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Fast-forward of standard dynamics with use of electromagnetic field
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We introduce Khujakulov and Nakamura’s scheme for the exact fast-forwarding of standard quantum dynamics for a charged particle. The idea

allows the acceleration of both amplitude and phase of the wave function throughout the fast-forwarding time range. Firstly we shall apply the

proposed method to 1-D free wave packet dynamics and obtain the electromagnetic field to ensure its rapid propagation and diffusion. Then

we proceed to study 1-D quantum tunneling phenomenon, namely a rapid penetration of wave function through a delta-function type barrier.

We elucidate the distribution of the tunneling current density to show the remarkable enhancement of the tunneling rate (tunneling power) due

the fast-forwarding. We introduce two types of time-magnification factors and confirm the stability of fast-forward against the variation of such

factors.
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1. Introduction

Masuda and Nakamura [1–3] investigated a method of acceleration quantum dynamics with use of a character-
istic driving potential determined by the additional phase of the wave function. One can accelerate a given quantum
dynamics to obtain a target state in any desired short period. This kind of acceleration is called the fast-forward of
quantum dynamics, which constitutes one of the more promising ways of attaining a shortcut to adiabaticity [4–9].
The relationship between the fast forward and the shortcut to adiabaticity is currently clear [10, 11]. Before em-
barking upon the main part of the text, we briefly summarize the theory of the fast-forward of quantum dynamics
updated by Khujakulov and Nakamura [12]. The Schrödinger equation on standard time scale is represented as:

ıh̄
∂ψ0

∂t
= − h̄2

2m
∇2ψ0 + V0(x, t)ψ0, (1)

ψ0 ≡ ψ0(x, t) is a known function of space x and time t and is called a standard state. For any long time T called
a standard final time, we choose ψ0(x, t = T ) as a target state that we are going to generate.

Let ψ̃0(x, t) be a fast-forwarded state of ψ0(x, t) as defined by

ψ̃0(x, t) ≡ ψ0(x,Λ(t)) ≡ ΨFF (x, t) (2)

with

Λ(t) =

t∫
0

α(t′) dt′. (3)

α(t) is a magnification scale factor defined by

α(0) = 1,

α(t) > 1 (0 < t < TFF ),

α(t) = 1 (t ≥ TFF ). (4)

TFF is the final fast-forward time defined by

T =

TFF∫
0

α(t)dt. (5)
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At the final time of the fast-forward (TFF ) and we can obtain the exact target state

ψFF (TFF ) = ψ0(T ). (6)

The explicit expression for α(t) in the fast-forward range (0 ≤ t ≤ TFF ) is proposed by Masuda and
Nakamura [1, 3] as:

α(t) = ᾱ− (ᾱ− 1) cos

(
2π

T/ᾱ
t

)
, (7)

where ᾱ is the mean value of α(t) and is given by ᾱ = T/TFF . Besides the time-dependent scaling factor in
Eq. (7) in the fast-forward range, we can also have recourse to the uniform scaling factor:

α(t) = ᾱ (0 ≤ t ≤ TFF ), (8)

which may be useful in the quantitative analysis of fast forward. Khujakulov and Nakamura [12] tried to realize
ψFF by applying the electromagnetic field, EFF and BFF .

Let’s assume ψFF is the solution of the time-dependent Schrödinger equation for a charged particle in the
presence of additional vector AFF (x, t) and scalar VFF (x, t) potentials:

ıh̄
∂ψFF
∂t

=

(
1

2m
(
h̄

i
∇− AFF )2 + VFF + V0

)
ψFF

= − h̄2

2m
∇2ψFF +

ih̄

2m
(∇ · AFF )ψFF

+
ih̄

m
AFF · ∇ψFF +

A2
FF

2m
ψFF + (VFF + V0)ψFF

(9)

where, for simplicity, we employ the prescription of a positive unit charge (q = 1) and the unit velocity of light
(c = 1). The driving electromagnetic field is given by:

EFF = −∂AFF
∂t

−∇VFF , BFF = ∇× AFF . (10)

Substituting Eqs. (1) and (2) into Eq. (9) and taking its real and imaginary parts, we obtain a pair of equations:

∇ · AFF + 2Re

[
∇ψ̃0

ψ̃0

]
AFF + h̄(α− 1)Im

[
∇2ψ̃0

ψ̃0

]
= 0 (11)

and

VFF = −(α− 1)
h̄2

2m
Re

[
∇2ψ̃0

ψ̃0

]
+
h̄

m
AFF Im

[
∇ψ̃0

ψ̃0

]
− 1

2m
A2
FF + (α− 1)V0. (12)

Now, we write ψ̃0 as:

ψ̃0 = ρeiη (13)

with use of the real amplitude ρ and phase η defined by:

ρ ≡ ρ(x,Λ(t)),

η ≡ η(x,Λ(t)). (14)

Then, one finds that:

AFF = −h̄(α− 1)∇ · η (15)

satisfies Eq. (11), and that

VFF = −(α− 1)h̄
∂η

∂Λ(t)
− h̄2

2m
(α2 − 1)(∇η)2. (16)

With use of the driving vector AFF and scalar VFF potentials in Eqs. (15) and (16), we can obtain the fast-
forwarded ψFF in Eq.(2)

Noting BFF = ∇×AFF = 0, only the electric field EFF is required to accelerate a given dynamics. With
use of Eqs. (10), (15) and (16), EFF is given explicitly by [13]:

EFF = h̄α̇∇η + h̄
α2 − 1

α
∂t∇η +

h̄2

2m
(α2 − 1)∇(∇η)2. (17)
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A remarkable issue of the present scheme is the enhancement of the current density jFF . Using a generalized
momentum which includes a contribution from the vector potential in Eq. (15), we see:

jFF (x, t) ≡ ψ∗FF (x, t)
1

m

(
h̄

i
∇− AFF

)
ψFF (x, t)

=
h̄

m
α(t)ρ2(x,Λ(t))∇η(x,Λ(t)), (18)

where we employ the prescription of a positive unit charge. Noting the current density in the standard dynamics:

j(x, t) ≡ Re

[
ψ∗0(x, t)

h̄

im
∇ψ0(x, t)

]
=

h̄

m
ρ2(x, t)∇η(x, t), (19)

we find [12]

jFF (x, t) = α(t)j(x,Λ(t)). (20)

Thus, the standard current density at each of spatial points becomes both squeezed and magnified by a time-scaling
factor α(t) in Eq. (7) or Eq. (8) as a result of the exact fast forwarding which enables acceleration of both amplitude
and phase of the wave function throughout the time evolution.

2. Free wave packet dynamics

The time evolution of a free electron wave packet in 1 dimension is described by the time-dependent
Schrödinger equation:

ih̄
∂Ψ

∂t
= − h̄2

2m

d2Ψ

dx2
. (21)

Let’s consider the initial state of electron as

Ψ0(x, t = 0) = π−1/4∆−1/2exp

(
− x

2

2∆
+ i

p0

h̄
x

)
. (22)

Then, the time evolution of Ψ0 is given by

Ψ0(x, t) =

∞∫
−∞

dx′K(x, t;x′, 0)Ψ0(x′, t = 0). (23)

Where K is the kernel propagator defined by:

K(x, t;x′, 0) =

(
m

2πih̄t

)1/2

exp

[
im(x− x′)2

2h̄t

]
(24)

Ψ0(x, t) in Eq.(23) becomes:

Ψ0(x, t) = π−1/4∆−1/2

[
1 +

ih̄t

m∆2

]−1/2

× (25)

exp

[
−

(x− p0
m t)

2

2∆2(1 + (h̄t/m∆2)2)
+ i

[
p0

h̄
(x− p0

m
t) +

p2
0

2h̄m
t+

h̄t(x− p0
m t)

2

2m∆4(1 + (h̄t/m∆2)2)

]]
.

From Eq. (23), the probability amplitude |Ψ|2 and the phase η is given by:

|Ψ|2 = π−1/4∆−1/2

[
1 + (

h̄t

m∆2
)2

]−1/4

exp

[
−

(x− p0
m t)

2

2∆2(1 + (h̄t/m∆2)2)

]
(26)

and

η =
p0

h̄

(
x− p0

m
t
)

+
p2

0

2h̄m
t+

h̄t(x− p0
m t)

2

2m∆4(1 + (h̄t/m∆2)2)
− 1

2
arctan

(
h̄t

m∆2

)
, (27)

respectively.
Figure 1 shows |Ψ|2 of the standard wave packet as a function of x and t.
Now, we shall proceed to analyze the fast-forward the above dynamics. The fast-forward state is given by:

ΨFF = Ψ0(x, (Λ(t))), (28)

Figure 2 shows |ΨFF|2 where the mean time-magnification factor ᾱ = 5 is used.
To realize the fast-forward state, the electric field is given by Eq. (17). Using Eqs. (17) and (27), we can

evaluate EFF , which is depicted in Fig. 3.
Now, we shall apply the present scheme to tunneling phenomena in quantum mechanics.
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FIG. 1. D plot of |Ψ|2 for a standard
wave packet as a function of x and t.
The final time T = 50

FIG. 2. 3D plot of |ΨFF|2 fast-forward
wave packet with ᾱ = 5 as a function
of x and t for the ᾱ = 5, TFF = 10

FIG. 3. 3D plot of EFF as a funtion of x and t, ᾱ = 5

3. Fast-forward of tunneling of wave packet dynamics

Confining ourselves again to 1-D motion, we now investigate the time evolution of a localized wave packet
when it runs through a delta-function barrier. The initial wave packet centered at x = −x0 and having a
momentum k is expressed as:

ψ(0)(x, 0) =
√
βe−β|x+x0|eik(x+x0). (29)

ψ(0)(x, 0) satisfies the normalization condition
∫∞
−∞ |ψ

(0)(x, 0)|2dx = 1. Therefore, 〈x〉 = −x0 and 〈p〉 = k at
t = 0.

The time-dependent Schrödinger equation with a δ function barrier at x = 0 is given by[
ih̄∂t + (h̄2/2m)∂2

x

]
ψ0(x, t) = V (x)ψ0(x, t), (30)

with V (x) = V0δ(x). In order to simplify notation, we shall use “natural unit” (h̄ = m = 1).
The time evolution of ψ0 follows for t > 0 from:

ψ0(x, t) = ψ(0)(x, t)− V0

∞∫
−∞

dx′ ×M(|x|+ |x′|;−iV0; t)ψ0(x′, 0). (31)

Here M(x; k; t) is “Moshinsky” function defined in terms of the complementary error function by

M(x; k; t) =
1

2
ei(kx−k

2t/2)erfc

(
x− kt√

2it

)
, (32)
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which is interpreted as the wave function of a monochromatic particle that is confined to the left half-space x ≤ 0
at t = 0. On the other hand, ψ(0)(x, t) is the free-particle wave function:

ψ(0)(x, t) =

∞∫
−∞

dx′K(x, t|x′, 0)ψ(0)(x′, 0), (33)

with K the free-particle propagator given in Eq. (24).
The explicit solution for t > 0 was given by Elberfeld and Kleber [13] as:

ψ0(x, t) =
√
β[M(x+ x0; k − iβ; t) +M(−x− x0;−k − iβ; t)]

+V0

√
β[S(x0, λ

∗; t)− S(x0,−λ; t) + e−λx0 [S(0,−λ; t) + S(0, λ; t)]], (34)

where λ = β − ik and S(ξ, λ; t) is defined by:

S(ξ, λ; t) = [1/(V0 − λ)][M(|x|+ ξ;−iV0; t)−M(|x|+ ξ;−iλ; t)]. (35)

The first bracket on r.h.s. of Eq. (34) describes the time evolution of the free (V0 = 0) wave packet, and the
second bracket denotes the sum of reflected and transmitted waves.

The tunneling current density is:

j(x, t) = Im[ψ∗0(x, t)∂xψ0(x, t)]. (36)

Now, we analyze the fast forward of tunneling of wave packets, and find the corresponding current density.
Here we shall present the results not investigated by Khujakulov and Nakamura [13]. By extracting the space-time
dependent phase η of the wave function in Eq. (34), one can obtain both vector and scalar potentials in Eqs. (15)
and (16). Under these driving potentials, one can generate the fast-forward state of a tunneling wave packet through
the barrier as:

ψFF (x, t) ≡ ψ0(x,Λ(t)), (37)

which accelerates both amplitude and phase of Eq. (34) exactly. From Eq. (20), the tunneling current density for

FIG. 4. 3D plot of wave function amplitude (a) |Ψ|2; (b) |ΨFF|2 with ᾱ = 5; (c) |ΨFF|2 with ᾱ = 10
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the fast-forward tunneling phenomenon is:

jFF (x, t) = α(t)j(x,Λ(t)). (38)

Figure 4 shows the probability amplitude as a function of x and t. In our numerical analysis we choose
x0 = 2, k = 2 and β = 1. We use typical space and time scales like L = 10−2× the linear dimension of a
device and τ = 10−2× the phase coherent time and put h̄

m = 1(×L2τ−1). Therefore, the above choice means
x0 = 2(×L), k = 2(×L−1) and β = 1(×L−1). We shall show the standard dynamics up to T = 3(×τ) and its
fast-forward version up to TFF ≡ T

ᾱ (τ) with use of the mean time acceleration factor ᾱ = 5 and ᾱ = 10.

FIG. 5. 3D plots of current density as a function of x and t (a) standard current density j(x, t)
in Eq. (36); (b) fast-forward current in Eq. (38) with α = ᾱ − (ᾱ − 1) cos( 2π

TFF
t) and ᾱ = 5;

(c) fast-forward current in Eq. (38) with α = 1 + 6(ᾱ− 1) t
TFF

(1− t
TFF

) and ᾱ = 5

We see the exponential wave function partially goes through the barrier and is partially reflected back. The
dynamics up to T on the standard time scale is reproduced in the fast-forward dynamics up to TFF . The phenomena
in the latter time scale is just the squeezing (along the time axis) of those in the former time scale.

Figure 5 shows the standard and fast-forwarded tunneling currents as a function of x and t. Here, we choose
T = 5, TFF = 1 and ᾱ = 5.

As for fast-forwarding, we have employed two kinds of time-magnification factor: (i) cos-type,
α = ᾱ− (ᾱ− 1) cos( 2πt

TFF
) and (ii) parabola-type, 1 + 6(ᾱ − 1) t

TFF
(1 − t

TFF
). We find the temporal behavior

of the current density is both squeezed and amplifield, as compared to the standard version of j. We also see this
result is not affected by the fuctional form of α(t). Fig. 6 shows EFF for two kinds of time-magnification factors,
which also shows that EFF is not sensitive to the functional form of α(t).

4. Conclusion

By using the fast-forward theory which makes possible the exact acceleration of the phase and amplitude of
a standard wave function, we investigated fast-forward of wave packet dynamics with and without a potential
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FIG. 6. Electric field EFF : (a) cos-type time-magnification factor; (b) parabola-type time-
magnification factor

barrier. We choose two kinds of time-magnification scaling factors α(t) ((i) cos type and (ii) parabolic type). The
fast-forwarded current density distribution and the driving electromagnetic field have proved to be unaffected by
the details of α(t), which indicate the stability of fast-forwarding mechanism.
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