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Steady Stokes flow between confocal semi-ellipses
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Analytical solutions for the Stokes equations in a cavity bounded by two confocal semi-ellipses and two line

segments are derived here. The exact solution for the stream function, in the form of a Fourier series, is obtained.

Eddy structure is described for different boundary conditions.
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1. Introduction

Micro- and nanoflows are new fields of nanotechnology. Flow through nanostructures is
known to have many interesting unusual peculiarities [1]. Particularly, one observes a phenom-
enon analogous to superfluidity [2], the dependence of viscosity on the nanotube’s diameter [3]
and other such effects. The theory of nanoflow is not well-developed. There are only a
few works suggesting theoretical explanations for these phenomena (see, e.g., [4–6]). It has
been shown that hydrodynamic equations should be modified for nanoflows [7], but the Stokes
approximation is appropriate due to the smallness of the Reynolds number [8].

The most interesting question is about the eddy structure for nanoflow. The information
about it can be used for several nanophysical and nanochemical applications. Particularly, it was
shown experimentally that there is a separation of a fluid’s components in nanochannels [9].
Among other reasons, it is related with the existence of eddies. One observes component
separation within an eddy due to differences in the components’ densities. As a result, this
property opens the way for the creation of a chemical nanoreactor. Namely, due to component
separation, the reagents needed for some chemical reaction are collected within some local
domain inside the eddy. Correspondingly, one has strong localization of the chemical reaction
in this domain only. We have the opportunity to use this phenomenon, only if we can predict
the eddy structure for different system parameters. Particularly, if the flow is induced by the
boundary condition, we require information about the dependence of the eddy structure on the
boundary conditions.

One can mention that similar processes take place in non-autonomous phases [10]. It is
interesting to note that the analogous mathematical problem also present in geophysics [11].

Stokes flows in various domains were studied by analytical methods in many papers.
There are a number of works describing the flow over a rectangular cavity [12–18]. The
solutions for the Stokes equations for the annular cavities were investigated in [19–25]. Stokes
flow in regions partially bounded by segments of ellipses was considered in [26, 27]. Corner
eddies in the Stokes flow problems were studied in [28–30].

In the present paper, we describe the Stokes flow in a horseshoe domain formed by
two semi-ellipses and two segments (Fig. 1). The flow is induced by inhomogeneous boundary
conditions. We investigate the eddy structure for different boundary conditions. Although the
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investigation was inspired by the nanoflows problem, the result concerns the classical Stokes
flow problem.

2. Problem formulation and solution

Let us consider Stokes flow in a cavity bounded by two confocal semi-ellipses, S1

and S2 and two line segments, AB and CD (Fig. 1). Flow in the cavity is induced by the
velocities Vtop and Vbot at S1 and S2 respectively. On segments AB and CD, we assume
free-slip conditions.

FIG. 1. The domain in the Cartesian coordinates. (−d, 0), (d, 0) are the ellipse foci

In the 2D case, the Stokes equations can be reduced to the biharmonic equation for the
stream function Ψ:

∆2Ψ = 0. (1)

We make the transformation of the cavity to the elliptic coordinates system:

x = d cos(ξ2) cosh(ξ1), y = d sin(ξ2) sinh(ξ1).

The Laplace operator takes the form:

∆ =
1

d2
(
cosh2(ξ1)− cos2(ξ2)

) ( ∂2

∂ξ21
+

∂2

∂ξ22

)
.

Our domain transforms to a rectangle on Fig. 2. Semi-ellipses S1, S2 in elliptic coordinate
system will convert to segments ξ1 = ξ01, ξ1 = ξ02, π ≤ ξ2 ≤ 2π.

FIG. 2. The domain in elliptic coordinates
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Let us consider the following chain of equations:

∆Ψ = Ψ1, (2)

∆Ψ1 = 0. (3)

The boundary conditions for stream function are:

Ψ(ξ1, 0) = 0, Ψ(ξ1, π) = 0, ξ01 ≤ ξ1 ≤ ξ02; (4)

Ψ(ξ01, ξ2) = 0, Ψ(ξ02, ξ2) = 0, π ≤ ξ2 ≤ 2π; (5)

∂2Ψ

∂ξ22
|ξ2=π = 0,

∂2Ψ

∂ξ22
|ξ2=2π = 0, ξ01 ≤ ξ1 ≤ ξ02; (6)

1

h

∂Ψ

∂ξ1
(ξ01, ξ2) = VS1(ξ2),

1

h

∂Ψ

∂ξ1
(ξ02, ξ2) = VS2(ξ2), π ≤ ξ2 ≤ 2π. (7)

Lame coefficients are: hξ1 = hξ2 = h = d

√
cosh2(ξ1)− cos2(ξ2).

The function Ψ1(ξ1, ξ2) in (3) can be found by standard separation of variables (for
calculations we take m terms):

Ψ1 =
m∑
k=1

(c1ke
kξ1 + c2ke

−kξ1) sin(kξ2). (8)

We derive a solution of Eq. (2) in the form of the Fourier series:

Ψ(ξ1, ξ2) =
n∑
k=1

Ψ1k(ξ1) sin(kξ2), π ≤ ξ2 ≤ 2π (9)

Ψ11(ξ1) = a31e
ξ1 + a41e

−ξ1 +
1

8
(a11 + a21)ξ1e

ξ1 − 1

8
(a11 + a21)ξ1e

−ξ1

+
1

32
(a11 − a13)e3ξ1 +

1

32
(a21 − a23)e−3ξ1

Ψ1k(ξ1) = a3ke
kξ1+a4ke

−kξ1+
1

16(1− k)
(a1,k−a1,k−2)e

(k−2)ξ1+
1

16(1 + k)
(a1,k−a1,k+2)e

(k+2)ξ1

+
1

16(1− k)
(a2,k − a2,k−2)e

−(k−2)ξ1 +
1

16(1 + k)
(a2,k − a2,k+2)e

−(k+2)ξ1 , k ≥ 2.

Formula (9) is a general solution of equation (1). Each function Ψ1k(ξ1) depends on the
coefficients from sets a1, a2, a3, a4. Here, a1 = a11...a1(n−2), a2 = a21...a2(n−2), a3 = a31...a3n,
a4 = a41...a4n. We then need to find coefficients a1, a2, a3, a4 to satisfy the boundary conditions
for the stream function. Conditions (4),(6) are satisfied for arbitrary values of the coefficients
a1, a2, a3, a4.

We now denote Ψ1k(a1, a2, a3, a4) by Ψ1k(ξ1). Condition (5) leads to the algebraic
relations between coefficients:

Ψ1k(a1, a2, a3, a4)|ξ1=ξ01 = 0,

Ψ1k(a1, a2, a3, a4)|ξ1=ξ02 = 0, k = 1...n.
(10)

The first condition in (7) takes the form:
n∑
k=1

∂

∂ξ1
Ψ1k sin(kξ2)|ξ1=ξ01 = Vtop(ξ2)d

√
cosh2(ξ01)− cos2(ξ2).
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Let us consider the function in the right hand side as a Fourier series:
n∑
k=1

∂

∂ξ1
Ψ1k sin(kξ2)|ξ1=ξ01 =

n∑
k=1

Ck1 sin(kξ2), (11)

where

Ck1 = e−kξ01
−1

kπ
d

π∫
0

Vtop(ξ2)

√
cosh2(ξ01)− cos2(ξ2) sin(kξ2)dξ2.

The coefficients Ck1 can easily be found numerically. The means of calculating Ck2 for the
second condition in (7) is analogous. Thus, condition (7) can be represented as an algebraic
relation between coefficients:

∂

∂ξ1
Ψ1k(a1k, a2k, a3k, a4k)|ξ1=ξ01 = Ck1, k = 1 . . . n; (12)

∂

∂ξ1
Ψ1k(a1k, a2k, a3k, a4k)|ξ1=ξ02 = Ck2, k = 1 . . . n. (13)

As a result, coefficients a1, a2, a3, a4 are the solutions for a system of linear equations. This
system includes the sets of equations (10) and some equations from the sets (12), (13).

3. Discussion

The expression for stream function (9) has been completely defined above. If we fix
ellipse half axes and vary the velocity of the moving part of the boundary, we can obtain
different pictures of the flow. The following figures shows fluid streamlines for different
velocity functions at S1 and S2.

For all the examples described below, the ellipse half axes are a = 0.4; b = 0.12 for S1

and a = 0.86; b = 0.76 for S2.

FIG. 3. Velocities on S1 and S2 have opposite directions. Functions Vtop(ξ2) and
Vbot(ξ2) do not change sign. We have no separation points at the boundary. The
whole domain is a single vortex region
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FIG. 4. Functions VS1(ξ2) and VS2(ξ2) do not change sign. We have no separation
points at S1 and S2. Velocities on S1 and S2 are in the same direction. We obtain
separation points at segments AB and CD. The domain is divided into two
subdomains. On the centerline (x = 0), we obtain two stagnation points (at these
points the fluid is totally stationary), we compare that with [20]

FIG. 5. Function VS1(ξ2) changes its sign. We obtain two separation points at
S1. Function VS2(ξ2) doesn’t change its sign. We have no separation points at
S2. The velocities at the corners of S1 and S2 are in the same direction. We
obtain a single separation point for each segment, AB and CD
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4. Numerical analysis

We construct the solution of Eq.(1) by a finite-difference method. The discrete expres-
sion for the biharmonic equation, using forward finite difference method, has the form:

20Ψ0 − 8(Ψ1 + Ψ2 + Ψ3 + Ψ4) + Ψ5 + Ψ7+

+Ψ9 + Ψ11 + 2(Ψ6 + Ψ8 + Ψ10 + Ψ12) = 0.

The stencil for the finite difference scheme is shown in Fig. 6. The node with number 0
corresponds to a stream function node for which the biharmonic equation is formulated.

FIG. 6. Stencil nodes numbering

We calculate the relative errors with L1 norm and estimate the quality of numerical
solution. The dependence of the relative error E via the grid step d for Fig. 4 is shown in
Fig. 7. The positive slope confirms the convergence of the algorithm.

FIG. 7. Error norm via the grid resolution (logarithmic scale)
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5. Conclusion

We obtained exact solutions for the biharmonic equation for the stream function of the
Stokes flow. We fixed the geometrical parameters of the domain and varied the boundary
conditions. Doing so allowed us to change the flow structure drastically. This could open up
opportunities for controlling flow structure by external actions.
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