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perpendicular to the axis of the wire

V. A. Margulis1, V. V. Karpunin2, K. I. Mironova1

1Ogarev Mordovian State University, Bolshevistskaya 68, Saransk, 340005, Russia
2Mordovian State Pedagogical Institute named after M. E. Evseviev, Studencheskaya 11 A,

Saransk, 340007, Russia

theorphysics@mrsu.ru, karpuninvv@mail.ru

PACS 07.55.Jg, 73.21.Hb DOI 10.17586/2220-8054-2018-9-2-244-251

The magnetic response of a quantum wire of elliptical cross section is investigated. An explicit analytic expression is found for the spectrum

and wave functions of an electron in the wire. Using an approach based on finding the classical partition function, an expression is obtained

for the magnetic response of the electron gas in the wire. The dependence of the response on the magnitude and direction of the magnetic field

is found.
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1. Introduction

Effects arising in the magnetic field perpendicular to the axis of the wire in electronic systems are due to the
fact that the motion in the plane of confinement and perpendicular to it is connected by a magnetic field whose
direction is determined by the angle θ, B = B(sin θ, cos θ) [1–4]. The effect of the spin-orbit interaction on
the magnetization of low-dimensional systems has been investigated [5–13].The energy spectrum of electrons in
low-dimensional systems has been studied in [14]. As shown in [1, 2], in the case of the parabolic confinement
potential (well or wire), the problem of finding the spectrum and wave functions of the one-electron Hamiltonian
can be solved exactly.

The magnetoresistance of the wire in a magnetic field whose direction is at different angles with the wire axis
has been studied experimentally in Refs [15]. It is shown that at different angles the Aharonov-Bohm oscillations
are manifested in the magnetoresistance.

The jumps of the magnetic moment for the wire in the form of a thin-walled cylinder were found in [16]. We
note that theoretical studies of the magnetic moment of the wire in a magnetic field transverse to the axis are not
known to us. In [17], the electron-impurity scattering coefficient of Bloch waves for one dimensional Dirac comb
potential is used for calculating the temperature dependence of conductivity within kinetic theory. Nonlinear light
absorption and its time evolution at high optical excitation levels in GaSe and InSe layered crystals have been
experimentally investigated in [18].

We use an asymmetric parabolic potential V for modeling of a quantum waveguide with elliptical cross-section.
In this case, the confinement potential is:

V (x, z) =
m∗

2
(ω2

1x
2 + ω2

2z
2), (1)

here ω1 and ω2 is effective frequencies of potential, m∗ is the effective electronic mass. In this model, the
characteristic lengths are li =

√
h̄/m∗ωi, where i = 1, 2 equal to the semi-axes of the cross-section of the wire.

We choose the gauge of the magnetic field in the form A = (0, Bzx − Bxz, 0). The axis of the wire is located
along the axis oy. The Hamiltonian describing the one-electron states has the form:

H =
1

2m∗

[
p2
x + (py −

e

c
Bzx+

e

c
Bxz)

2 + p2
z

]
+ V (x, z) (2)

The solution of the Schrödinger equation with the Hamiltonian (2) can be written in the form:

Ψ(x, y, z) =
1√
L

exp

(
i

h̄
pyy

)
ϕ(x, z), (3)
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where ϕ satisfies the equation Ĥϕ = Eϕ, and L is the length of the wire. This L−1/2 is the normalization constant
of the plane wave in the y direction. The Hamiltonian Ĥ has the form

Ĥ =
1

2m∗

[
p2
x + (py −

e

c
Bzx+

e

c
Bxz)

2 + p2
z

]
+ V (x, z), (4)

expression (2) is not identical (4) because py is eigenvalue of the operator py.
Let us shift the coordinate system xoz along the axis x by x0, and along the axis z by z0, and then we require

the reduction of the linear in the axis x and z terms in h. Then we obtain equations for x0, y0:{
−pyωz +m∗[(ω2

1 + ω2
z)x0 − ωxωzz0] = 0

pyωx +m∗[(ω2
2 + ω2

x)z0 − ωxωzx0] = 0,
(5)

where ωx = |e|Bx/m∗c, ωz = |e|Bz/m∗c, Bx = B sin θ. θ is the angle defined by the magnetic field and the x
axis.

Solving the system (5), we get relations

x0 =
ωzpy
Mω2

1

; z0 = −ωxpy
Mω2

2

. (6)

After the shift in the axes x′ = x− x0, z′ = z − z0, the Hamiltonian Ĥ takes the form:

Ĥ = − h̄2

2m∗
∆ +

p2
y

2m∗
+ (ωxz0 − ωxx0)py+

m∗

2
[(ω2

1 + ω2
z)(x′2 + x2

0)+

+(ω2
2 + ω2

x)(z′2 + z2
0)− 2ωxωz(x

′z′ + x0z0)], (7)

where ∆ is a two-dimensional Laplace operator.
We rotate the coordinate system by an angle α to get rid of the term ∼ x′z′. The angle α satisfies the relation:

tg2α =
2ωxωz

ω2
2 − ω2

1 + ω2
x − ω2

z

. (8)

The Hamiltonian Ĥ takes the form:

Ĥ = − h̄2

2m∗
∆ +

p2
y

2M
+
m∗Ω2

1

2
x2 +

m∗Ω2
2

2
z2. (9)

Characteristic frequencies are:

2Ω2
1,2 = ω2

1 + ω2
2 + ω2

c ±
√

(ω2
2 − ω2

1 − ω2
c cos 2θ)2 + ω4

c sin2 2θ. (10)

The spectrum Ĥ , as follows from (9), has the form:

ε =
p2
y

2M
+ h̄Ω1

(
n1 +

1

2

)
+ h̄Ω2

(
n2 +

1

2

)
, n1, n2 = 0, 1, 2..., (11)

where:

M = m∗
(

1 +
ω2
x

ω2
2

+
ω2
z

ω2
1

)
= m∗

(
1 +

ω2
c

ω2
2

sin2 θ +
ω2
c

ω2
1

cos2 θ

)
. (12)

Eigen functions ϕ(x, z) have the form:

ϕ(x, z) = Φn1

[
(x− x0) cosα+ (z − z0) sinα

]
× Φn2

[
(x− x0) sinα+ (z − z0) cosα

]
, (13)

where Φn1 and Φn2 are the oscillatory functions. Φs(y) = Cs exp(−y2/2l2)Hs(y/l), Cs is the normalization
constant, Hs(y/l) is Hermite polynomial.
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2. Magnetic moment

The purpose of this paper is to find the magnetic moment M of the wire placed in a perpendicular magnetic
field. The calculation of the magnetic moment is based on finding the thermodynamic potential Ω of the gas in the
wire. Then M is determined by the formula M = −(∂Ω/∂B)T,V , where T is temperature and V is volume.

There are two approaches to finding Ω. One approach is based on the Poisson formula [19, 20], and the
other [21], is based on finding the classical partition function of states Z. Both approaches were used earlier to
find the magnetic response of nanostructures [22–24]. In this paper, we use the classical partition function Z for
finding the monotonic and oscillating part of the magnetic moment:

Z =
∑

n1,n2,py

exp(−εn1,n2,py/T ). (14)

Using the formula (11), from (14) we get:

Z =
D
√
T

4

[
sinh

(
h̄Ω1

2T

)
sinh

(
h̄Ω2

2T

)]−1

, (15)

where D =
√

2πML/(2πh̄).
Introducing ζ = 1/T , we obtain for Ω the expression [21]:

Ω =
1

2πi

γ+i∞∫
γ−i∞

Z(ζ)

ζ2
dζ

∞∫
0

eεζ
∂f0

∂ε
dε. (16)

Here, f0(ε) = (exp((ε− µ)/T ) + 1)−1 is the Fermi distribution function 0 < γ < 1/T . In (16) the expression for
Ω contain the integral:

1

2πi

γ+i∞∫
γ−i∞

exp εζdζ

ζ5/2 sinhβ1ζ sinhβ2ζ
, (17)

where β1,2 = h̄Ω1,2/2 . This integral is calculated in the Appendix:

1

2πi

γ+i∞∫
γ−i∞

exp(εζ)dζ

ζ5/2 sinhβ1ζ sinhβ2ζ
=

1

π

∞∫
0

exp(−εt)dt
t5/2 sinhβ1t sinhβ2t

+
2

π5/2

∞∑
k=1

(−1)k

k5/2
×

[
β

3/2
1

cos(kπε/β1 + π/4)

sin(πkβ2/β1)
+ β

3/2
2

cos(kπε/β2 + π/4)

sin(πkβ1/β2)

]
. (18)

Replacing in (16) (ε − µ)/T = ξ , where µ is the chemical potential of the electronic gas and replacing the
value −µ/T on −∞ , we obtain from (16) and (18) the expression for Ω = Ωmon + Ωosc, where:

Ωmon = −DT
4
×
∞∫

0

exp(−µt)
[
t3/2 sin(πTt) sinhβ1t sinhβ2t

]−1

dt. (19)

The oscillating part Ωosc has the form of a Fourier series:

Ωosc = − TD

2
√
π

∞∑
k=1

(−1)k+1

k3/2

[
β

1/2
1 cos(πµk/β1 + π/4)

sinh(π2kT/β1) sin(πkβ2/β1)
+

β
1/2
2 cos(πµk/β2 + π/4)

sinh(π2kT/β2) sin(πkβ1/β2)

]
. (20)

It is convenient at first calculate the derivatives:

∂Ω1,2

∂B
=

eωc
m∗cΩ1,2

(
1± ω2

1 − ω2
2 + ω2

c

Ω2
1 − Ω2

2

)
. (21)

Differentiating Ωosc only rapidly oscillating factors in the field, and taking account of (20), we obtain:

Mosc

µ∗B
= −1

2
TL
√
Mµωc ×

{
1

(h̄Ω1)5/2

(
1 +

ω2
1 − ω2

2 + ω2
c

Ω2
1 − Ω2

2

)
×

∞∑
k=1

(−1)k√
k

sin
(

2πkµ
h̄Ω1

+ π
4

)
sinh

(
2π2kT
h̄Ω1

)
sin
(
πkΩ2

Ω1

) +
1

(h̄Ω2)5/2

(
1 +

ω2
1 − ω2

2 + ω2
c

Ω2
2 − Ω2

1

)
×
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∞∑
k=1

(−1)k√
k

sin
(

2πkµ
h̄Ω2

+ π
4

)
sinh

(
2π2kT
h̄Ω2

)
sin
(
πkΩ1

Ω2

)}, (22)

here µ∗B = eh̄/2m∗c.
In the case ω2 = ω2

1 = ω2
2 , however Ω1 6= Ω2, Ω1 =

√
ω2 + ω2

c , Ω2 = ω. In this connection, for the circular
cross section the formula (22) has the form

Mosc

µ∗B
= −TL

√
Mµωc ×

[
1

(h̄
√
ω2 + ω2

c )5/2
×

∞∑
k=1

(−1)k√
k

sin((2πkµ/h̄
√
ω2 + ω2

c ) + π/4)

sinh(2π2kT/h̄
√
ω2 + ω2

c ) sin(πkω/
√
ω2 + ω2

c )

]
. (23)

It can be noted that passage to the limit to a wire of circular cross section ωc 6= 0 is possible, since in this
case Ω1 6= Ω2. In the case, when ωc → 0, such passage to the limit is impossible. The reason for this is related to
the fact that the calculation of the magnetic moment in the work is based on finding the partition function Z (15).
The oscillating part is formed by the sum of the residues at the poles of the first order at the points zk.

res

[
exp(εz)

z5/2 sinhβ1z sinhβ2z
, zk

]
. (24)

If Ω1 = Ω2, ωc = 0, the poles become of the second order:

res

[
exp(εz)

z5/2 sinh2 βz
, zk

]
= lim
z→zk

[
exp(εz)(z − zk)2

z5/2 sinh2 βz

]
. (25)

Because of this circumstance, using formula (A.7) and hence (23) in this case cannot be found as lim
ωc→0

Mosc

because poles are changes.
The dependence of the magnetic response on the magnetic field is shown in Figs. 1 – 4. Let us now consider

the limit of the potential Ω in the case of weak fields: ωc → 0, µ � h̄Ω1,2, h̄Ω1,2/T � 1. We note that in this
limit, the oscillating part Ωosc consists of rapidly oscillating terms of the series (20) and their contribution to Ω
tends to zero. To evaluate Ωmon, we use (16). Then, as shown in [25] at low temperatures, the expression is given
by:

−Ω = z(µ) +
π2T 2

6
z

′′
(µ), (26)

where

z(ε) =
1

2πi

γ+i∞∫
γ−i∞

eεξZ(ξ)
dξ

ξ2
, (27)

here Z(ξ) is determined by the formula (15). With the constraint h̄Ωi/T � 1 from (15) follows the estimate

Z(ξ) ' D√
ξ

exp

[
− h̄(Ω1 + Ω2)

T

]
. (28)

We substitute (28) in (27) and use the formula [26]:

1

2πi

γ+i∞∫
γ−i∞

tγ−1e−ptdt =

{
0, p > 0,
1/((−p)γΓ(1− χ)), p < 0, at γ > 0, Reχ < 1.

(29)

Then

z(ε) =
D

Γ(5/2)

(
ε− h̄Ω1 + h̄Ω2

2

)3/2

, (30)

where Γ(α) – Euler function, Γ(5/2) = 3
√
π/4.

The second derivative z(ε) has the form:

z
′′
(ε) =

D√
π

1√
ε− h̄(Ω1+Ω2)

2

, (31)
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FIG. 1. Dependence of the magnetic response of a quantum wire on the magnitude of the
magnetic field for the angle θ = π/8.324, the effective frequencies of the confinement potential
are ω1 = 2.177× 1012 c−1; ω2 = 3.353× 1012 c−1. The temperature T is 7 K

FIG. 2. Dependence of the magnetic response of a quantum wire on the magnitude of the
magnetic field for the angle θ = π/9.524, the effective frequencies of the confinement potential
are ω1 = 3.177× 1012 c−1; ω2 = 6.353× 1012 c−1. The temperature T is 3 K

FIG. 3. The dependence of the magnetic response of a quantum wire on the direction of the
magnetic field (in the interval from 0 to 180), the value of which is B = 1.52 Tl, at effective
frequencies of the confinement potential are ω1 = 2.177 × 1012 c−1; ω2 = 3.353 × 1012 c−1.
The temperature T is 2 K
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FIG. 4. The dependence of the magnetic response of a quantum wire on the direction of the
magnetic field (in the interval from 0 to 180), the value of which is B = 1.52 Tl, at effective
frequencies of the confinement potential are ω1 = 2.177 × 1012 c−1; ω2 = 3.353 × 1012 c−1.
The temperature T is 5 K

Then, for Ωmon, we obtain:

−Ωmon(µ) =
4D

3
√
π

(
µ− h̄Ω1 + h̄Ω2

2

)3/2

+
D√
π

π2T 2

6

1√
µ− h̄Ω1+h̄Ω2

2

. (32)

The second term in (32) is small in comparison with the first ∼ O(T 2/µ2), so this can be neglected.
For the estimate Ωmon, we confine ourselves to the case ω1 = ω2. Then, D ' D0

√
1 + ω2

c/ω
2, where

D0 = D(B = 0). Frequencies Ω1 = ω, Ω2 =
√
ω2 + ω2

c .

−Ωmon(µ) =
4D

3
√
π

(
µ− h̄ω − h̄ω2

c

4ω

)3/2(
1 +

ω2
c

2ω2

)
. (33)

From (33) we obtain the estimate:

− 1

µ∗B

∂Ωmon

∂B
' 8D0

3
√
π

ωc
h̄ω2

(µ− h̄ω)
3/2 − 2D0ωc√

πω
(µ− h̄ω)

1/2
. (34)

In (34) to within h̄ω/µ we can confine ourselves to the first term. Then for the magnetic moment, we obtain:

Mmon

µ∗B
=

8D0

3
√
π

ωc
h̄ω2

(µ− h̄ω)
3/2

. (35)

From (35), one can estimate the magnetic susceptibility of an electron gas in a wire χ = −(1/V )∂2Ω/∂B2.
Here, the normalization volume V = h̄L/m∗

√
ω1ω2. Then, for susceptibility χ, we obtain the following expression:

χ =
4D0

3
√
πL

(
e2

m∗c2

)
(µ− h̄ω)

3/2

h̄ω
. (36)

3. Conclusion

As can be seen from formula (35) and (Fig. 1), the main dependence is linear on the magnetic field. Peaks
grow linearly with increasing magnetic field.

We consider the wire with an elliptical section, not a circular section, since the latter type of section is a
special case. In particular, in the case of a circular cross section, the value M entering the spectrum does not
depend on the angle of field direction θ, M = m∗

(
1 + ω2

c/ω
2
)
, ω2 = ω2

1 = ω2
2 .

It follows from the formula (36) that the electron gas in the wire is paramagnetic χ > 0 and the cause of this
is the dependence M(B). Obviously, the expressions (20) and (22) for Ωosc and Mosc lose their meaning for those
values of the field B for which the ratio Ω1/Ω2 or Ω2/Ω1 is equal to an integer (the commensurability condition).
The question of the convergence of Fourier series of the type entering into (20) and (22) is considered in detail
in [2], where it is shown that with probability one the series converge to an analytic function and, therefore, they
can be differentiated term by term in components fields at all points where the commensurability conditions are
not satisfied.



250 V. A. Margulis, V. V. Karpunin, K. I. Mironova

In Fig. 1–4, we plotted the dependence of the magnetic moment on the magnitude and direction of the field at
typical values for the spectrum parameters. It is important to note that oscillatory dependencies arise not only on
the graph M(B), but also M(θ). In both cases, the oscillations are not periodic.

4. Appendix

We introduce the notation:

J =
1

2πi

γ+i∞∫
γ−i∞

ζ3/2eεζdζ

sinhβ1ζ sinhβ2ζ
. (A.1)

For the calculation J , we extend the integrand to the complex plane with a cut along the negative part of
the real line. Consider a contour Γ consisting of both CR, Cρ segments and a segment [ρ, R] T [R, ρ] , and
[γ − iR, γ − iR] (Fig.5).

FIG. 5. Contour Γ

The integrand in J is
d4

dε4

(
eεζ

ζ5/2 sinhβ1ζ sinhβ2ζ

)
. (A.2)

This function has simple poles at points zk = iπk/β1, and zk = iπk/β2, where k = ±1,±2, .... It is easy to
show that the integrals over CR, Cρ tend to zero for R → ∞ and ρ → 0, respectively. The sum of the integrals
over the upper and lower sides of the cut in the same range gives:

1

π

∞∫
0

t3/2e−εtdt

sinhβ1t sinhβ2z
. (A.3)

We take into account that:

1

2πi

∮
Γ

ζ3/2eεζdζ

sinhβ1ζ sinhβ2ζ
=

∞∑
k=−∞

res

[
z3/2eεz

sinhβ1z sinhβ2z
, zk

]
. (A.4)

Then we get the relation:

1

2πi

γ+i∞∫
γ−i∞

ζ3/2eεζdζ

sinhβ1ζ sinhβ2ζ
=

1

π

∞∫
0

t3/2e−εtdt

sinhβ1t sinhβ2t
+

∞∑
k=−∞

res

[
z3/2eεz

sinhβ1z sinhβ2z
, zk

]
. (A.5)

We note that J(ε) is the inverse Laplace transform of the integrand. From the theorem on the differentiation
of the integral and the image to the parameter ε, it follows that:

1

2πi

γ+i∞∫
γ−i∞

eεζdζ

ζ5/2 sinhβ1ζ sinhβ2ζ
=

1

π

∞∫
0

e−εtdt

t5/2 sinhβ1t sinhβ2t
+
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+

∞∑
k=−∞

res

[
eεz

z5/2 sinhβ1z sinhβ2z
, zk

]
. (A.6)

Summing up the residues in (A.6), we obtain:

1

2πi

γ+i∞∫
γ−i∞

eεζdζ

ζ5/2 sinhβ1ζ sinhβ2ζ
=

1

π

∞∫
0

e−εtdt

t5/2 sinhβ1t sinhβ2t
+

+
2

π5/2

∞∑
k=1

(−1)k

k5/2

[
β

3/2
1 cos(πkε/β1 + π/4)

sin(πkβ2/β1)
+
β

3/2
2 cos(πkε/β2 + π/4)

sin(πkβ1/β2)

]
. (A.7)

Acknowledgment

The work is supported by the Russian Foundation of Basic Research (project 16-02-00475).

References

[1] Merlin R. Subband-Landau-level coupling in tilted magnetic fields: Exact results for parabolic wells. Sol. State Commun., 1987, 64,
P. 99–101.

[2] Geyler V.A., Margulis V.A. Specific heat of quasi-two-dimensional systems in a magnetic field. Phys. Rev. B, 1997, 55, P. 2543–2548.
[3] Bychkov Yu.A., Mel′nikov V.I., Rashba E.I. Effect of spin-orbit coupling on the energy spectrum of a 2D electron system in a tilted

magnetic field. Sov. JETP, 1990, 71, P. 401–405.
[4] Drichko I.L., Smirnov I.Yu., Suslov A.V., Mironov O.A., Leadley D.R. Magnetoresistivity and acoustoelectronic effects in a tilted magnetic

field in p-Si/SiGe/Si structures with an anisotropic g factor. JETP, 2010, 111, P. 495–502.
[5] Herzog F., Heedt S., Goerke S., Ibrahim A., Rupprecht B., Heyn Ch., Hardtdegen H., Schpers Th., Wilde M.A. and Grundler D.

Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles. J. Phys.:
Condens. Matter, 2016, 28, P. 045301.

[6] Wilde M.A. and Grundler D. Alternative method for the quantitative determination of Rashba-and Dresselhaus spin-orbit interaction using
the magnetization. New Journal of Physics, 2013, 15, P. 115013.

[7] Wilde M. A., Rupprecht B., Herzog F., Ibrahim A., and Grundler D. Spin-orbit interaction in the magnetization of two-dimensional
electron systems. Phys. Status Solidi B, 2014, 251, P. 1710–1724.

[8] Rupprecht B., Heedt S., Hardtdegen H., Schapers Th., Heyn Ch., Wilde M.A., and Grundler D. Frequency anomaly in the Rashba-effect
induced magnetization oscillations of a high-mobility two-dimensional electron system. Phys. Rev. B, 2013, 87, P. 035307.

[9] Rupprecht B., Krenner W., Wurstbauer U., Heyn Ch., Windisch T., Wilde M.A., Wegscheider W., and Grundler D. Magnetism in a Mn
modulation-doped InAs/InGaAs heterostructure with a two-dimensional hole system. J.Appl.Phys., 2010, 107, P. 093711.

[10] Wilde M.A., Schwarz M.P., Heyn Ch., Heitmann D., and Grundler D. Experimental evidence of the ideal de Haas-van Alphen effect in a
two-dimensional system. Phys. Rev. B, 2006, 73, P. 125325.

[11] Ruhe N., Springborn J.I., and Heyn Ch. Simultaneous measurement of the de Haas-van Alphen and the Shubnikov-de Haas effect in a
two-dimensional electron system. Phys. Rev. B, 2006, 74, P. 235326.

[12] Wilde M. A., Rhode M., Heyn Ch., Heitmann D., and Grundler D. Direct measurements of the spin and valley splittings in the
magnetization of a Si/SiGe quantum well in tilted magnetic fields. Phys. Rev. B, 2005, 72, P. 165429.

[13] Wilde M.A., Springborn J.I., Heyn Ch., Heitmann D., Grundler D. Magnetization of GaAs quantum wires with quasi one-dimensional
electron systems. Physica E, 2004, 22, P. 729–732.

[14] Apalkov V.M. and Portnoi M.E. Tuning gaps and phases of a two-subband system in a quantizing magnetic field. Phys. Rev. B, 2002, 65,
P. 125310.

[15] Gitsu D.V., Huber T.E., Konopko L.A., and Nikolaeva A.A. Aharonov-Bohm Oscillations in Bi Nanowires. AIP Conference Proceedings,
2006, 850, P. 1409–1410.

[16] Tsindlekht M.I., Genkin V.M., Felner I., Zeides F., Katz N., Gazi S., Chromik S., Dobrovolskiy O.V., Sachser R., Huth M. Magnetic
moment jumps in flat and nanopatterned Nb thin-walled cylinders. Physica C: Superconductivity and its Applications, 2017, 533, P. 101–
104.

[17] Botman S.A., Leble S.B. Electrical conductivity model for quasionedimensional structures. Nanosystems: Physics, Chemistry, Mathematics,
2017, 8(2), P. 231–235.

[18] Kyazimzade A.G., Salmanov V.M., Huseynov A.G., Mamedov R.M., Salmanova A.A., Ahmedova F.Sh. Nonlinear optical and quantadi-
mensional effects in monoselenide of gallium and indium. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 654–660.

[19] Landau L.D., Lifshitz E.M. Statistical Physics, Third Edition, Part 1: Volume 5 (Course of Theoretical Physics, Volume 5), Butterworth-
Heinemann; 3 edition, January 15, 1980, 544 p.

[20] Shoenberg D. Magnetic Oscillations in Metals. Cambridge University Press, 1984, 570 p.
[21] Perelomov A.M. Generalized Coherent States and their Applications, Springer-Verlag Berlin Heidelberg, 1986, 320 p.
[22] Geyler V.A., Margulis V.A., Nesmelov A.G., Chuchaev I.I. Magnetic Susceptibility of a Quasi-Two-Dimensional System in a Tilted

Magnetic Field. Phys. Sol. St., 1994, 36, P. 1090–1094.
[23] Margulis V.A., Mironov V.A. Magnetic moment of a 2D electron gas with spin-orbit interaction. JETP, 2009, 108, P. 656–660.
[24] Margulis V.A., Mironov V.A. Magnetic moment of the Volcano ring. Phys. Sol. St., 2008, 50, P. 152–158.
[25] Margulis V.A. Magnetization and polarization of the electron gas in multiferroics. Low Temp. Phys., 2014, 40, P. 363–366.
[26] Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and series, Elementary Functions, N.Y.: Gordon and Breach, 1986, 800 p.


