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On the accuracy of the probe-sample contact stiffness
measured by an atomic force microscope
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To improve the accuracy of atomic force microscopy in nanomechanical experiments, an analytical model is proposed to study the static interaction
of a cantilever in contact with a sample. The model takes into account: the cantilever probe is clamped by the sample or slides along its surface,
the geometric and mechanical characteristics of the sample and the cantilever, their relative orientation. The cantilever console bending and torsion
angles as functions of the sample displacements in three orthogonal directions have been measured by atomic force microscopy with an optical
beam deflection scheme.The measurements are in good agreement with the simulation.
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1. Introduction

In atomic force microscopy (AFM) [1], local mechanical properties of a sample are studied using load–unloading
dependencies of the indentation force on the sample deformation, force curves. They play a special role in the novel
techniques [2] based on the so-called jumping mode AFM [3,4]: PeakForce QNM (Bruker), HybriD mode (NT–MDT
SI), Fast force mapping mode (Asylum Research). The force curves are used to determine the height of the relief and
serve as the basis for electrical, piezoelectric, magnetic, and thermal measurements [5].

A significant instrumental contribution to the shape of the force curve can be made by the friction in the AFM
probe–sample contact. If the cantilever probe (the probe) slides over the surface, the force applied to the probe tip acts
perpendicular to the sample and bends the cantilever beam (the console) so that the bending angle grows monotonously
along the console [6, 7]. If the probe is clamped on the sample, a significant lateral friction force is added. This force
buckles the console (the buckling angle varies non-monotonously along the console) [6, 7]. In the AFM device with
an optical beam deflection system (OBD) [8], the deflection angle is monitored on the console locally, at the focus
point of the OBD laser beam. Since the angle profile along the console is unknown, the AFM control system is not
able to distinguish between the bending and the buckling of the console [9, 10], which leads to errors of the measured
amplitude and direction of the indentation force. In principle, the OBD detects two parameters (bending and torsion
angles of the console at the selected point), but both the contact point displacement vector and the concentrated force
have three spatial components. Only recently a commercially available scheme for monitoring console deflections has
appeared [11], combining the OBD with an interferometer [12] that allows measuring the missing third parameter –
the console vertical displacement at the selected point.

In AFM, the normal stiffness of the probe–sample contact kS is calculated from S, the force curve slope at the
point of interest on the sample, S0, this slope at the conditionally infinitely rigid and flat sample, and the console
bending stiffness kC , [13]:

kS =
kCS

S0 − S
. (1)

The equation (1) directly stems from the model of two springs, describing the AFM probe–sample contact inter-
action, see Fig. 1. This model does not take into account the following factors: the probe is clamped or slides over
the sample, the deformation of the probe itself, the local sample inclination and the possible anisotropy of sample’s
mechanical properties, design features and location of the cantilever above the sample. It is more correct to think that
expression (1) calculates a conditional, apparent stiffness kA, instead of the kS . As a result, this simple model may
turn out to be a source of unreliable results in nanomechanical studies using AFM.

This work offers an analytical model of the mechanical system console–probe–sample, accounting the above men-
tioned factors. To describe the equilibrium states of the system, the minimum of its mechanical energy is determined.
We analyze the deformation redistribution between three subsystems: the console with the non-deformable probe – the
“ideal cantilever”; the deformable probe; and the sample. In each subsystem, the stiffness tensor linearly couples the
concentrated force vector applied to the probe tip (at the contact point) with the deformation vector. General solutions
are obtained for two types of holonomic constraints: the probe is clamped on the sample; the probe slides along the
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FIG. 1. Simple models of the AFM contact with a solid surface (a), with a soft sample (b). Can-
tilever and soft sample deformations are described using two springs: kC and kS . (c) Dependencies
of the cantilever deviation ZC on the sample vertical displacement Z: the solid sample, the calibra-
tion slope S0,(a); the soft sample, the slope S,(b). ZS on (b) denotes the sample deformation

sample selected plane. The contact of the so-called “real cantilever” (the console with the deform able probe) and
the mechanically isotropic sample is examined in detail. Depending on the position of the OBD laser focus point
on the console, the normalized sensitivities of its bending and torsion angles to the sample displacement along three
orthogonal directions were calculated and as well measured. Good agreement between calculations and measurements
is demonstrated.

2. Theoretical analysis

2.1. “Ideal cantilever”

First, consider the “ideal cantilever”, that is, one in which the applied force deforms only the console, but not
the probe, Fig. 2. Let the Y axis of the Y Z coordinate system be directed along the rectangular console, and the
coordinate origin is at the console attachment line to the chip, Fig. 2(a). The console displacement profile due to the
force F acting in the Y Z plane is expressed as follows [6]:

Z (Y,F)=
(
2/ECwt

3
) {

3lTY
2FY +

(
3lCY

2−Y 3
)
FZ

}
, (2)

where EC is the Young’s modulus of the console; w, t and lC its width, thickness and length; lT is the probe height.
We introduce the parameters: λ=lT /lC , the console stiffness kC=ECwt

3/4l3C , the normalized coordinate ψ=Y/lC ,
– and rewrite (2) in a more concise form:

Z (ψ,F)= (1/2kC)
{
3λψ2FY +

(
3ψ2−ψ3

)
FZ

}
. (2a)

The displacement profile (2a) corresponds to the profile of the bending angle of the console of the ideal cantilever:

α (ψ,F)=l−1C · dZ (ψ)/dψ=(3/2kC lC)
{
2λψFY +

(
2ψ−ψ2

)
FZ

}
. (2b)

In AFM the console bending is small and the angle α (ψ,F) � 1. Therefore, the vector rC components of the
“ideal cantilever”, the probe tip displacements, are quite accurately related linearly with the displacement and the
angle corresponding to the console end (ψ= 1):

ZC=Z (1,F) , Y C=lTα (1,F) . (3)

Using (2a), (2b), (3) and the substitution lT /lC=λ, we can determine the matrix elements of the compliance
tensor, C−1, and the stiffness tensor, C, of the “ideal cantilever” in the flat coordinate system Y Z, see also [14]:

rC=C
−1

F, C−1=k−1C

 3λ2 3λ/2

3λ/2 1

 , (4a)
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F=CrC, C=kC

4/3λ2 −2/λ

−2/λ 4

 . (4b)

Using (4a) in (2a) and (2b), we can relate the bending angle and the displacement of the console measured by the
OBD and interferometer methods with the probe tip displacements:

α
(
ψ, rC

)
=l−1C

{
ψ (3ψ−2)Y C/λ+6ψ (1−ψ)ZC

}
, (5a)

Z
(
ψ, rC

)
=ψ2 (ψ−1)Y C/λ+ψ2 (3−2ψ)ZC . (5b)

Let the “ideal cantilever” be in contact with a flat, horizontal and non-deformable surface. If this surface is raised
to a height of Z, the probe tip moves vertically by the same value, ZC= Z. We can set the lateral displacement
Y C in two extreme cases: 1) the probe slides along the sample, FY = 0 (according to (4a), this is equivalent to
Y C=3λZC/2); 2) the probe is clamped on the sample, Y C= 0 (FY = −FZ/2λ, according to (4b)), – and calculate
using (5a) and (5b) the profiles of the console displacement and bending angle, see Table 1.

TABLE 1. “Ideal cantilever”. Profiles of the console displacement and bending angle when the
probe-sample contact moves to a height Z. The sample is horizontal, flat and non-deformable; the
console is parallel to the sample

Contact Z (ψ) /Z 2lCα (ψ) /3Z

Clamped ( Y C = 0) ψ2 (3− 2ψ) 4ψ (1− ψ)

Sliding ( FY = 0) ψ2 (3− ψ) /2 ψ (2− ψ)

Only when ψ=1, Z (1) does not depend on Y C . This point is the probe tip projection on the console plane, it
may not coincide with the console edge. For the OBD method the special point is ψ=2/3, where α (ψ) depends only
on ZC . Since in AFM, the console deflection is regulated, for the “ideal cantilever” this point is optimal for OBD
laser focusing. At ψ=2/3, in the controlled signal, the contribution from clamped state – sliding state transitions
in the probe–sample contact (the main sources of instabilities during contact scanning) is suppressed, and the ratio
α (ψ)/Z, the sensitivity, is only 1/9 less than the maximum. In AFM, the console is tilted from the horizontal
line by a certain angle α0. It can be shown that in this case the optimal focus will be almost at the same point:
ψ∗ ∼= 2

(
1−λtan2α0 +O

(
λ2
))
/3 ∼= 2/3, since usually λ� 1.

In Fig. 2(b) the transverse force FX twists the console at an angle β (measured by the OBD method) and addi-
tionally bends it and shifts its end by a distance XC(b). Such a bend leaves the console in the XY plane and it cannot
be measured by the OBD or interferometer methods. By analogy with the FZ component action considered in (2), we
can write:

XC(b)=
(
4l3C/ECtw

3
)
FX=k−1C δ

2
FX , (4)

where δ=t/w. The profile of the console torsion angle caused by the force moment FX lT , responds to the relation,
see details in [6, 14]:

β (ψ,F)= −ψ
(
3lC/GCwt

3
)
FX lT , (6a)

where the console shear modulus GC=EC/(2 + 2ν). For most materials, the Poisson’s ratio ν ≈ 1/3; using the
notation introduced earlier, we transform (6a):

β (ψ,F)= − (2/kC lC)λψFX . (2c)

The action of the force FX gives a superposition of the torsion and the in-plane bending. Using (6) and (2c), the
total displacement of the probe tip is obtained:

XC=XC(b)−lTβ (1,F)=k−1C

(
2λ2+δ2

)
FX . (6b)
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FIG. 2. “Ideal cantilever”. (a) The console bending by the force F with components FY , FZ . Both
the free end of the console and the non-deformable probe are deflected by a positive angle α. As
a result, the probe tip moves along the vector rC with the components Y C , ZC . (b) Torsion by
a negative angle β and bending of the console to a distance XC(b) by the force F with a single,
positive component FX . The probe tip shifts in the direction of the force along the vector rC with
the component XC . The console width w, thickness t and length lC ; the probe height lT ; the Y and
Z axes of the coordinate system associated with the cantilever

Using (6b), (4a), and (4b), we write the matrix elements of the compliance tensors, C−1, and the stiffness tensor,
C, of the “ideal cantilever” in the XY Z coordinate system:

C−1=k−1C


2λ2+δ2 0 0

0 3λ2 3λ/2

0 3λ/2 1

 ,

C=kC


(
2λ2+δ2

)−1
0 0

0 4λ−2/3 −2λ−1

0 −2λ−1 4

 . (4c)

Dividing (2c) by (6b), we relate the console torsion angle measured by the OBD method to the displacement:

β
(
ψ, rC

)
= −l−1C λψXC/

(
2λ2+δ2

)
. (5c)

When the laser focus is fixed, ψ= const, the equations (5a) – (5c) can be used to restore the displacement vector
of the ideal cantilever from the three measured parameters, and the equations (2a) – (2c) to restore the force vector,see
Table 2. The necessary three parameters can be obtained both in the combined OBD and interferometer scheme [11,
12], and using only the OBD method and two ψ values. In contrast to the restored force vector, the restored rC

describes only the probe tip displacements of the “ideal cantilever”.

TABLE 2. Profiles of the console vertical displacement, bending and torsion angles as functions of
the displacement or of the force projections

Profile rC =
(
XC , Y C , ZC

)
F = (FX , FY , FZ)

Z (ψ) ψ2 (ψ − 1)Y C/λ+ ψ2 (3− 2ψ)ZC (1/2kC)
{
3λψ2FY +

(
3ψ2 − ψ3

)
FZ

}
α (ψ) (1/lC)

{
ψ (3ψ − 2)Y C/λ+ 6ψ (1− ψ)ZC

}
(3/2kC lC)

{
2λψFY +

(
2ψ − ψ2

)
FZ

}
β (ψ) − (2/lC)λψX

C/
(
2λ2 + δ2

)
− (2/kC lC)λψFX



646 A. V. Ankudinov

2.2. Deformation distribution in the console–probe–sample system

To calculate the profiles of the console displacements, bending and torsion angles for the “real cantilever”, we
consider the console–probe–sample system, see Fig. 3, and analyze how deformations are redistributed in it.

FIG. 3. Deformation of the sample and cantilever AFM in contact. Initial state: the sample (1)
touches the probe (2), the interaction force is zero, the console (3) is not bent. Final state: the
sample (1) moved along the vector r, deforms itself, the probe (2) and the console (3); the non-
deformable holder (4) is stationary, the conditionally non-deformable probe is in the position (2”).
Deformation vectors of: ideal cantilever (the conditional probe tip (2”) displacements), rC ; probe
tip, rT ; sample, rS . The sliding is along the vector s. The XLN coordinate system is associated with
the scanner, XYZ – with the cantilever, the X axis is directed to the reader. The mounting angle of
the cantilever holder, α0, is deviated from the vertical: by 20◦ (NT-MDT microscopes) and by 12◦

(Bruker microscopes)

In each subsystem: console, “ideal cantilever”, C, probe, T, sample, S, – the generalized Hooke’s law is valid.
Symmetric, positive definite stiffness tensors Ci,j , Ti,j , Si,j with nonzero determinants relate the force and as-
sociated vector components, FC,T,S

i and rC,T,S
j , in the corresponding subsystem.E.g., for the “ideal cantilever”:

FC,T,S
i =Ci,jr

C,T,S
j , see in Equation (4c) the matrix elements Ci,j in the XY Z coordinate system. The quadratic

forms of the tensors C, T, and S are expressions for the doubled elastic strain energy of the corresponding subsystem.
The energy of the whole system is:

W=
1

2

∑
i,j

(
Ci,jr

C
i r

C
j +Ti,jr

T
i r

T
j +Si,jr

S
i r

S
j

)
. (5)

In the initial state 3/2/1, Fig. 3, all coordinates are zero, there are no deformations, what minimizes the energy
(7). When the sample holder moves along the vector r=(X,L,N) relative to the cantilever holder (this is done by the
AFM scanner), then the deformation vectors appear in each subsystem: rC=

(
XC , Y C , ZC

)
, rT=

(
XT , Y T , ZT

)
and rS=

(
XS , Y S , ZS

)
. In the final equilibrium state 3′/2′/1′, Fig. 3, the nine components of these vectors must be

the coordinates of the conditional minimum of the energy.
Two cases are important, see also Fig. 3: a) the contact is clamped, s ≡ 0; b) the contact slides in some plane,

s 6= 0.
Case a). The system integrity is maintained, the deformation vectors obey the holonomic constraint:

rC+rT−rS=r. (7a)

The minimum energy is determined by zeroing the nine partial derivatives of W (7). Accounting for (7a), the
minimum W is sought by solving a system of six equations for six unknown variables.
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Case b). Let the contact slides in the XL plane, as in Fig. 3. Then the holonomic constraint will be only for the
three vertical deformations:

NC+NT−NS= N. (7b)

The minimum W is sought by solving a system of eight equations for eight unknown variables.
Case a). According to the Newton’s 3rd law, the forces FT and FC, the action of the sample on the probe and

the probe on the console, are equal to −FS, the counteraction of the probe on the sample. In each subsystem, the
generalized Hooke’s law is valid, e.g. FT=TrT. This allows to relate the vectors rC, rT and rS, and the vector r:

rC+rT−rS=r

FC=FT=−FS

CrC=TrT=−SrS
⇒


(
I+T−1C+S−1C

)
rC=r

rT=T−1CrC

rS=−S−1CrC
⇒


rC=C−1

(
C−1+T−1+S−1

)−1
r

rT=T−1
(
C−1+T−1+S−1

)−1
r

rS=−S−1
(
C−1+T−1+S−1

)−1
r

(8a)

Where I is the unit matrix; C−1, T−1 and S−1 – the compliance (inverse stiffness) tensor of the corresponding
subsystem. Unlike matrix elements, the solution form (8a) does not depend on the choice of the coordinate system. In
the system, where the matrix elements of the tensors are the least bulky, calculations are simplified.

Case b). For the contact sliding in the XL plane, deformations of the “ideal cantilever” XC , LC , NC , probe
XT , LT , NT , and sample XS , LS , NS , will depend only on N , the vertical displacement of the scanner, although
the latter moves the sample along the vector r=(X,L,N). We give this solution, omitting the cumbersome algebraic
derivation: 

XC XT XS

LC LT Y S

NC NT NS

 =


C−1NX T−1NX −S−1NX

C−1NL T−1NL −S−1NL

C−1NN T−1NN −S−1NN


N

C−1NN+T−1NN+S−1NN

, (8b)

where e.g. C−1NX is the matrix element of the console compliance tensor in the XLN system associated with the
scanner (or with the horizontally located flat sample), Fig. 3. The numerator in (8b) is proportional to N , the scanner
displacement projection on the normal to the surface of sliding (the XL plane).

On the non-planar relief sample, the normal at the selected point on the sample may not coincide with the N axis.
In this case, the local coordinate system xyz associated with the selected point is used, and the solution is obtained
from (8b) by replacing: X → x, L→ y,N → z.

To calculate the bending and torsion angle profiles and the displacement profile, Table 2, the solution vector is
taken in the coordinate system associated to the cantilever. For example in Fig. 3, the coordinate systems correspond
to the following relation: 

XC

Y C

ZC

 =


1 0 0

0 cosα0 −sinα0

0 sinα0 cosα0




XC

LC

NC

 . (9)

2.3. “Real cantilever”

An AFM pyramidal probe can be modeled by a truncated elliptical cone. In the cantilever coordinate system, both
the stiffness and the compliance tensors of such a model have three components:

T=


kT1 0 0

0 kT2 0

0 0 kT3

 , T−1=


k−1T1 0 0

0 k−1T2 0

0 0 k−1T3

 , (10)

where kT1 and kT2 are the bending stiffness along the mutually perpendicular ellipse axes, kT3 is the normal stiffness
along the cone height.

For a simplified model of a truncated cone with an apex radius RT and the apex half angle αT , it is sufficiently
to determine two stiffness values, e.g. in the framework of theories of small deflections of rods [15, 16] and contact
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mechanics [15, 17]:

kT1=kT2=kTl
∼= (3π/4)ETRT (tanαT )

3
, kT3=kTn

∼= 2ETRT . (10a)

Si pyramidal probes e.g. on cantilevers HA FM (NT–MDT SI) have the following parameters: Young’s modulus:
ET ≈ 100 GPa, RT ≈ 10 nm, αT ≈ 15◦. Using (10a) we get: kTl ≈ 50 N/m, kTn ≈ 2000 N/m.

For a more complex probe model, the truncated elliptical cone, let the semi axes of the ellipse lie along the X and
Y directions, having dimensions c and d on the vertex. It can be shown that: kT1=q

1/2kTl and kT2=q
5/2kTl, where

the compression factor q =d/c, and the replacement RT=
√
cd is used in (10a) for kTl and kTn.

By analogy with the matrix elements (10), for the probe–sample contact we introduce the shear stiffness in the
XLN coordinate system, kS1=kS2=kSl, and the normal stiffness, kS3= kSn. Their values can be evaluated using
the Hertz’s contact mechanics, [17]:

kSl= 8G∗a, kSn= 2E∗a=
3
√

6FR∗E∗2,

a= 3
√

3FR∗/4E∗, R∗=RTRS/(RT+RS),

E∗=

(
1−ν2T
ET

+
1−ν2S
ES

)−1
, 4G∗=

(
(1−νT /2) (1+νT )

ET
+
(1−νS/2) (1+νS)

ES

)−1
,

(10b)

F – the interaction force, RT and RS – the tip curvature radius and the local curvature radius of the sample, ET , νT
and ES , νS – Young’s moduli and Poisson’s ratios of the probe and sample, respectively.

Most materials have ν ≈ 1/3, therefore according (10b), E∗ ≈ 4G∗, and kSl ≈ kSn=kS . In this isotropic case,
the sample local mechanical properties are modeled by one parameter kS . Let both the probe with RT = 10 nm and
the flat, uniform sample be made of silicon, then for F = 10 nN we obtain: kS ≈ 100 N/m.

To use (8b), the tensor components of the sample, probe (10), console (4c) are converted using rotation matrices
into values in theXLN coordinate system, see in particular (9). We give, for example, expressions for the components
S−1NN , T−1NN and C−1NN :

C−1NN = k−1C

(
3λ2sin2α0 −3λsinα0 cosα0+cos2α0

)
;

S−1NN = k−1C κ−1S ; T−1NN=k−1C

(
κ−1T2sin

2α0 +κ
−1
T3cos

2α0

)
.

(11)

Here and further relative stiffness values are introduced: κS=kS/kC , κTi=kTi/kC , i = 2, 3.
To use (8a), we write T−1+S−1 by analogy with T−1 in (10), replacing k−1Ti with k−1κ−1i , where κ−1i =κ−1Ti+κ

−1
S

and i = 1, 2, 3:

T−1+S−1=k−1C


κ−11 0 0

0 κ−12 0

0 0 κ−13

 . (12)

For the clamped contact, the proportionality coefficients between α or β and the displacement along the scanner
selected axis can be obtained by substituting the matrix elements from (4c) and (12) into (8a), and using (9) and
Table 2. For the sliding contact, to relate α and the scanner vertical displacement, one has to substitute in (8b) the
matrix elements of the compliance tensors of the console, the sample, and the probe defined in the XLN coordinate
system, see (11). Dependencies calculated in this way are shown in Table 3 as the normalized sensitivity profiles.

Using Table 3, we can significantly refine the equation (1). The ratio α/N is proportional to the force curve slope
S; on the non-deformable sample (κ−1S = 0) it is proportional to S0. For the sliding contact, using the profile 1 from
Table 3, we can compose analytical expressions for S and S0 and obtain a new formula for kS , which differs from the
equation (1) by the correcting γ-factor:

γ =
((
3λ2+κ−1T2

)
sin2α0 −3λsinα0 cosα0 +

(
1+κ−1T3

)
cos2α0

)−1
,

kS = γkCS/(S0−S).
(1a)

With growing kC , the relative compliances κ−1T2 and κ−1T3 increase, and the γ-factor can become less than unity.
The γ-factor of a soft cantilever (κ−1T2 and κ−1T3 are small) is larger than unit, e.g. for λ= 0.1 and α0= 20◦ the soft
cantilever has γ ≈ 1.27. If the γ-factor is neglected, the kS will be overestimated in the first case, and in the second
one it will be underestimated.

Earlier [18] it was reported, when calibrating the AFM cantilever stiffness the result is overestimated, in proportion
cos−2α0 [19]. The expression (1a) for γ-factor substantially clarifies these remarks.
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TABLE 3. “Real cantilever” in contact with the horizontal, deformable sample surface. Normalized
profiles of the console bending and torsion angles (α and β) as functions of the scanner displace-
ments (X , L, N )

No. Normalized sensitivity profile

1
2lCαb) (ψ)

3N
=

(2−ψ) cosα0 −2λsinα0(
3λ2+κ−12

)
sin2α0 −3λsinα0 cosα0 +

(
1+κ−13

)
cos2α0

ψ

2
2lαa) (ψ)

3N
=

(
4 + 4κ−13

)
λsinα0 +

(
12λ2+8κ−12

)
cosα0 −

[
6λsinα0 +

(
12λ2+4κ−12

)
cosα0

]
ψ

3λ2+12λ2κ−13 +4κ−12 +4κ−12 κ−13
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ψ

4
2lβa) (ψ)

3X
=

−4λ
6λ2+3δ2+3κ−11

ψ

Subscripts a) and b) refer to the clamped and sliding contacts. Relative compliances κ−1i = κ−1Ti +κ−1S ,
i = 1, 2, 3 correspond to X,Y, Z axes. Mounting angle of the cantilever holder α0; λ = lT /lC ,
δ = t/w; see Fig. 2 and 3. At the line of the console attachment to the chip ψ = 0, at the point of the
probe tip projection to the console plane ψ = 1.

If the probe–sample contact is clamped when calculating at least one of the slopes, S or S0, the expression defining
the kS is significantly complicated, in particular by the dependence on ψ.

In this regard, it is important to determine in AFM whether the probe slides along the sample or not. E.g. for
a homogeneous sample, the sliding probe should as a rule lead to reduced S values on the inclined surface areas
compared to the horizontal ones [20]. In detail, using the analytical approach of this work, the question will be
considered later.

When substituting κ−1i = 0, the profiles in Table 3 describe the “ideal cantilever” on the non-deformable and
horizontal sample. A special case when the console is parallel to the sample (α0= 0) was considered in Table 1.
The estimations made above for the probe and sample stiffness values may be used to conclude the following: 1)
κ−11

∼= κ−12 � κ−13 , 2) κ−1i � 1 for soft cantilevers (kC<1N/m). Thus on the solid and flat sample, the soft
cantilevers should behave like the “ideal cantilever”, some deviations from this behavior can be described using two
small parameters, κ−11 and κ−12 .

3. Experimental verification of the theory and the results discussion

For the OBD method used in our AFM device, the console bending angle α is proportional to theDFL(deflection)
signal, the photocurrent difference between the upper and lower halves of the photodetector; the console torsion angle
β is proportional to the LF (lateral force) signal, the photocurrent difference between the right and left halves of
the photodetector, [13]. The ratios α/N , α/L and β/X as functions of ψ were measured by analyzing the force
dependencies DFL(N) and the friction force loops DFL(L) and LF (X). In these measurements, an atomically
smooth, freshly prepared n-type GaAs (110) cleaved surface (a doping level is 1018 cm−3) was used as a flat and solid
sample.

DFL and LF signals are measured in Amps or Volts, depending on the AFM model. To compare the mea-
surement results with the calculations, it is necessary to convert the used units into radians.We use the AFM device
Ntegra Aura (NT–MDT SI) in the configuration “scanning by sample”. The screws that adjust the horizontal position
of the photodetector along and across the console have a thread pitch of 0.35 mm. The angular size of the vector
of the photodetector center displacement is inversely proportional to the optical arm, 25 mm. The light reflected in
the photodetector is deflected by a double angle compared to the console deflection angle [21]. Given this and that
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in our AFM device the photodetector and console planes are parallel, one turn of the adjusting screw along the con-
sole corresponds to α=cos 20◦ · 0.35 /50 ∼= 6.6 · 10−3 rad, and one turn of the adjusting screw across the console to
β=0.35/50 = 7 · 10−3 rad. This made it possible to quickly measure the necessary conversion factors for DFL and
LF signals with an accuracy of about 5 % (1/24 turn).

Measurements of ψ, the focus point position of the OBD laser on the console, were carried out using the adjusting
screw (0.35 mm thread pitch) moving a micropositioner table with the cantilever holder along the console. Given the
length (≈ 51 mm) of the lever of the force acting on the table, and the distance (≈ 34 mm) from the cantilever to the
table axis of rotation, one turn of the screw corresponds to the movement of ≈ 233 µm. Using this, it was possible to
change the focus point position with an accuracy of about 10 µm (1/24 turn). The positions of the console attachment
to the chip and of the free end of the console were determined by a 50 % reduction in the intensity of laser radiation
reflected from the console to all four sections of the photodetector (a Laser signal).

Figure 4 presents the results of AFM measurements of the console bending and torsion angles caused by the
movements of the GaAs (110) sample in three orthogonal directions. The cantilever fpS10 [22] with the following
characteristics was studied. The console stiffness refined by the Sader method [23] was kC= 51 mN/m. The geometric
parameters of the console and probe, refined in an optical and scanning electron microscopes: lC= 257 µm (the
distance between the line of the console attachment to the chip and the point of the probe tip projection to the console
plane), w = 34 µm and t = 1 µm; αT= 10.5◦ and lT= 12.5 µm.

FIG. 4. (a) Force curves, α(N), DFL signal dependencies on the scanner vertical displacement: 1
loading; 2 unloading. Friction loops (hysteresis): (b) α(N), in the force curves; (c) α(L), in the DFL
signal, the fast scanning direction is along the console; (d) β(X), in the LF signal, the fast scanning
direction is across the console. The scanning velocities both in positive 1 and negative 2 directions
were: (a) 200 nm/s, (b) 10 nm/s, (c) and (d) 60 nm/s. (b–d) The interaction force, F ≈ 10 nN. The
OBD laser focus point coordinate on the console, ψ = 0.95

The experimental α/N ratio was determined for positive N as the average slope of the loading and unloading
force curves. In particular it is 5.87 µrad/nm for the data in Fig. 4(a). The ratios α/L and β/X were determined on
the left and right sides of the friction loops [18, 24], see arrows in Figs. 4(c) and 4(d) along the areas where the probe
tip is clamped by the sample. To improve the accuracy of measurements, 32 friction loops were analyzed.
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Using the data, as in Fig. 4, with different ψ, the profiles of the console torsion, buckling and bending angles were
measured, see Fig. 5.

FIG. 5. Cantilever fpS10. (a) Measurement and approximation data for the buckling angle profile,
1 and 3, and torsion angle, 2 and 4, of the console. Model curves 3 and 4 are calculated according
to the analytical dependencies 3 and 4 of Table 3 with the parameters, respectively: k−12 = 0.007
and k−13 = 0; k−11 = 0.004. (b) Measurement 1 and approximation 2–4 data for the bending angle
profile of the console. Model curves 2 and 3 correspond to the dependencies 1 and 2 of Table 3
with the parameters k−12 = 0.007 and k−13 = 0. The curve 4 data are the sum of the 2 and 3 model
profiles data with weights of 0.85 and 0.15

Measured torsion angle profile, Fig. 5(a), is well described by the ψ linear relationship 4 of Table 3 with a
single fitting parameter κ−11 = 0.004. The fitting parameter value, see the discussion of expressions (10) and (11),
corresponds to the bending stiffness of the probe kT1

∼= 12.75 N/m. Using (10a), we can estimate the tip radius
RT1

∼= 8.5 nm, that is consistent with the supplier information [19].
At the console edge, the buckling angle in Fig. 5(a) is positive, and closer to the console fixing line on the chip it is

negative. A zero angle value and, as a consequence, the disappearance of the friction loop were observed at ψ = 0.64;
at lower ψ, the friction loop was inverted. In Fig. 4(d), the signal 1 (2) first decreases (increases), and then goes
horizontally; after inversion, the signal 1 (2) first increased (decreased) and then saturated. In Fig. 5(a) the measured
profile is consistent with the dependence 3 of Table 3 with a single fitting parameter κ−12 = 0.007, whence using (10a)
we get: kT2

∼= 7.3 N/m and RT2
∼= 5 nm. The value κ2κ−11 differs from unity and corresponds to the probe vertex

ellipticity, compression factor q =
√
4/7 ∼= 0.76.

The friction loop, hysteresis, is also observed in the force curves, i.e. in the bending angle signal, Fig. 4(b). In
contrast to Fig. 4(c) and 4(d), the signal, associated with the probe–sample clamping, goes almost horizontally.The
disappearance and subsequent inversion of the friction loop in the force curves were detected at the same values,
ψ ≤ 0.64, as for the buckling angle signal in Fig. 4(c). This observation directly shows the contribution of the
clamped state of the contact to the console bending angle value.

The fitting parameter κ−12 = 0.007 of the data in Fig. 5(a) was used to calculate the normalized sensitivity profiles
for bending angle in cases of sliding and clamped contacts, dashed, 2, and dotted, 3, curves, Fig. 5(b). The experiment
is better described by the sliding contact model. However, for ψ ≤ 0.64 this model underestimates somewhat, and for
ψ ≥ 0.64 it overestimates the experiment. The best agreement with the experiment shows the combined model (the
sliding and clamped contacts profiles with corresponding contributions of 0.85 and 0.15), a solid curve in Fig. 5(b).

Note that when κ−1i = 0 the difference between dependencies 1 and 2 in Table 3 is maximum. When the variable
ψ is close to unity, the clamped contact leads to a significantly decreasing slope of the force curve in comparison with
the sliding contact, see also Fig. 5(b). As a consequence, in the first case, the sample may appear softer in the AFM
measurement than in the second one. In this regard, simple experimental criteria are very important in distinguishing
the sliding contact from the clamped one.

Thus, for the studied soft (kC � 1 N/m) contact cantilever, all the three measured profiles agree well with the
calculations. In each case, the fitting procedure used only one parameter. It turned out that κ−12 � 1, and the parameter
κ−13 was not required.

The calculations were also consistent with measurements performed on stiff (kC � 1 N/m) cantilevers: NSG11
and HA NC (NT–MDT SI), RTESP-150 (Bruker). The fitting parameters κ−11 and κ−12 increased, and κ−13 was also
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used. It was found that the probes on these cantilevers are characterized by kTl∼10 N/m, which is close to the result
for the fpS10 cantilever.

We define the values kC for which the γ-factor in (1a) is less than unity. Assuming that κ−1T3 and λ2 are small
and therefore neglecting them, we have the following condition: kC>kT2 (1 + 3λcotα0 ). Taking for estimation
kT2=kTl=10 N/m and λ= 1/10, for the mounting angle of the cantilever holder α0= 12◦, we get: kC>24 N/m. The
RTESP-300 cantilever (Bruker) has kC = 40 N/m; when neglecting the γ-factor the AFM overestimate kS by 7 %. In
the case of RTESP-525, kC = 200 N/m, kS is overestimated by 75 % (and more than three times if α0= 20◦).

Unlike the soft cantilever, no friction loops were observed in the force curves measured with the stiff cantilevers.
This is due to both the force sensitivity decrease and the diminishing difference between the normalized sensitivity
profiles of the sliding and clamped contacts (1 and 2 in Table 3) with increasing κ−12 and κ−13 . To illustrate this,
it is enough to consider the case of a very soft sample, when κ−1S � 1. Since then κ−1i

∼= κ−1S , it can be shown
that with growing κ−1S the dependence 1 converges to ψ [(2−ψ) cosα0 −2λsinα0 ]κS and the dependence 2, to
ψ [(2−ψ) cosα0 +λsinα0 ]κS . Since λ is small, both limits are very close to: ψ (2−ψ)κScosα0 .

4. Conclusion

The results of modeling the contact static interaction of the AFM cantilever with the sample are presented. An an-
alytical model was created to calculate the distribution of deformation between the sample, the probe and the console.
The model takes into account the following factors: the probe is clamped by the sample or slides along its surface, the
geometric and mechanical characteristics of the sample and cantilever and their relative orientation. A new expression
is proposed to determine the probe–sample stiffness. The expression that differs from the generally accepted one by
a correction factor is proven to be used when the probe–sample contact is sliding. Normalized sensitivity profiles
were simulated for the console bending and torsion angles as functions of three dimensional displacements of the
mechanically isotropic sample.The profiles were also measured using AFM. Good agreement between measured and
simulated data is demonstrated.

It is interesting to adapt the analytical model of this work to increase the accuracy of AFM studies of mechanically
anisotropic samples, for example, when measuring the Young’s modulus of suspended nanometer scale objects [25]. It
is also important to extend the results of this work to ways for proving the sliding of the AFM probe along the sample
when measuring force curves.
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