximated using the set of N discretization points:

S̃(Ω) =

N∑
k=1

[
k(T )

(
1− cos θk + cos θk+1

2

)
(φk+1 − φk) +

E(θk, φk) + E(θk+1, φk+1)

2N

]
, (28)

where k(T ) = −ijTkB . The task is to find a stationary point of the function S̃ for a given value of T, that is, to
solve the system of differential equations:

∂S̃

∂θk
=

1

2
k(T ) sin θk(φk+1 − φk−1) +

∂E

∂θk
= 0,

∂S̃

∂φk
=

1

2
k(T )(cos θk+1 − cos θk−1) +

∂E

∂φk
= 0, k ∈ [1, N ]. (29)

Since the action is complex, it is convenient here to define a real objective function, F (Ω), by summing up
the magnitude squared of the derivatives of S̃ with respect to all the variables. The minimum value of F is zero
and corresponds to a stationary point of the action. Standard minimization techniques can be applied to find the
minimum of F since it is a real function.

We first define the vector function f(Ω̃) as:

f(Ω) =


∂S(Ω)

∂θ1
...

∂S(Ω)

∂φN
,

 , (30)

the objective function can be written as the squared norm of f(Ω):

F (Ω) ≡ 1

2
f̄(Ω) · f(Ω). (31)

The task is to find the N discretization points that give F (Ω) = 0 for the given temperature value (obtained
as described in the previous section). Since the temperature estimate does not correspond exactly to the energy
contour initially chosen, the discretization points will converge on a slightly different energy contour and their
distribution will not be uniform.

The BFGS algorithm is used for the iterative minimization of F . It is important to start with the discretization
points located on a contour of roughly the right energy to avoid converging on the trivial solution where the
discretization points are all at the same location (the classical limit).
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The BFGS algorithm requires the first derivatives of F with respect to all the variables. These, in turn, involve
the second derivatives of S̃:

∂F

∂θRj
=

N∑
k=1

< ∂S̃
∂θk
< ∂2S̃

∂θk∂θj
+ = ∂S̃

∂θk
= ∂2S̃

∂θk∂θj
+ < ∂S̃

∂φk
< ∂2S̃

∂φk∂θj
+ = ∂S̃

∂φk
= ∂2S̃

∂φk∂θj
,

∂F

∂θIj
=

N∑
k=1

= ∂S̃
∂θk
< ∂2S̃

∂θk∂θj
−< ∂S̃

∂θk
= ∂2S̃

∂θk∂θj
+ = ∂S̃

∂φk
< ∂2S̃

∂φk∂θj
−< ∂S̃

∂φk
= ∂2S̃

∂φk∂θj
,

∂F

∂φRj
=

N∑
k=1

< ∂S̃
∂θk
< ∂2S̃

∂θk∂φj
+ = ∂S̃

∂θk
= ∂2S̃

∂θk∂φj
+ < ∂S̃

∂φk
< ∂2S̃

∂φk∂φj
+ = ∂S̃

∂φk
= ∂2S̃

∂φk∂φj
,

∂F

∂φIj
=

N∑
k=1

= ∂S̃
∂θk
< ∂2S̃

∂θk∂φj
−< ∂S̃

∂θk
= ∂2S̃

∂θk∂φj
+ = ∂S̃

∂φk
< ∂2S̃

∂φk∂φj
−< ∂S̃

∂φk
= ∂2S̃

∂φk∂φj
,

∀j ∈ [1, N ]. (32)

4. Model

The methodology described above is applied to a uniaxial spin in transverse magnetic field. The anisotropy
axis is taken to be the z-axis and the applied field is pointing along the x-axis. The Hamiltonian of the system is:

Ĥ = DŜ2
z +BŜx, (33)

where D is the anisotropy constant and B the strength of the field.
The corresponding energy surface is:

E(θ, φ) = Dj2 cos2 θ +Bj sin θ cosφ+Dj2 +
B2

4D
. (34)

The energy is shifted here by the constant Dj2 +B2/4D to set the minimum energy of the system to zero.
This system has been studied by Chudnovsky using the particle mapping technique [30]. For small field,

B < 0.5Dj, the crossover from over-the-barrier mechanism to tunneling is first-order, while it is second-order for
larger field. The second-order crossover temperature can be obtained from the second derivatives of the energy at
the first-order saddle point on the energy surface [37, 38, 43]. The expression is [43]:

T(2) =
B(2Dj −B)

2πkB
. (35)

The temperature for the first-order crossover can, however, only be found from calculations of the instantons, as
illustrated below.

For convenience, the energy function is rather written in terms of dimensionless quantities:

Ẽ(θ, φ) = − cos2 θ − 2hx sin θ cosφ+ 1 + h2
x, (36)

where Ẽ = Dj2E is the scaled energy and hx = B/2Dj is the scaled field strength.
The energy surface is shown in Fig. 2 for two values of the scaled field, hx = 0.50 and 0.05. The two minima

corresponding to the ground states of the system as well as the minimum energy path connecting them are located
at φ = 0. The larger the field, the further away the minima are from the anisotropy axis.

The analytical continuation to complex angles is:

Ẽ(θ, φ) = − cos2(θR + iθI)− 2hx sin(θR + iθI) cos(φR + iφI) (37)

where θR and φR are the real parts and θI and φI are the imaginary parts of the angular variables.

5. Results

Figure 3 shows calculated instantons for an applied field of hx = 0.50 and 0.05. It turns out that φR = θI = 0
for all these instantons and the energy is real:

Ẽ = E = − cos2(θR)− 2hx sin(θR) cosh(φI), (38)

so the instantons can be visualized in the (θR, φI ) plane. For higher temperature values, the replicas are nearly
equally distributed along the equipotential contours. But, for the lowest temperature, the distribution is distinctly
uneven, with larger density of discretization points near the extreme values of θR.
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FIG. 2. The energy surface of a system with a single spin subject to anisotropy along the z-
axis and an applied magnetic field in x-direction of magnitude hx = B/2Dj = 0.50 (left) and
hx = 0.05 (right), see eqn. (34). The local minima corresponding to initial and final states are
marked with a white ×. For the weaker field, they are located closer to the anisotropy axis. The
minimum energy path for the transition is a straight line at φ = 0 between the minima. The
maximum along the minimum energy path, a first-order saddle point on the energy surface, is
marked with a red ×.

The temperature corresponding to each of the instantons is given in the legend of Fig. 3. The classical
first-order saddle point on the energy surface appears as a maximum in this plane. An instanton corresponding to a
slightly lower energy contour has all discretization points at nearly the same location, as the path just barely opens
up. The corresponding temperature is denoted as T(2) (1.592 K for the higher field, 0.694 K for the lower field).

Instantons on lower energy contours correspond to lower temperatures in the high field case. There is a
monotonic decrease in the temperature as the energy is decreased. This behavior can be seen for the high field case
in Fig. 4. The crossover from over-the-barrier mechanism to tunneling then occurs at a temperature of T(2) and
this is referred to as second-order crossover. The relevant instantons for the onset of tunneling appear at an energy
just below E† and correspond to an energy contour lying in the vicinity of the classical first-order saddle point on
the real energy surface. There is a continuous transition from over-the-barrier to tunneling mechanism. The value
of T(2) can be obtained from the second derivatives of the energy at the saddle point [37, 38]. In the limit of zero
energy, the temperature approaches zero and the instanton lies on the energy contour that goes through the initial
and final state minima.

For the low field case, hx = 0.05, the situation is different. From Fig. 3, it can be seen that the shapes of the
instantons are quite different from the high field case. The change in the instanton temperature as the energy is
lowered from the saddle point energy is non-monotonic. The temperature first increases as the energy is decreased,
reaching a maximum at a value Tm (see Fig. 4) and then decreases, but eventually reaches zero at the energy of
the initial state minimum. Two of the instantons shown in Fig. 3 for the low field case have a temperature that
is higher than T(2). Even though the instantons are more spread out, and the corresponding periodic orbits longer,
the imaginary time period is shorter. Apparently, this is related to the long vertical segments that can be seen in
Fig. 3 for the instantons in low field. There, the partial derivative of the energy with respect to θR is large and the
acceleration in φI given by the Landau-Lifshitz equations has a correspondingly large magnitude.

Figure 5 compares the exponents of the Boltzmann factors for the two mechanisms: over-the-barrier, E†/kBT ,
and tunneling, Sins/kBT . The smaller this exponent is, the larger the transition rate. For the large field case,
hx = 0.50, a smaller exponent is obtained for tunneling as the temperature drops below T(2), consistent with
a second-order crossover from over-the-barrier to tunneling mechanism. After a slight increase in the value of
Sins/kBT as the temperature is lowered below T(2), it remains relatively independent of temperature.
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FIG. 3. Analytically continued energy surface in (θR, φI ) plane for field strength of hx =
B/2Dj = 0.50 (left) and 0.05 (right). For the system studied here, the instantons are at <φ = 0
and =θ = 0 so it is sufficient to show them in the (=φ,<θ) plane. Instantons for various energy
contours are shown (red, orange, brown and blue lines with dots, upper triangles, and filled
circles indicating the location of the discretization points) and the corresponding values of the
temperature are given in the legend. The blue instantons are near the first-order saddle point
on the real energy surface, corresponding to over-the-barrier mechanism and temperature close
to the second-order crossover temperature, T(2). For the stronger field, hx = 0.50, the lower
energy and more extended instantons correspond to longer period for the periodic orbit and lower
temperature. The crossover from over-the-barrier mechanism to tunneling is second-order. For
the weaker field, hx = 0.05, the period decreases and the temperature increases as the energy
is lowered from the value at the first-order saddle point until a maximum is reached (notice the
high temperature associated with the brown curve with circles). The crossover is first-order and
occurs at a temperature T(1) that is higher than T(2).

For the small field case, hx = 0.05, the instantons on energy contours just below the saddle point energy
turn out to have a larger Boltzmann exponent than over-the-barrier transitions so they do not lead to crossover to
tunneling. The instanton temperature continues to increase as the energy of the contour is lowered until a maximum
value is obtained at Tm. Further lowering of the energy then gives a second set of instantons for each temperature
value between T(2) and Tm. The Boltzmann exponent for these instantons is smaller and at a certain temperature,
T(1), an instanton has the same value of the exponent as the over-the-barrier mechanism, indicating a crossover to
tunneling (see Fig. 5). The stationary point of the action that gives the fastest transition rate then changes abruptly
from the classical saddle point to an instanton that has significantly lower energy.

Since the first-order crossover corresponds to an instanton that is far removed from the first-order saddle point
on the energy surface, it is not possible to estimate T(1) from the energy and its derivatives at the saddle point, as
can be done for second-order crossover. Identification of first-order crossover to tunneling requires the evaluation
of instantons over the relevant energy range from E = 0 to E†.

The difference between first and second-order crossover can be seen from calculations carried out at and
slightly below the critical field, hx = B/2Dj = 0.25, as shown in Fig. 6. The second-order crossover is
characterized by a monoton decrease of the instanton temperature as the energy decreases. On the other hand, the
first-order crossover is characterized by non-monotone behavior. Over a certain range in temperature, instantons on
two different energy contours correspond to the same value of the temperature. The instanton lying on the lower
energy contour corresponds to a smaller exponent in the Boltzmann factor and therefore higher tunneling rate.

The critical value of hx = 0.25 between first- and second-order crossover had previously been determined for
this system by Chudnovsky using the particle mapping technique [30]. The calculations presented here of finite
temperature instantons are clearly in good agreement with this previous estimate.
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m	

FIG. 4. Inverse scaled temperature, 1/T̃ = 2Dj/TkB , found from the period of Landau–Lifshitz
orbits in imaginary time vs. scaled energy, Ẽ = Dj2E, of the contour where the instanton lies
for field strength of hx = B/2Dj = 0.50 (left) and 0.05 (right). Ẽ† is the scaled energy of
the first-order saddle point on the energy surface corresponding to the activation energy of the
classical over-the-barrier mechanism. T̃(2) is the scaled temperature for an instanton at an energy
contour just below Ẽ†. For strong field, hx = 0.50, this is the highest instanton temperature and
a second-order crossover to tunneling occurs there. For weak field, hx = 0.05, the crossover is
first-order and the instanton involved is not located near the saddle point. There, the instanton
temperature increases as the energy is lowered from Ẽ† and reaches a maximum of T̃m for an
energy that is intermediate between that of the initial state and the first-order saddle point. The
crossover temperature turns out to be higher than T̃(2) in this case (see Fig. 5).

m	

(1)	

FIG. 5. Exponents of the Boltzmann factor, Sins/kBT for instantons (blue curve) and E†/kBT
for over-the-barrier mechanism (dashed orange curve), as a function of scaled temperature, T̃ =
TkB/2Dj, for field strength of hx = B/2Dj = 0.50 (left) and 0.05 (right). For strong field, the
highest temperature instanton is obtained for energy contour just below the saddle point energy
and the crossover temperature, T(2), can be deduced from the second derivatives of the energy
at the saddle point [37, 38]. For weak field values, the instanton temperature increases as the
energy is lowered from the saddle point energy and the Boltzmann exponent for those instantons
is larger than for over-the-barrier transitions. After reaching a maximum at Tm, the instanton
temperature decreases as the contour energy is lowered and at a temperature of T(1) the exponent
for the instanton equals that of the over-the-barrier mechanism indicating a first-order crossover
to tunneling.
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(a)

(b)

FIG. 6. Illustration of the change from first-order to second-order crossover to tunneling as the
applied field is increased from hx = B/2Dj = 0.20 (orange line (b)) to 0.25 (blue line (a)).
Scaled inverse temperature Θ = Tc/T is shown as a function of scaled energy P = E/E†. The
instanton temperature is a monotone function of the energy when the the crossover to tunneling is
second-order. When the crossover is first-order, the temperature corresponding to the instantons
first increases as the energy of the contour is lowered below E†, but then decreases for even
lower energy.

6. Discussion

A method is presented for finding instantons corresponding to tunneling between magnetic states at finite
temperature. The method is based on analytical continuation of the energy of the system to complex angular
variables and identification of an energy contour, followed by evaluation of the corresponding temperature and
finally refinement of the distribution of discretization points to converge on a stationary point of the action. This
method takes advantage of the fact that the Landau–Lifshitz equations of motion for spin systems conserve energy.
Since the instanton corresponds to a stationary point of the action, it also corresponds to a periodic orbit along
an energy contour. The refinement is based on local minimization of the magnitude of the gradients of the action
with respect to the degrees of freedom in the system. Since a good initial guess for this iterative refinement
procedure can be obtained from an even distribution of discretization points along the energy contour, such a local
minimization most likely will converge on the appropriate instanton, rather than some other stationary point of the
action.

This method is quite different from the ones used to find instantons for atomic rearrangements [25, 26] where
the equations of motion conserve the total energy, i.e. kinetic plus potential energy. In some sense, it is easier
to find instantons for magnetic systems since their shape can so clearly be identified on the energy surface. The
additional complication, however, lies in the analytical continuation of the energy expression to allow for complex
values of the angular variables. While this is relatively straightforward when the energy of the system is given by
an analytical expression, it is not clear how to approach this problem when self-consistent calculations (such as the
non-collinear Alexander–Andersson model [44]) are used to evaluate the energy.

By finding the instantons as a function of temperature, the crossover temperature for both first-order and
second-order crossover can be estimated. Previously, a general expression for the second-order crossover tem-
perature based on second derivatives of the energy at the first-order saddle point on the energy surface had been
presented [37,38], however, calculation of the first-order crossover temperature is more challenging because it does
not relate directly to the first-order saddle point. There is not a continuous transition from the over-the-barrier to
tunneling mechanism in that case. By finding the instantons, however, the first-order case can be treated.

The method has been illustrated here with an application to a system with a single spin. It is, however, easily
generalized to systems with an arbitrary number of spins. The method for finding the energy contour, an extension
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of the NEB method which is routinely used for multidimensional systems, the Landau–Lifshitz dynamics and the
BFGS minimization of the magnitude of the gradient of the action can all be carried out in a straightforward way
for many degrees of freedom. We anticipate that tunneling of, for example, magnetic skyrmions and other localized
non-collinear states can be studied with the technique presented here.
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Appendix

Then, as in the NEB algorithm, using some iterative procedure of minimization, like steepest descent, conjugate
gradients method and etc., all the points Ωk will be displaced simultaneously at each iteration. The example of
searching an isocontour f(x, y) = 4.5 for the function

f(x, y) =
1

2
(kxx

2 + kyy
2) +

3∑
i=1

bie
−a((x−xi)

2+(y−yi)2) (39)

using equations (20) and (24) is shown in Fig. 1. The parameters from (39) are shown in Table. 1.

TABLE 1. Parameters used for the test example.

x1 = 1.5 y1 = 0.9 b1 = 10

x2 = 0.8 y2 = −1 b2 = 5

x3 = −1.2 y3 = 1 b3 = 6
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