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Wave dynamics on time-depending graph with Aharonov–Bohm ring
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Aharonov–Bohm ring (AB ring) is an element frequently used in nanosystems. The paper deals with wave dynamics on quantum graph

consisting of AB ring coupled to a segment. It is assumed that the lengths of the edges vary in time. Variable replacement is made to come

to the problem for stationary geometric graph. The obtained equation is solved using the expansion with respect to a complete system of

eigenfunctions of the unperturbed self-adjoint operator for the stationary graph. The coefficients of the expansion are found as solutions of a

system of differential equations numerically. The influence of the magnetic field is studied. The comparison with the case of stable geometric

graph is made.
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1. Introduction

Nanostructures in a magnetic field attract great attention of physicists due to its interesting behavior. Many of
these properties, e.g., giant magnetoresistance, have found wide range of applications in nanotechnology, computer
hardware, etc. One of the basic elements for nanostructures in a magnetic field is Aharonov–Bohm ring [1], i.e.
a nano-sized conducting ring in a magnetic field orthogonal to the ring plane. The Aharonov–Bohm effect was
observed and studied in many physical situations (see, e.g., [2–6]. For such structures, quantum graph model is
actively used [7–10]. It is a rather effective mathematical model allowing one to describe the spectral and transport
properties of many complex physical systems [11–15]. We consider a quantum graph with edge lengths varying in
time. Although this model is very interesting from a physical point of view (see, e.g., [16]), there are only a few
works devoted to this problem. One can mention papers concerning the time-dependent boundary conditions [17]
or time dependent point-like interactions [18], but consideration of time-dependent graphs began recently [19–23].
Wave dynamics for time-dependent quantum graphs in a magnetic field was not studied previously. There are
only works concerning concerning Aharonov–Bohm rings in fluctuating magnetic field (see, e.g., [24]). In the
present paper, we construct and study a model of time-dependent quantum graph with loop in magnetic field. We
investigate the dependence of the dynamics on a magnetic field.

2. Model

2.1. Graph description

We consider quantum graph Γ with a loop (ring) shown in Fig. 1. It is assumed that the magnetic field acts at
the ring. Lengths of graph edges, ring (Lr(t)) and segment (L`(t)), vary in time in accordance with the following
relations: {

Lr(t) = 2πrL(t),

L`(t) = lL(t),
(1)

where r, l are constants, L(t) is some twice continuously differentiable function. Obviously, Lr(t) and L`(t)
should be positive.
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FIG. 1. Geometrical structure of the graph

2.2. Schrödinger operator on the graph

We start with the problem corresponding to the absence of a magnetic field. It means free Schrödinger operator
acts on edges of the graph: 

i~
∂

∂t
Ψr(x, t) = − ~2

2m

∂2

∂x2
Ψr(x, t), 0 ≤ x ≤ Lr(t),

i~
∂

∂t
Ψ`(x, t) = − ~2

2m

∂2

∂x2
Ψ`(x, t), 0 ≤ x ≤ L`(t).

(2)

We look for continuous solution satisfying the Kirchhoff conditions at the central vertex V0 and the Dirichlet
conditions at the boundary one V1:

Ψ`(0, t) = Ψr(0, t) = Ψr(Lr(t), t),

Ψ`(L`(t), t) = 0,

∂

∂x
Ψ`(0, t) +

∂

∂x
Ψr(0, t)−

∂

∂x
Ψr(Lr(t), t) = 0.

(3)

We replace variables in (2), (3) to obtain a problem with non-varying edges: y =
x

L(t)
,

t1 = t,
(4)

Further, t1 is mentioned as t for simplicity. After the replacement, we come to the following equations:
i
∂

∂t
Ψr = − 1

L2

∂2

∂y2
Ψr + i

L̇

L
y
∂

∂y
Ψr, 0 ≤ x ≤ 2πr,

i
∂

∂t
Ψ` = − 1

L2

∂2

∂y2
Ψ` + i

L̇

L
y
∂

∂y
Ψ`, 0 ≤ x ≤ l.

(5)

Here L̇ = dL/dt. The boundary conditions remain the same as (3). The appearing factor L(t) in the last condition
can be omitted due to its positivity.

Thus, we obtained the problem for stable geometric graph. To solve it, we will use eigenfunctions of the
stationary Schrödinger operator. The corresponding problem for such quantum graph (with the length of segment
equals l and the radius of the ring equals r) has the form:

− d2

dy2
φ`(y) = k2φ`(y), 0 ≤ y ≤ l,

− d2

dy2
φr(y) = k2φr(y), 0 ≤ y ≤ 2πr,


φ`(0) = φr(0) = φr(2πr),

φ`(`) = 0,
d
yφl|y=0 + d

dyφr|y=0 − d
dyφr|y=2πr = 0.
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The eigenfunctions are as follows

φ
(n)
` (y) =

sin(kn(l − y))

Bn sin(kn)
,

φ(n)
r (y) =

cos (kn(y − πr))
Bn cos (knπr)

,

the normalizing coefficient is

B2
n =

1

2 sin2(knl)
+

πr

cos2(πknr)
,

and kn is n-th root of characteristic equation

2 tan (πkr) = cot kl.

Dealing with stationary geometric graph, we can expand solution into a series of the eigenfunctions which
form a complete set as eigenfunctions of self-adjoint operator:(

ψ`(y, t)

ψr(y, t)

)
=
∑
n

cn(t)

(
φ

(n)
` (y)

φ
(n)
r (y)

)
. (6)

After the substitution of expansion (6) into equations (5), multiplication by φ
(m)
r and φ

(m)
` , correspondingly,

summation of the both equations and integration of the obtained expression over graph Γ, we come to a system of
ordinary differential equations for coefficients cn(t) of the expansion:

ċm(t) + i
k2
m

L2
cm −

∑
n

cn
L̇

L

∫
Γ

y
∂φ(n)

∂y
φ(m)dy = 0. (7)

The system is truncated and solved numerically. We will discuss it in the next section, where the analogous
procedure will be applied to the graph in a magnetic field.

2.3. Quantum graph in magnetic field

In the model, it is assumed that we have different operators acting at the loop and at the segment. While at
the segment, we deal with the free Schrödinger operator, at the loop we consider the Landau operator, i.e. the
Schrödinger operator with a magnetic field:

i~
∂

∂t
Ψr(x, t) =

~2

2m

(
−i ∂
∂x

+
Φ(t)

L(t)Φ0

)2

Ψr(x, t), 0 ≤ x ≤ Lr(t),

i~
∂

∂t
Ψ`(x, t) = − ~2

2m

∂2

∂x2
Ψ`(x, t), 0 ≤ x ≤ L`(t),

(8)

where the magnetic flux is Φ(t) = πr2L2(t)B, Φ0 is the magnetic flux quantum and B is constant magnetic field.
After variables replacement (4), one obtains:

i~

(
− L̇
L
y
∂

∂y
Ψr(y, t) +

∂

∂t
Ψr(y, t)

)
=

− ~2

2m

1

L2

∂2

∂y2
Ψr(y, t)− i

~2

m

Φ

LΦ0

1

L

∂

∂y
Ψr(y, t) + i

~2

m

Φ2

L2Φ2
0

Ψr(y, t), 0 ≤ y ≤ l0,

i~

(
− L̇
L
y
∂

∂y
Ψ`(y, t) +

∂

∂t
Ψ`(y, t)

)
= − ~2

2m

1

L2

∂2

∂y2
Ψ`(y, t).

(9)

To solve the equations, we use the expansion with respect to the complete system of eigenfunctions of the free
stationary Schrödinger operator on the stationary graph:(

Ψ`(y, t)

Ψr(y, t)

)
=
∑
n

Cn(t)

(
φ

(n)
` (y)

φ
(n)
r (y)

)
. (10)

We put expansion (10) into equations (9) and multiply the both sides by φ(m)
r and φ(m)

` , correspondingly. Then,
we summarize both equations and integrate the expression over graph Γ. Finally, we come to a system of ordinary
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FIG. 2. Wave function modulo. Left – at the ring, right – at the segment; t = 0.0 (Initial
function) (arbitrary units)

FIG. 3. Wave function modulo for different values of B. Left – at the ring, right – at the
segment; t = 1.6 (arbitrary units)

differential equations for coefficients Cn(t) of expansion (10):

Ċm + i
~

2m

k2
m

L2
Cm −

∑
n

Cn
L̇

L

 2πr∫
0

y
∂φ

(n)
r

∂y
φ(m)
r dy +

l∫
0

y
∂φ

(n)
`

∂y
φ

(m)
` dy


+

~
m

πrB

Φ0

∑
n

Cn

2πr∫
0

∂φ
(n)
r

∂y
φ(m)
r dy + i

~
2m

π2r2L2B2

Φ2
0

∑
n

Cn

2πr∫
0

φ
(n)
` φ

(m)
` dy = 0.

(11)

3. Results and discussion

The initial conditions for system (11) are obtained from the initial condition for the wave function:

Cn(0) =

2πr∫
0

Ψr(y, 0)φ(n)
r dy +

l∫
0

Ψ`(y, 0)φ
(n)
l dy. (12)

We choose the initial value of the wave function in the following form:

Ψr(y, 0) = 0,

Ψ`(y, 0) = (1− cos 2πy)

√
2

3
.

Other parameters are chosen in the following way:

L(t) = a+ b cosωt, a = 1, b = 0.5, ω = 1,

~ = 2m = 1, l = r = 1.

System (11) is infinite. To solve it numerically, we make a truncation. We increase the number of equations
up to the moment when the result becomes stable.

Results for B = 0, 1, 5, 10 are shown in Fig. 2–6. One can see that an increase of the magnetic field lead to
greater localization of the solution at the segment and to stabilization of the wave function.

The stabilization of the wave function is observed. Comparing results for the graph having constant lengths
of edges (L = 1) and for the time-dependent graph, one can see that in the stationary case, the magnetic field can
stabilize the solution more quickly. Results for B = 5 are shown in Fig. 7–9.
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FIG. 4. Wave function modulo for different values of B. Left – at the ring, right – at the
segment; t = 3.24 (arbitrary units)

FIG. 5. Wave function modulo for different values of B. Left – at the ring, right – at the
segment; t = 4.8 (arbitrary units)

FIG. 6. Wave function modulo for different values of B. Left – at the ring, right – at the
segment; t = 6.4 (arbitrary units)
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FIG. 7. Wave function modulo for B = 5. Left – at the ring, right – at the segment; thin curve –
t = 0.0, dotted curve – t = 0.2, solid curve – t = 0.4 (arbitrary units)

FIG. 8. Wave function modulo for B = 5. Left – at the ring, right – at the segment; thin curve –
t = 0.6, dotted curve – t = 0.8, solid curve – t = 1.0 (arbitrary units)

FIG. 9. Wave function modulo for B = 5. Left – at the ring, right – at the segment; thin curve –
t = 1.2, dotted curve – t = 1.4, solid curve – t = 1.6 . . . (arbitrary units)
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