
NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (6), P. 627–631

Modeling of linear optical controlled-z quantum gate
with dimensional errors of passive components
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Linear optical quantum computing can be realized using photonic integrate circuits (PICs). It is advantageous in comparison to other physical
implementations of quantum computing due to simplicity of qubit encoding using photons and low decoherence times. Passive components like
beamsplitters and phaseshifters are key elements for such PICs. In this article, we present modeling of linear optical controlled-Z gate with
imperfections of beamsplitters and phaseshifters taken into account. Results showed that errors occur which cannot be detected by projection
measurements and post-selection proposed by Knill, Laflamme and Milburn. We studied how these errors and success probability changes with
the increase of dimensional errors using Monte-Carlo simulation. The obtained results can be used for design and calibration stages of chip
manufacturing.
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1. Introduction

Quantum computing is a paradigm which considers usage of quantum mechanical effects in computation allowing
massive parallelism and overall superiority relative toclassical computing for many important problems [1]. Quan-
tum computing operates with unitary operations, called gates, which are building blocks of any quantum algorithm.
Controlled-Z gate (or CZ-gate in short) is one of the basic 2-qubit gates which are considered to be a part of a universal
set [2]. This is thus required for a quantum computer to be able to perform any unitary operation. For example, it is
presented in Grover’s [3] and Shor’s [4] algorithms. There are several physical platforms for implementation of quan-
tum computing. The most popular one being evaluated by IBM thatuses qubits based on superconductivity [5]. In this
paper, we consider linear optical quantum computing (LOQC). Linear optical implementation of quantum computing
has many advantages over superconducting alternatives, including: significantly longer decoherence times, simplicity
of qubit encoding, as well as the benefits of using integrated photonic circuits as a physical platform. Typical LOQC
chip is constructed from beamsplitters (or directional couplers) and phaseshifters. It was shown in [6] that any unitary
operation can be constructed only with certain amount of these elements. Such simplicity might be attractive, however
there are many issues in LOQC that need to be addressed. One of the main issues with linear optical quantum comput-
ing is probabilistic behavior of many-qubit gates [7]. It appears that every linear optical gate that has been proposed is
capable of performing supposed operation only with certain probability due to the variation of basis states in the sys-
tem which do not correspond to the right operation. Knill, Laflamme and Milburn [7] proposed using ancilla channels
and projection measurements on them to force the system of the gate to collapse into a specific set of basis states, one
of them corresponding to a desired operation. Such an approach does not solve the problem of non-determinacy, but at
least gives us an ability to monitor whether the operation was performed correctly or not. Another featurewas proposed
by the same authors to make near-deterministic operations by using multiple gates acting on the entangled set of qubits
and using a teleportation protocol to extract the successfully applied gate and feed it forward to the computation. One
can note that both approaches make the system more complex, introducing a significant numberof optical elements
and increasing number of channels. Other issues include: probabilistic generation of single-photons, coupling losses,
inefficiency of single-photon detectors, and different optical losses occurring inside the scheme. Most popular designs
for LOQC systems use photonic integrated circuits (PIC’s), as theyenablegood dimensional stability, compact sizes
and integrability [8]. These circuits could be manufactured using ion exchange technology as was shown in [9]. But
the most popular approach is to use silicon nanowires, as they have much more compact nanoscale sizes and also more
components can be integrated in such chip [10]. However, there are manufacturing tolerances of such systems which
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need to be taken into account before designing any practical system. Even if a controllable Mach-Zehnder interferom-
eter is used to mitigate these issues, it is important to know to what point MZIsneed to be calibrated [11].The topic of a
quantum algorithm’s performance on areal device was studied in [12], where the authors used IBM’s superconducting
quantum processor. In this paper, we present a modeling approach and resultsfor simulation of linear optical CZ-gate
with dimensional imperfections of its passive components – beamsplitters and phaseshifters.

2. Modeling approach

A conventional approach to qubit encoding with photons is called dual-rail encoding. Thismeans that a qubit’s
state depends on the superposition of photon being in two optical modes. These modes can be spatial, polarization or
even temporal. The KLM protocol considers spatial optical modes, and thus, our CZ-gate uses two optical channels to
represent each of the 2 qubits. This correspondence can be written as

|0〉 = |1〉1 ⊗ |0〉2 = |1102〉,
|1〉 = |0〉1 ⊗ |1〉2 = |0112〉,

where left part represents qubit states, but the middle and right parts represent two different notations of a single
photon existing in one of the two optical modes. The optical scheme of CZ-gate is taken from [7] and presented in
Fig. 1. It consists of 4 logical optical modes, two of which are coupled to 4 ancilla modes. A single logical mode
coupled to two ancilla ones with additional single-photon source and detectors form the so called nonlinear-sign (NS)
gate (Fig. 2) which performs the following operation on Fock basis states:

|Ψin〉 = α|0〉+ β|1〉+ γ|2〉 → |Ψout〉 = α|0〉+ β|1〉 − γ|2〉.

FIG. 1. Schematic of a KLM CZ-gate with 4 ancilla channels (right) and its representative matrix
calculated using our modeling approach (left)

FIG. 2. Schematic of the nonlinear sign-flip gate consisting of one logical and two ancilla channels

The NS gate applies successfully when single photon is measured in the respective ancilla channel. Probability
of that happening in the ideal case is 1/4, which makes success probability of CZ gate equal to 1/16. In our model,
we divide the gate into parts each of which can be described by a single time-independent Hamiltonian. Passive
components within these parts are described by following Hamiltonians:

ĤBS = â†i âj + â†j âi, ĤPS = â†i âi,

where i, j are numbers of optical modes and âi are mode operators which act as annihilation operator on the channel
with respective number. Transformation operators are then calculated via matrix exponential:

U = exp(iĤBS/PSz),

where propagation length z represents the effective interaction length of the directional coupler or the phase shift of the
phaseshifter. Thus, dimensional errors can be introduced directly into equation shown above as random displacement
∆z. We used Quantum Toolbox in Python (QuTiP) to setup and calculate our model.
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In order to compute our model efficiently, we decided to split it into two steps. The first step is solving NS gate,
which consists of 3 channels and operates with 3 photons. The two-photon state is taken as an input for the logical
channel and an additional photon is taken as an input for the first ancilla channel. The important thing in this part is
application of projection measurement operator, which corresponds to a successful performance of this gate:

P10 = (I ⊗ |1〉〈1| ⊗ |0〉〈0|).
The success probability of the NS gate can thenbe calculated as a norm of the output wave function. Second

step is to solve CZ-gate itself. Here, we use matrices of NS-gates extracted from the previous calculation using partial
trace.Two matrices are then included into a tensor multiplication, forming a transformation operator acting on 4 logical
channels of CZ gate:

UB = (I ⊗ U1
NS ⊗ U1

NS ⊗ I).

The calculated CZ-gate is then applied to an input state of two photons being launched into second and third
logical channels which logically correspond to |11〉 state. Here, we lay out the correspondence between optical basis
states and computational once. Subsequently, we will only use computational notations:

|00〉 = |11020314〉,

|10〉 = |01120314〉,

|01〉 = |11021304〉,

|11〉 = |01121304〉.

The success probability of this gate is calculated as multiplication of success probabilities of NS gates. Dimen-
sions of these two problems are 3 channels, 3 photons and 4 channels, 2 photons, respectively. Such an approach
appears to be significantly more efficient in comparison with the more straightforward approach that does not separate
the problem and deals with 8 channels and 5 photons. One should note that we were able to divide the problem due
to the presence of projection measurements in the NS gate. Projection measurement destroys entanglement between
logical and ancilla channels. Thus, we can apply operation of partial trace without losing any important information.

As it was stated before, we can apply dimensional error of the phaseshifter or a beamsplitter as a random displace-
ment of the propagation length. It is pretty straightforward for the characterization of phase shift. For the beamsplitter,
however, it is more convenient to use value of splitting coefficient. Splitting coefficient of a beamsplitter is a ratio
between input power and output power of the opposite channel. It can be calculated as:

C = sin2

(
π

2

Lint

lc

)
,

where, Lint is an effective interaction length which in our case correspond to the value of z, lc is the coupling length
which corresponds to a values of interaction length required to fully couple light form one channel to another. The
coupling length can be calculated for a given waveguide structure using overlap integrals and finite element method.
In the initial simulation, we randomly choose errors for each component within boundaries of ±0.05 for splitting
coefficient and ±π/40 for phase shift. These errors correspond to various dimensional errors which can occur in the
manufacturing process of the component. For example silicon nitride-based directional couplers have such errors if
the 400 nm separation between waveguides in the interaction region is displaced by 25 nm [13]. Other imperfections
may occur in a value of interaction length and in a cross-section geometry of the waveguide. To observe the impact
of these imperfections on the gate performance and to understand what it means, we considered diagonal elements of
output wavefunction partial traces which basically gives us photon number distribution at given channels. In an ideal
case, we should measure exactly one photon in the second and third channels for the input state |11〉. One can see
in Fig. 3 that in the case of a dimensionally imperfect chip we are getting non-zero probabilities of 0 and 2 photons
being measured at the output of respective logical modes. We want to point out that these errors occur if the projection
measurement in both NS gates were successful thus they are not detectable by KLM-protocol and cannot be separated
from the computation without some additional measures. In the next section of this article we investigate how this
error depends on the amplitude of these imperfections.

3. Monte-Carlo simulations

Since dimensional errors of passive components are random in nature, we use the Monte-Carlo approach to study
its effect on the performance of CZ-gate. At each step, we choose boundaries for splitting coefficient and phase errors.
These boundaries are called dimensional error rate and defined by the relative change of splitting coefficient and phase
shift with 0.5 and π/2 as references respectively. Then we run 1000 iterations randomly choosing errors of passive
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FIG. 3. Photon number probability distribution at the output of 2nd and 3rd logical optical modes.
Probabilities at 0 and 2 photons correspond to the error caused by dimensional imperfections within
±0.05 for splitting coefficient and ±π/40 phase shift

components within defined boundaries. At the output we observe mean and maximum probability of error which is
calculated as

Perr = 1− 1

Psucc
〈11|ρout|11〉,

where ρout is the density matrix of the output state and Psucc is the success probability of CZ gate calculated as
multiplication of success probabilities of two NS gates. This is basically probability of not measuring |11〉 state at
the output even if both projection measurements were successful. It also corresponds to an imperfect photon number
distribution showed in Fig. 3. Fig. 4 shows how probability of error grows with dimensional error rate being increased.
One can readily see that the growth is nonlinear. Maximum error represents worst case scenario and it grows much
faster than the mean error. This indicates that statistics of error probabilities spreads with the increase of error rate.
From that, we conclude that larger dimensional errors not only introduce larger possibility of false computation, but
also make performance of the chip less predictable. This also means that large enough dimensional errors won’t allow
us to separate its impact from other possible flaws in the experiment, unless dimensions of the device will be rigorously
measured to calculate its exact impact with respect to our model, which could be complicated.

FIG. 4. Mean and maximum error probabilities obtained from Monte-Carlo simulation for different
rates of dimensional errors

Another interesting thing to determine is the success probability of the gate (Fig. 5). Unlike the error probability,
its mean value doesn’t show a continuous decrease. However, maximum and minimum values spread around the ideal
1/16. This again impacts the performance predictability of the device.

4. Conclusion

We proposed a modeling approach for KLM CZ-gate simulation with random dimensional imperfections of pas-
sive components taken into account. As a result, we observed errors – non-zero probabilities of 0 and 2 photons being
measured at the output of optical modes which correspond to the basis state of |11〉. These errors cannot be detected
by projection measurements. We used Monte-Carlo simulations to calculate mean and maximum error probabilities
depending on the rate of dimensional errors. Our results show that maximum probability, which represents the worst
case scenario for a given error rate, grows much faster than the mean one. Additionally, the success probability, which
corresponds to a certain result of projection measurement, can significantly deviate from the ideal case in the presence
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FIG. 5. Mean, minimum and maximum success probabilities of CZ-gate obtained from Monte-
Carlo simulation for different rates of dimensional errors

of imperfections.These effects should be taken into account in the design stage of schemes with a large number of
such gates. The proposed model can be used for calculation of gate matrix and then applied to performance simulation
of quantum computational schemes based on LOQC.
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