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Stationary nonlinear Schrodinger equation on the graph for the triangle
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We consider the stationary (cubic) nonlinear Schrodinger equation (NLSE) on a simple metric graph in the form of a triangle with three infinite
outgoing bonds. Exact solutions are obtained for primary star graph with the boundary vertex conditions providing the wave function weights

continuity and flux conservation for the case of repulsive nonlinearity.
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1. Introduction

The nonlinear evolution equation on metric graphs have attracted much attention over the last decade [1-10].
Such interest is caused by the possibility of modeling nonlinear waves and soliton transport in networks and
branched structures by nonlinear wave equations on metric graphs. The latter is of practical importance for the
problem of engineering network architectures providing tunable transport of heat, spin, charge, light and information
transport in networks. In addition, such equations can be used for to model soliton transport in DNA double helix,
conducting polymers, branched optical waveguides, Josephson junction networks and Bose-Einstein condensation
in branched traps.

Earlier, the problem of soliton transport in branched structures and networks was mainly studied within the
tight-binding approach [11]. However, such an approach doesn’t provide comprehensive treatment of the problem,
thus one needs to use continuous NLSE on graphs.

Considerable progress has been made so far in the obtaining of soliton solutions of different nonlinear wave
equations on metric graphs. The integrability of nonlinear Schrodinger equation on simple metric graphs was shown
and soliton solutions providing reflectionless transmission of solitons through the graph vertex have been obtained
in [1]. Exact solutions for the stationary NLSE and their stability were studied in the Refs. [3-7]. Dispersion
relations for the linear and NLSE on networks are discussed in [12]. Sine-Gordon equation on metric graphs has
been studied in [8,9]. The NLSE and soliton transport in planar graphs were studied in [10].

In this paper, we treat the stationary NLSE on the graph for a triangle with outgoing bonds shown in Fig. 1.
Graphs are the systems consisting of bonds which are connected at the vertices [13]. The bonds are connected
according to a rule that is called the topology of a graph. The topology of a graph is given in terms of so-called
adjacency matrix (or connectivity matrix) which can be written as [14,15]:

Cij = Cji = ij=1,2..,V.

1 if ¢ and j are connected,
0 otherwise,

This paper is organized as follows. In the next section we will present formulation of the problem for the
graph shown in Fig. 1. Section III presents derivation of the solution for the stationary NLSE on this graph by
considering the repulsive nonlinearity. In section IV, we discuss the extension of these results to the case of the
attractive nonlinearity. Finally, section V presents some concluding remarks.



SNLSE on the graph for the triangle with outgoing bonds 25

F1G. 1. The graph for the triangle with outgoing bonds

2. Stationary Schréodinger equation on the graph for the triangle with outgoing infinite bonds

Consider a metric graph presented in Fig. 1 which consists of a triangle with finite sides connected to outgoing
infinite leads (b1747576 ~ (0; L1,475,6), b273 ~ (L1; Lgﬁg)).
Then, the time-independent (stationary) NLSE on each bond of b of such graph can be written as:

— oy + Bolbs* e = N2y, By > 0. (1

Eq. (1) is a multi-component equation in which the components are connected to each other through the vertex
boundary conditions providing the “glue” for the bonds at the branching of points of a graph. For the graph in
Fig. 1, such boundary conditions can be written as:

Y1(2)|z=0 = 0, ¥5(%)|o=15 = 0, Y6(2)|2=L, = 0, (2)
VB (@) omr, = V/Botho(2)|oer, = V/B303(2) e, 3)
{ 1 O¢i(x) 1 Op(z) 1 51#3(33)} —0 )
VB1 Or VB2 Oz VB3 Oz e—L, ’
VB2t (@) |e=r, = V/Brtoa(@)]a=0 = /Bstbs ()] e=0, )
1 O(x) 1 OYu(x) 1 9¢s(a) —0 (6)
VB2 Oz |,_p, VB Ox |, VB Oz [, ,
VB33 () o=ry = v/ Batoa(@)la=r, = v/ Bstbs(2)]a=0, (7)
1 9ys(z) 1 Oy(z) 1 Og(z) —0 @)
VBs Oz x=L3 VBs Oz =Ly VBs 9z |,

and the wave function is normalized as:
6
> / [y () Pl = 1. ©)
j=1 bj
Dirichlet boundary conditions are imposed at the bond edges.

3. Solution of the time-independent NLSE on the graph for the triangle with outgoing bonds

The solution of Eq. (1) can be written in the form:

¥y(7) = fo(z)e, (10)
where b is bond index, 7, = const, fy(x) is a real function obeying the equation:
—fi + Bofyy = N fj. (11)

From the boundary conditions we have v, = - and it is clear that the functions f; should fulfill Egs. (2) — (9).



26 K. K. Sabirov, M. Aripov, D. B. Sagdullayev

Exact solutions for Eq. (11) for finite interval and periodic boundary conditions can be found in the Refs. [18,
19]. Here, we consider this problem for the metric graph boundary conditions given by Eq. (2). The solution of
Eq. (11) fulfilling these boundary conditions can be written as:

fb(l‘) = Bb SN (Ozbl‘ + 6b|kb) y

where sn(az|k) are the Jacobian elliptic functions [20], 61 =0, d5.6 = —as5,6Ls5.6-
Inserting the last equation into Eq. (10) and comparing the coefficients of similar terms we have:
2
By, = oy /ﬁ—abkb, N =a; (1+k), (12)
b

where o, = +1.
Using Eqgs. (2)—~(9) and the relations [20]:
b b

/sn2 (a(z = c)|k) dx = le [1—dn® (a(z — ) |k)] da

a a

1

= 50— a) ~ — o Bfam (a(b— o)) [} + 5 B fam (a(a — o)) K],

ak? ak?
we obtain the following system of transcendental equations with respect to s, dp and ky:

VB1Bysn(ayLy|ky) = \/BaBasn (azLy + d2lke) = +/B3Bssn(asLy + d3|ks), (13)
B2a2

VB2

cn (Oéng + (53|k3) dn (043[/1 + (53‘]413) =0, (14)

Bioy

N

cn (alLllkIl)dl’l (a1L1|k1) — cn (042L1 + (52)“{?2) dn (042L1 + (52)“{?2)

_BgO&g
N
V/B2Basn (agLo + da|ks) = /BaBasn (64)ks) = \/B5Bs sn (35 k) , (15)

Byay

VBi

cn (05 |ks) dn (d5|ks5) = 0, (16)

Boas

VB2

cn (OQLQ + 52‘]4)2) dn (OQLQ + 52|/€2)

cn (84)|ka) dn (94)[ka)

Bsas

VPBs

V/ B3Bssn (asLs + 03]ks) = /BaBasn (agLa + dalks) = /B Bg sn (dg|ks) , (17)
B4C¥4

VB

Bsas

VB3

cn (Oéng —+ 53“{33) dIl (Oéng —+ 53“{33) — cn (Oé4L4 —+ 64|k4) dIl (Oé4L4 —+ 54“{34)
_B(;Ck(; c
VBs

B2 B2 B2 B2 B2 B2
Li+—2(Lo— L)+ —2(Ls— L)+ —5La+ —Ls +
et ;2 Rt R T e

2 2 6 2

B B ;
+k%;2E [am(aa Ly + 02|k2) k2] + @E l[am(az Ly + 03|k3)|ks] + ;%E [am(d;[k; ) k5]

n (0g|ke) dn (66]ke) = 0, (18)

S Ls

—1+Zk2 Elam(a; Lj + 0;]k;)|k;] (19)
j=1"J
where 61 = 0, d56 = —a5,6L56, E(plk) and am(u|k) are the incomplete elliptic integral of the second kind
and the Jacobi amplitude, respectively. In the general case, this system can be solved using the different (e.g.,
Newton’s or Krylov’s method) iteration schemes. However, below, we will show the solvability of this system for
two special cases.
First case. Let:

dng +1 4(”52% glg) _dng dnse+1

L1 Lysz—1IL4 T L Lsg
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where n; e NU {0}, j =1,2,3,4,5,6, né%% > nglg Choosing:
2 (1)

4n +1 4(ns 3 —ng4) 4n
Q15,6 = %K(k‘m,ﬁ), Qg3 = HKU@?;&), oy = TjK(k4>’
(2) (1)
4(ny s —n
pp = (20237128 ) e 5, = Kk (20)
Las— Ly

we have:
a; = Q, k_} = ka .] = 172a35475767 01,2,34 = —05,6-
Here, K (k) is the complete elliptic integrals of the first kind.
Using Eq. (19) and the relations:

am(u + 2K (k)|k) = 7 + am(u|k),
E(nm £ ¢|k) = 2nE(k) £ E(p|k),

we have:

g(k) =2

U tf (B Too ool ey Do L) 1
2 ) + %, + 7 + 5 + i + Bo K(k)(K(k)—E(k)—-1=0. (2D

The solvability of Eq. (21) is equivalent to that of NLSE on a primary star graph. Therefore we will prove the
solvability of this equation. Since the following relations are valid:

(I =1 fiy o) = +oc

and g(k) is a continuous function of & on the interval (0;1) it follows that Eq. (21) has a root.
Second case. Now we consider another special case given by the relations:

n(® e
o G o) s 0 20 ot
1 Ll 9 2,3 L273 _ L1 )
(1) (2)
o= D05 = (1™ pa) + 200V K ()
4 L4 )
(1)1 Loy — (—1)"5pysLy + 2(n8) Lo s — nEL1) K (ka.3) @ @)
s = ’ Lo—Li 01 = (<1 2K (k).

where —K (k;) < pp, < K(k;), m=1,2,3,7=1,2,3,4,5,6, n1.45s6, n(;%’@) €N, nq, n(zl), ngl) or n§2), nf),

N5 Or n§2), nfll), ng cannot be odd or even at the same time and show existence of the solution of the system given

by Egs. (13)-(19). From Egs. (13), (15) and (17) we obtain

ap=a, ky =k, 01234 = —056.
From Egs. (14), (16) and (18) we have:
o o) @ e @ 2
R L LV e V. NV SO | e Ve SVl S e 1
b1 B2 Bz B2 B4 Bs B3 B4 Be

Furthermore, it follows from the last equation and Eq. (19) that:
(k) = 4 ((—1)"1p+ 2n1K(k1)) mo néz) - ngl) . n§2> — ngl) nfll) ns o, M\
B Ly P B2 Bs Bs  Bs  Be
x (K(k)—E(k))—1=0. (22)

We have:

lim g(k) = =1, lim g(k) = +oo.

Since g(k) is a continuous function of k on the interval (0;1), it follows from the last relations that Eq. (22)
has a root.

Thus, the stationary NLSE on a metric graph presented in Fig. 1 can be solved with the same success as that
for finite interval, considered in the Refs. [18,19,21].
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4. Conclusion

In this paper, we have studied the stationary nonlinear Schrodinger equation with cubic nonlinearity on the
graph having the form of a triangle connected to finite outgoing leads considering the case of attractive nonlinearity.
Explicit analytic solutions were obtained by imposing vertex boundary conditions providing continuity of the wave
function weights and flux conservation. The method can also be extended for the case of repulsive nonlinearity,
too.

The above results can be useful for modeling of different branched systems, where the static solitons appear,
e.g. for Bose-Einstein condensate in networks [24-27] charge and energy modeling in DNA double helix [28-30]
and branched optical waveguides [31,32], on In principle, the method developed in this work can be extended for
more complicated topologies having multiple junctions.
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