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1. Introduction

This is an accompanying paper to [1], in which the authors have shown the relationship between the de
Branges method and the Boundary Control (BC) method on a basis of three dynamical systems: wave equation
with a potential on a half-line, Dirac system on a half-line and dynamical system with discrete time for semi-
infinite discrete Schrödinger operator. For each system, they constructed the related de Branges space using natural
dynamic objects and operators, used in the BC method. In the present note, we will show the equivalence of
dynamic inverse problems (IP) for different dynamical systems (wave equation, Dirac system, Jacobi matrices),
and IPs for equivalent canonical systems. We note that every original system will be equivalent to canonical system

with different dynamics (the dependence on t is given by one of the following operators:
d2

dt2
, i
d

dt
, ∂t, where ∂t is

a difference operator).
Let H ∈ L1,loc(0, L;R2×2) be a locally summable on (0, L), L ≤ ∞ matrix-valued function H ≥ 0, called

Hamiltonian, J :=

(
0 1
−1 0

)
, vector Y =

(
Y1

Y2

)
. We choose the “proper” dynamics and fix the general dynamical

canonical system, the initial boundary value problem (IBVP) of which will be the subject of our interest:

iH
dY

dt
− J dY

dx
= 0, x ≥ 0, t ≥ 0.

For such a system we set up an IP and outline the strategy of solving it by the BC method, provided the
Hamiltonian is smooth and strictly positive. We also provide a method of construction of the de Branges space for
such a Hamiltonian in natural dynamic terms following [1].

In the second section, we expose all necessary information on de Branges spaces and canonical systems
following [2] and [3]. In the third section, we deal with dynamical systems for Schrödinger operator on a half-line,
wave equation on a half-line, Dirac operator on a half-line and a semi-infinite Jacobi matrices. We formulate
dynamic IP for each system, then we transform IBVP for each system to the IBVP for certain canonical system,
formulate IP for canonical system, and show that it is equivalent the original ones.

In the fourth section, we will show that one specific choice of dynamics give a finite speed of wave propagation
in a canonical system, provided the Hamiltonian is smooth and strictly positive. We note that the finiteness of the
wave propagation is important: initially the BC method was developed and applied in the case of multidimensional
wave equation [4,5] on a bounded manifold, but later on the BC method was successfully applied to parabolic and
Schrödinger equations (where the speed is infinite) as well [6–8]. We provide algorithms of solving dynamic IP
and construction of de Branges space for such a Hamiltonian. Based on these results, we formulate the hypothesis
for constructing the de Branges space for general Hamiltonian by the dynamic method.
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2. de Branges spaces

Here, we provide the information on de Branges spaces in accordance with [2, 3]. The entire function E :

C 7→ C is called a Hermite–Biehler function if |E(z)| > |E(z)| for z ∈ C+. We use the notation F#(z) = F (z).

The Hardy space H2 is defined by: f ∈ H2 if f is holomorphic in C+ and sup
y>0

∫ ∞
−∞
|f(x+ iy)|2 dx <∞. Then

the de Branges space B(E) consists of entire functions such that:

B(E) :=

F : C 7→ C, F entire,
∫
R

∣∣∣∣F (λ)

E(λ)

∣∣∣∣2 dλ <∞, FE , F#

E
∈ H2

 .

The space B(E) with the scalar product:

[F,G]B(E) =
1

π

∫
R

F (λ)G(λ)
dλ

|E(λ)|2
,

is a Hilbert space. For any z ∈ C the reproducing kernel is introduced by the relation

Jz(ξ) :=
E(z)E(ξ)− E(z)E(ξ)

2i(z − ξ)
. (1)

Then

F (z) = [Jz, F ]B(E) =
1

π

∫
R

Jz(λ)F (λ)
dλ

|E(λ)|2
.

We observe that a Hermite–Biehler function E(λ) defines Jz by (1). The converse is also true [9, 10]: a Hilbert
space of analytic functions with reproducing kernel is a de Branges space (provided some nonrestrictive conditions
on the set of function and on the norm hold true).

Let H ∈ L1,loc(0, L;R2×2) be a Hamiltonian and the vector Y =

(
Y1

Y2

)
be solution to the following Cauchy

problem:

−J dY
dx

= λHY, (2)

Y (0) = C,

for C ∈ R2, C 6= 0. Without loss of generality, it is assumed that trH(x) = 1. Then, the function Ex(λ) =
Y1(x, λ)+ iY2(x, λ) is a Hermite–Biehler function (EL(λ) makes sense if L <∞), it is called de Branges function
of the system (2) since one can construct de Branges space based on this function. On the other hand, EL serves
as an inverse spectral data for the canonical system (2). The solution to (2) and Y (0) = (1, 0)T is denoted by
Θ(x, λ). The main result of the theory [3, 9] says that the opposite is also true: every Hermite–Biehler function
satisfying some condition comes from some canonical system.

3. Dynamical canonical systems for wave equation, Dirac system and Jacobi system with discrete time

In this section, we use some ideas from [3] to rewrite IBVPs for different dynamical systems as IBVPs for
canonical dynamical systems. Everywhere below, T > 0 is fixed.

3.1. Wave equation with a potential on a half-line

For a potential q ∈ L1,loc(R+), we consider the IBVP for the 1d wave equation on a half-line:{
utt(x, t)− uxx(x, t) + q(x)u(x, t) = 0, x ≥ 0, t ≥ 0,
u(x, 0) = ut(x, 0) = 0, u(0, t) = f(t).

(3)

Here, f is an arbitrary L2
loc (R+) function referred to as a boundary control. The response operator RTq :

L2(0, T ) 7→ L2(0, T ) with the domain D = C∞0 (0, T ) is introduced by
(
RTq f

)
(t) := ufx(0, t), it plays a role of a

dynamic inverse data [11–13]. The IP is to recover q on (0, T ) from R2T
q .

We consider the solutions y1,2 to following Cauchy problems:{
−y′′1,2(x) + q(x)y1,2(x) = 0, x ≥ 0,
y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 1,

(4)
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and look for the solution to (3) in the form:

uf (x, t) = c1(x, t)y1(x) + c2(x, t)y2(x). (5)

Plugging this representation to (3) yields:

c1tty1 + c2tty2 = −qc1y1 − qc2y2 + c1xxy1 + 2c1xy
′
1 + c1y

′′
1 + c2xxy2 + 2c2xy

′
2 + c2y

′′

=
(
c1xy1 + c2xy2

)
x

+ c1xy
′
1 + c2xy

′
2.

If we demand the equality c1xy1 + c2xy2 = 0, then unknown c1,2 satisfies the following system:{
c1tty1 + c2tty2 = c1xy

′
1 + c2xy

′
2,

c1xy1 + c2xy2 = 0.
(6)

We note that due to the boundary conditions in (4) and (6), we have that:

ufx(0, t) = c1x(0, t)y1(0) + c1(0, t)y′1(0) + c2x(0, t)y2(0) + c2(0, t)y′2(0) = c2(0, t).

On expressing c1,2x from (6), and bearing in mind the equality det

(
y1 y2

y′1 y′2

)
= 1, we obtain that:{

c1x = −c1tty1y2 − c2tty2
2 ,

c2x = c1tty
2
1 + c2tty1y2.

On introducing the notations C =

(
c1

c2

)
, J =

(
0 1
−1 0

)
, H =

(
y2

1 y1y2

y1y2 y2
2

)
and counting the initial and

boundary conditions on uf at t = 0 and at x = 0, we obtain that C satisfies the following IBVP:
HCtt − JCx = 0, x ≥ 0, t ≥ 0,
C(x, 0) = 0, Ct(x, 0) = 0, x ≥ 0,
c1(0, t) = f(t), t ≥ 0.

(7)

The response operator R̃Tq : L2(0, T ) 7→ L2(0, T ) for (7) is introduced by the equality
(
R̃Ts f

)
(t) := c2(0, t). On

the other hand, using (5) and second line in (6), we have that:(
RTq f

)
(t) := ufx(0, t) = c1x(0, t)y1(0) + c2(0, t)y′2(0) = c2(0, t) =

(
R̃Ts f

)
(t).

So we can see that IPs for (3) and for (7) are equivalent.

3.2. Wave equation on a half-line

For a smooth positive density ρ ∈ C2(R+), ρ(x) ≥ δ > 0, we consider the IBVP for a wave equation on a
half-line: {

ρ(x)utt(x, t)− uxx(x, t) = 0, x ≥ 0, t ≥ 0,
u(x, 0) = ut(x, 0) = 0, u(0, t) = f(t).

(8)

Where the function f ∈ L2
loc (R+,C) is interpreted as a boundary control. The response operator RTρ : L2(0, T ) 7→

L2(0, T ) with the domain D = C∞0 (0, T ) is defined by RTρ f := ufx(0, t). We introduce the eikonal τ(x) :=∫ x

0

ρ
1
2 (s) ds, from physical point of view, it is a time at which a wave initiated at x = 0 fills the segment (0, x),

let Ωl = {x > 0 | τ(x) < l}. Then, the natural set up of IP is to recover ρ(x)|ΩT from R2T
ρ , see [14].

We introduce the new function:

C(x, t) =

(
c1

c2

)
:=

(
ut
iux

)
,

and a Hamiltonian H :=

(
ρ(x) 0

0 1

)
. Then it is easy to see that Y satisfies the canonical system:
iHCt − JCx = 0, x ≥ 0, t ≥ 0,
C(x, 0) = 0, x ≥ 0,
c1(0, t) = g(t) := f ′(t), t ≥ 0.

(9)

The response operator R̃Tρ : L2(0, T ) 7→ L2(0, T ) for (9) with the domain D = C∞0 (0, T ) is introduced by(
R̃Ts g

)
(t) := c2(0, t). We can see that IPs for (8) and for (9) are equivalent.
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3.3. Dirac system on a half-line

With a matrix potential V =

(
p q
q −p

)
, p, q ∈ C1

loc(R+), vector u =

(
u1

u2

)
we associate the IBVP for a

Dirac system: 
iut + Jux + V u = 0, x ≥ 0, t ≥ 0,

u
∣∣
t=0

= 0, x ≥ 0,

u1

∣∣
x=0

= f, t ≥ 0,

(10)

Here f is an arbitrary L2
loc (R+,C) function referred to as a boundary control. The response operator RTD :

L2(0, T ) 7→ L2(0, T ) with the domain D = C∞0 (0, T ) is introduced by
(
RTDf

)
(t) := u2(0, t), it plays a role of a

dynamic inverse data. The IP is to recover V on (0, T ) from R2T
D , see [15].

Let Y 1,2 be solutions to the following Cauchy problems:{
JY 1,2

x + V Y 1,2 = 0,
Y 1

1 (0) = 1, Y 1
2 (0) = 0, Y 2

1 (0) = 0, Y 2
2 (0) = 1.

We will look for the solution to (10) in the form:

u(x, t) = c1(x, t)Y 1(x) + c2(x, t)Y 2(x). (11)

Plugging this representation in (10) yields:

i
(
c1tY

1 + c2tY
2
)

+ c1xJY
1 + c2xJY

2 + c1JY
1
x + c2JY

2
x + c1V Y

1 + c2V Y
2

= i
(
c1tY

1 + c2tY
2
)

+ J
(
c1xY

1 + c2xY
2
)

= 0,

on introducing C =

(
c1

c2

)
, we see that the above equality is equivalent to:

i

(
Y 1

1 Y 2
1

Y 1
2 Y 2

2

)
Ct + J

(
Y 1

1 Y 2
1

Y 1
2 Y 2

2

)
Cx = 0.

We introduce the notation: A =

(
Y 1

1 Y 2
1

Y 1
2 Y 2

2

)
, B = JAJ . Then the above system is equivalent to:

iACt −BJCx = 0,

on multiplying it by B−1 and introducing the Hamiltonian by H = B−1A, we obtain:

iHCt − JCx = 0.

Counting that detB = detA = 1, we evaluate:

H = B−1A =

(
Y 1Y 1 Y 1Y 2

Y 1Y 2 Y 2Y 2

)
,

Bearing in mind the initial and boundary conditions in (10), we see that C satisfies the following IBVP:
iHCt − JCx = 0, x ≥ 0, t ≥ 0,
C(x, 0) = 0, x ≥ 0,
c1(0, t) = f(t), t ≥ 0.

(12)

The response operator R̃TD : L2(0, T ) 7→ L2(0, T ) for (12) is introduced by
(
R̃TDf

)
(t) := c2(0, t). The represen-

tation (11) implies that IPs for (10) and for (12) are equivalent.

3.4. Semi-infinite Jacobi matrices

Let 0 = b0 < b1 < b2 < . . . < bn < . . . be a partition of [0,+∞). We introduce the notations: ∆j :=

(bj−1, bj), lj = |∆j | = bj − bj−1. Let for each j we define ej ∈ R2, |ej | = 1, ej 6= ±ej±1, and ej(x) = ej ,
x ∈ ∆j . We define a Hamiltonian H:

H(x)f(x) = (f(x), ej(x)) ej(x) =

(
e2

1j(x) e1j(x)e2j(x)
e1j(x)e2j(x) e2

2j(x)

)(
f1(x)
f2(x)

)
.

Consider functions of the type (i.e. functions from the domain of operator, corresponding to such a Hamiltonian,
see [RR]):

f(x) =

(
f1(x)
f2(x)

)
= fjej(x) + ξj(x)e⊥j (x), x ∈ ∆j , fj ∈ R, e⊥j = Jej , (13)
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and note that (f, ej) = fj . For such a Hamiltonian H we study the equation:

Jf ′ = Hg, (14)

where the function g has a form (13), g = gjej(x) + ηj(x)e⊥j (x), x ∈ ∆j . The equality in (14) implies that

ξ′j(x)Je⊥j (x) = gjej(x), x ∈ ∆j ,

which yields the following expression for ξj(x) for some sj :

ξj(x) = sj + gj(bj − x), x ∈ ∆j . (15)

We use the continuity condition at x = bj−1 to obtain:

fj−1ej−1 + sj−1e
⊥
j−1 = fjej + (sj + gj lj) e

⊥
j .

Multiplying the above equality by ej we get:

sj−1 =
1(

ej , e⊥j−1

) (fj − fj−1

(
ej , e

⊥
j−1

))
, (16)

and multiplying by ej−1 we obtain:

fj−1 = fj (ej , ej−1) + (sj + gj lj)
(
e⊥j , ej−1

)
. (17)

Using (16), (17) we can express gj via fj−1, fj , fj+1:

gj lj =
1(

ej , e⊥j−1

)fj−1 +

(
(ej+1, ej)(
ej+1, e⊥j

) − (ej , ej−1)(
e⊥j , ej−1

)) fj − 1(
e⊥j , ej+1

)fj+1. (18)

Making the substitution:
uj = gj

√
lj , vj = fj

√
lj , (19)

from (18) we obtain the relation:

uj =
1(

ej , e⊥j−1

)√
lj−1lj

vj−1 +
1

lj

(
(ej+1, ej)(
ej+1, e⊥j

) − (ej , ej−1)(
e⊥j , ej−1

)) vj − 1(
e⊥j , ej+1

)√
lj lj+1

vj+1. (20)

On introducing the notations:

ρj =
−1(

ej+1, e⊥j
)√

lj lj+1

, j ≥ 1,

qj =
1

lj

(
(ej , ej+1)(
e⊥j , ej+1

) − (ej , ej−1)(
e⊥j , ej−1

)) , j ≥ 2,

we can rewrite (20) in a form:
uj = ρj−1vj−1 + qjvj + ρjvj+1, j ≥ 2,

and q1 is found from the condition at zero. So finally we obtain the following result: if f and g having
representation (13) are connected by (14), then u and v defined by (19) satisfy:

Av = u, A =


q1 ρ1 0 0 0
ρ1 q2 ρ2 0 0
0 ρ2 q3 ρ3 0
0 0 · · ·

 .

We can introduce the dependence on (continuous) time t: let f(x, t), g(x, t) have form:

f(x, t) = fj(t)ej(x) + ξ(x, t)e⊥j (x), x ∈ ∆j ,

g(x, t) = gj(t)ej(x) + η(x, t)e⊥j (x), x ∈ ∆j ,

then if g(x, t) = ift(x, t), then f solves:
Jfx = iHft.

On the other hand (19) implies the relationship uj(t) = ivjt(t), which yields that v solves ivt − Av = 0. Adding
initial and boundary conditions gives well-posed IBVP for dynamical system with continuous time governed by
Jacobi matrix:  ivt −Av = 0, x ≥ 0, t ≥ 0,

vn(0) = 0, n ≥ 1,
v1(t) = h(t), t ≥ 0.

(21)
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The response operator RTJ : L2(0, T ) 7→ L2(0, T ) with the domain D = C∞0 (0, T ) for this system is introduced by
the rule

(
RTJ h

)
(t) := v2(t). On the other hand, IBVP (21) is equivalent to (we assume that e1 = (1, 0)T ):

iHft − Jfx = 0, x ≥ 0, t ≥ 0,
f(x, 0) = 0, x ≥ 0,

f1(0, t) = j(t) :=
h(t)√
l1
, t ≥ 0.

(22)

For the system (22), the response operator R̃TJ : L2(0, T ) 7→ L2(0, T ) with the domain D = C∞0 (0, T ) is
introduced by the rule

(
RTJ h

)
(t) := f2(0, t). Note that by (13), f2(0, t) = ξ1(0, t). From (15), the relationship

g(x, t) = ift(x, t) and (16), we have that:(
RTJ h

)
(t) = s1(t) + g1(t)l1 =

f2(t)(
e2, e⊥1

) − f1(t) + if1(0, t)l1

=
f2(t)(
e2, e⊥1

) − h(t)√
l1

+ ih(t)
√
l1 = −ρ1v2(t)

√
l1 − h(t)

(
1√
l1
− i
√
l1

)
.

So IP for (21) and (22) from corresponding response operators are equivalent. We note that we can introduce

the different type of continuous dynamics for Jacobi matrices (for example the dynamics of the type
d

dt2
was

considered in [16]).
We can also introduce the dependence on the discrete time t ∈ N by letting ft(x), gt(x) have form:

ft(x) = fj,tej(x) + ξt(x)e⊥j (x), x ∈ ∆j , t ∈ N,

gt(x) = gj,tej(x) + ηt(x)e⊥j (x), x ∈ ∆j , t ∈ N.

If f, g are related by gt(x) = ft(x) + ft−1(x) =: ∂tf(x), then counting (14), f solves:

Jfx = H∂tf.

The equality (19) implies uj = ∂tvj , which yields that v satisfies ∂tv·,t − Av·,t = 0. Adding initial and boundary
conditions gives the following IBVP:  ∂tv·,t −Av·,t = 0, t ∈ N

vn,1 = vn,0(0) = 0, n ≥ 1,
v1,t = ht, t ∈ N.

(23)

where ht ∈ l2 is referred to as a boundary control. The response operator RTJ,d with the domain D = RT for this
system is introduced by RTJ,d : RT 7→ RT ,

(
RTJ,dh

)
t

= v2,t, t = 1 . . . , T . The forward and inverse problem was
studied in [17, 18]. The IBVP (23) is equivalent to, which is equivalent to the following IBVP for a canonical
system: 

H∂tf − Jfx = 0, x ≥ 0, t ∈ N,
f0(x) = 0, x ≥ 0,

f1
t (0) = jt :=

ht√
l1
, t ∈ N.

(24)

For the system (24) the response operator R̃TJ,d : l2 7→ l2 is introduced by the rule
(
RTJ j

)
(t) := f2

t (0). By (13),
f2
t (0) = ξ1t(0), from (15), the relationship gt(x) = ∂tf(x) and (16), we have that:(

RTJ,dh
)
t

= s1t + g1tl1 =
f2t(
e2, e⊥1

) − f1t + if1
t (0)l1

=
f2t(
e2, e⊥1

) − ht√
l1

+ iht
√
l1 = −ρ1v2,t

√
l1 − ht

(
1√
l1
− i
√
l1

)
.

So, IP for (23) and (24) from corresponding response operators are equivalent.
We see that different dynamic systems after transformations come to dynamical canonical systems with different

dynamics (i
d

dt
,
d

dt2
, and even discrete one ∂t).

We will investigate the dynamics given by i
d

dt
, the canonical system with this dynamics possess property of

finite speed of wave propagation.
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4. Canonical systems with smooth strictly positive Hamiltonian

We consider the IBVP for a canonical system. Assuming that the Hamiltonian satisfies conditions: H = H∗ ∈

C2(0, T ;R2×2), H ≥ δ > 0, trH = 1, we set Y f =

(
y1

y2

)
to be a solution to:

iH
d

dt
Y − J d

dx
Y = 0, x ≥ 0, t ≥ 0,

Y (x, 0) = 0, x ≥ 0,
y1(0, t) = f(t), t ≥ 0.

(25)

Where the boundary control f ∈ FT := L2(0, T ;C). The response operator RT : FT 7→ FT is introduced as(
RT f

)
(t) := yf2 (0, t). The inverse problem we will be dealing with consists in a recovering H(x), on an interval

(0, l) for some l > 0 from given R2T .

4.1. One-velocity wave system

We rewrite (25): differentiate the first line in (25) w.r.t. t and use equation to get:

HYtt + JH−1JYxx + JH−1
x JYx = 0,

which is equivalent to the equation:

HYtt −
1

detH
HYxx + JH−1

x JYx = 0.

Counting the initial and boundary condition, we obtain that Y satisfies the following IBVP for one-velocity system:
detHYtt − Yxx + detHH−1JH−1

x JYx = 0, x ≥ 0, t ≥ 0,
Y (x, 0) = Yt(x, 0) = 0, x ≥ 0,(
y1(0, t)
y2(0, t)

)
= G(t) :=

(
f(t)

(Rf)(t)

)
, t ≥ 0.

(26)

Here, the velocity is given by c(x) =
1√

detH(x)
. The response operator RTw : L2(0, T ;C) 7→ L2(0, T ;C) with

the domain D = C∞0 (0, T,C) for (26) is introduced as
(
RTwG

)
(t) := Y Gx (0, t). The eikonal function is introduced

by τ(x) :=

∫ x

0

√
detH(s) ds, and Ωl = {x > 0 | τ(x) < l}. Then the natural setup of IP is to recover H(x)|ΩT

from R2T
w .

We see that the IP for the system (26), is equivalent to IP for (25). But there is one important disadvantage –

in studying IP for (26) which comes from (25), we need to use the specific set of controls of the type

(
f
Rf

)
,

which makes application of the BC method problematic. Instead, we will reduce (25) to Dirac-type system, and
follow the scheme offered in [15].

4.2. Dirac-type dynamical system

We introduce the following transformation: let

U =

(
cosφ(x) sinφ(x)
− sinφ(x) cosφ(x)

)
be a unitary matrix such that U∗HU = D :=

(
d1(x) 0

0 d2(x)

)
, where d1, d2 ≥ δ > 0, d1 + d2 = 1. If Y = UỸ ,

then Ỹ satisfies the following IBVP for Dirac-type dynamical system:
iD

d

dt
Ỹ + J

d

dx
Ỹ − φ′(x)Ỹ = 0, x ≥ 0, t ≥ 0,

Ỹ (x, 0) = 0, x ≥ 0,
ỹ1(0, t) = g(t) := cosφ(0)f(t) + sinφ(0)(Rf)(t), t ≥ 0.

(27)

The response operator RTCD : L2(0, T ) 7→ L2(0, T ) is introduced by
(
RTCDg

)
(t) := ỹ2(0, t). We can see that

ỹ2(0, t) = − sinφ(0)f(t) + cosφ(0)(Rf)(t), so IP for (25) and for (27) are equivalent.
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Thus our first goal will be to study the dynamic IP for the following Dirac-type system:
iD

d

dt
V + J

d

dx
V + ψ(x)V = 0, x ≥ 0, t ≥ 0,

V (x, 0) = 0, x ≥ 0,
v1(0, t) = f(t), t ≥ 0,

(28)

where D as above is a diagonal matrix with twice differentiable entries and unit trace, ψ ∈ C2(R+). The
function f ∈ F̃T := L2(0, T ;C) is a boundary control. The response RTD : F̃T 7→ F̃T is introduced by(
RTDf

)
(t) := v2(0, t). The IP consists in recovering D|ΩT , ψ|ΩT from R2T . We outline the scheme offered

in [1, 15]:

Proposition 1. The solution to (28) admits the following representation:

V (x, t) = A(x)f(t− τ(x)) +

x(t)∫
0

w(x, s)f(t− τ(s)) ds,

where τ(s) =

∫ s

0

√
d1(α)d2(α) dα is eikonal, x(t) is a function inverse to τ(x), the kernel w =

(
w1

w2

)
is twice

differentiable in {(x, s) | 0 ≤ τ(x) ≤ s ≤ T}, A =

(
a1

a2

)
, where a1,2 are solutions to the following system:

i
√
d1a

1
x =

√
d2a

2
x,√

d2

(
ψa1 + a2

x

)
= i
√
d1

(
ψa2 − a1

x

)
.

We introduce the outer space, the space o states of (28): HT := L2(0, τ(T );C) and a control operator
W̃T : F̃T 7→ HT acting by the rule: (

W̃T f
)

(x) := V f (x, T ).

The Proposition 1 implies that W̃T is not an isomorphism, and the system (28) is not boundary controllable. To
restore the controllability, we introduce the auxiliary system:

iD
d

dt
U − J d

dx
U − ψ(x)U = 0, x ≥ 0, t ≥ 0,

U(x, 0) = 0, x ≥ 0,
u1(0, t) = g(t), t ≥ 0,

(29)

and note that solutions to (28) and (29) are connected by the formula V f = Uf . The extended outer space is
defined by FT := L2(0, T ;C2), and the extended control operator WT : FT 7→ HT is introduced by:

WT

(
f
g

)
:= V f (x, T ) + Ug(x, T ).

Proposition 2. The extended control operator is an isomorphism between FT and HT .

The set UT := WTFT is called extended reachable set. The Proposition 2 says that UT = HT .

We consider the operator of the Dirac-type system on a half-line: let D := D−1J
d

dx
+D−1ψ on L2(R+,C2) 3

Φ =

(
Φ1

Φ2

)
with a Dirichlet condition Φ1(0) = 0. Denote by θ(x, z) =

(
θ1

θ2

)
a solution to the following Cauchy

problem for z ∈ C: {
Jθx + V θ = zDθ, x > 0,
θ1(0, z) = 0, θ2(0, z) = 1.

(30)
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Let dρ be a spectral measure of D, and F : L2(R+;C2) 7→ L2, ρ(R+) be the corresponding Fourier transform:(
F

(
f1

f2

))
(λ) = F (λ) =

∞∫
0

(f1(x)θ1(x, λ) + f2(x)θ2(x, λ)) dx,

f1(x) =

∞∫
−∞

F (λ)θ1(x, λ) dρ(λ), f2(x) =

∞∫
−∞

F (λ)θ2(x, λ) dρ(λ),

∞∫
0

(
f2

1 (x) + f2
2 (x)

)
dx =

∞∫
−∞

F 2(λ) dρ(λ).

We introduce the extending connecting operator CT : FT 7→ FT by the quadratic form:(
CT
(
f1

g1

)
,

(
f2

g2

))
FT

=

(
WT

(
f1

g1

)
,WT

(
f2

g2

))
HT

, CT =
(
WT

)∗
WT . (31)

The important fact in the BC method is that:

Proposition 3. The extending connecting operator is a positive isomorphism in FT , it admits the representation
in terms of dynamic inverse data R2T , and spectral inverse data dρ(λ).

We introduce the linear manifold of Fourier images of extended states (Fourier image of extended reachable
set) at time t = T :

BTD :=

{
K(λ)

∣∣K(λ) =

(
FWT

(
k1

k2

))
(λ),

(
k1

k2

)
∈ FT

}
= FUT .

Equipped with the scalar product, generated by CT :

[F,G]BT
D

:=

(
CT
(
f1

f2

)
,

(
g1

g2

))
FT

, F,G ∈ BTD,

this linear space becomes a Hilbert space of analytic functions. It is also possible to define a reproducing kernel in
this space (it is given in terms of a solution to a Krein equation), which makes BTD a de Branges space. Solution
of dynamic and spectral IPs for (28) and construction of corresponding de Branges space will be the subject of
forthcoming publications.

4.3. Dynamic approach to de Branges spaces

Based on the arguments from the previous subsection, we can formulate the hypothesis about de Branges space
for canonical system (25) with general Hamiltonian. First, we introduce the auxiliary system:

iH
d

dt
Z + J

d

dx
Z = 0, x ≥ 0, t ≥ 0,

Z(x, 0) = 0, x ≥ 0,
z1(0, t) = g(t), t ≥ 0.

(32)

The extending control operator WT : FT 7→ FT acting in extended control space FT := L2(0, T ;C2) is defined

by WT

(
f
g

)
:= Y f (x, T ) + Zg(x, T ). The extending connecting operator CT is given by analog to (31). Then,

the de Branges space corresponding to (25) is a Fourier image of extended reachable set, equipped with a scalar
product, generated by CT .

We note that the construction of de Branges space by dynamic methods for general Hamiltonian in fact is
equivalent to solving the dynamic IP for system (25) with general H . We note that the in studying the IP in this
case, one inevitably face with two obstacles: the smoothness of H , and changing the rank of H , which reflects
in the lack of the boundary controllability of the dynamical system. The authors suggest that studying the inverse
dynamic problem for a Krein string [10, 19] will be instructive and can help to overcome difficulties connected
with general Hamiltonian.
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