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We apply the method of far-field matching to remodel laser beams and study light scattering from spherical particles

illuminated by a Laguerre-Gaussian (LG) light beam. The optical field in the near-field region is analyzed for

purely azimuthal LG beams characterized by a nonzero azimuthal mode number mLG. The morphology of photonic

nanojets is shown to significantly vary, depending the mode number and the scatterer’s characteristics. The cases

of negative index metamaterial and metallic Mie scatterers are discussed. We also discuss the symmetry properties

of laser beams and related results for the optical forces. The near-field structure of optical vortices associated with

the components of the electric field, being highly sensitive to the mode number, is found to be determined by the

twofold rotational symmetry.
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1. Introduction

The scattering of light and other radiation by particles has long been known to be of
crucial importance in a great variety of science and engineering disciplines. The problem of
light scattering by spherically shaped particles dates back to the more than century-old classical
exact solution due to Mie [1]. The analysis of a Mie–type theory uses a systematic expansion
of the electromagnetic field over vector spherical harmonics [2–5]. The specific form of the
expansions is also known as the T–matrix ansatz that has been widely used in the related
problem of light scattering by nonspherical particles [4, 6, 7]. More recently, this strategy has
been successfully applied to optically anisotropic particles [8–13].

The Mie solution, in its original form, applies to the scattering of plane electromagnetic
waves by uniform optically isotropic spherical particles (the so-called Mie scatterers). For
laser beams, it is generally necessary to go beyond the plane-wave approximation and light
scattering from arbitrary shaped laser beams [14–18] has been the key subject of the Mie–
type theory — the so-called generalized Lorenz–Mie theory (GLMT) — extended to the case of
arbitrary incident-beam scattering [5, 19]. In such generalization of the Mie theory, the central
and the most important task is to describe the illuminating beams in terms of expansions over
a set of basis wavefunctions. In GLMT, a variety of methods were developed to evaluate the
expansion coefficients that are referred to as the beam shape coefficients (for a recent review
see Ref. [20] and references therein).

The central problem with laser beams is due to the fact that in their standard mathe-
matical form, these beams are not radiation fields which are solutions to Maxwell’s equations.
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Typically, the analytical treatment of laser beams is performed using the paraxial approxima-
tion [21] and the beams are described as pseudo-fields which are only approximate solutions of
the vector Helmholtz equation (higher order corrections can be used to improve the accuracy of
the paraxial approximation [21, 22]).

Unfortunately, multipole expansions do not exist for such approximate pseudo-fields.
Therefore, some remodelling procedure must be invoked to obtain a real radiation field which
can be regarded as an approximation to the original paraxial beam.

The basic concept that might be called matching the fields on a surface lies at the heart
of various traditional approaches to the laser beam remodelling and is based on the assumption
that there is a surface where the actual incident field is equal to the paraxial field. Examples
of physically reasonable and natural choice are scatterer-independent matching surfaces such
as a far-field sphere [23], the focal plane (for beams with well-defined focal planes) [23, 24],
and a Gaussian reference sphere representing a lens [25]. Given the paraxial field distribution
on the matching surface, the beam shape coefficients can be evaluated using either numerical
integration or the one-point matching method [23].

An alternative approach is to analytically describing the propagation of a laser beam,
which is known in the paraxial limit, without recourse to the paraxial approximation. In
Refs. [26–30] this strategy has been applied to the important case of Laguerre–Gaussian (LG)
beams using different methods such as the vectorial Rayleigh–Sommerfeld formulas [27, 30],
the vector angular spectrum method [29], approximating LG beams by nonparaxial beams with
(near) cylindrical symmetry [26, 28].

The nonparaxial beams are solutions of Maxwell’s equations and the beam shape coef-
ficients can be computed using the methods of GLMT. In recent studies of light scattering by
spherical and spheroidal particles illuminated with LG beams [31, 32], the analytical results of
Ref. [28] were used to calculate the beam shape coefficients.

In this paper, the problem of light scattering from LG beams that represent optical
vortex laser beams exhibiting a helical phase front and carrying a phase singularity will be of
our primary interest. The topological charge characterizing the phase singularity and associated
orbital angular momentum gives rise to distinctive phenomena such as soliton generation [33],
entanglement of photon quantum states, orbital angular momentum exchange with atoms and
molecules (in addition to the collection of papers [34], see reviews in Ref. [35]), rotation and
orbital motion of spherical particles illuminated with LG beams [36, 37].

In our calculations, we shall follow Refs. [10, 38] and use the T–matrix approach in
which the far-field matching method is combined with the results for nonparaxial propagation
of LG beams [29,30]. Our goal is to examine the near-field structure of optical field depending
on the parameters characterizing both the beam and the scatterer.

This structure has recently attracted considerable attention that was stimulated by an
upsurge of interest in the so-called photonic nanojets and their applications (for a review see
Ref. [39]). These nanojets were originally identified in finite-difference-time-domain simula-
tions [40, 41] as narrow, high-intensity electromagnetic beams that propagate into background
medium from the shadow-side surface of a plane-wave illuminated dielectric microcylinder [40]
or microsphere [41] of diameter greater than the illuminating wavelength. There are several
potentially important applications for the photonic nanojets to detect and manipulate nanoscale
objects, subdiffraction-resolution nanopattering and nanolithography, low-loss waveguiding, and
ultra-density optical storage. These applications are reviewed in Ref. [39].

The layout of the paper is as follows: in Sec. 2, we outline our theoretical approach. The
analytical results for the beam shape coefficients of LG beams and the fundamental properties
of the far-field angular distributions are described in Sec. 3. The numerical procedure and the
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results of numerical computations representing the near-field intensity distributions and phase
maps of electric field components for purely azimuthal LG beams are presented in Sec. 4.
Finally, in Sec. 5, we present our results and make some concluding remarks.

2. Lorenz–Mie theory: Wave functions and T–matrix

In this section, we introduce all necessary notations and briefly discuss how the proper-
ties of Mie scattering can be described in terms of the T–matrix [2, 4]. Our formulation closely
follows to the line of our presentation given in Refs. [10, 38].

We consider scattering by a spherical particle of radius Rp embedded in a uniform
isotropic dielectric medium with dielectric constant εmed and magnetic permeability µmed. The
dielectric constant and magnetic permittivity of the particle are εp and µp, respectively. For a
harmonic electromagnetic wave (time–dependent factor is exp{−iωt}), the Maxwell equations
can be written in the following form:

−ik−1i ∇× E =
µi
ni
H , (1a)

ik−1i ∇×H =
ni
µi
E, i =

{
med, r > Rp

p, r < Rp

(1b)

where nmed =
√
εmedµmed is the refractive index outside the scatterer (in the ambient medium),

where r > Rp (i = med) and ki = kmed = nmedkvac (kvac = ω/c = 2π/λ is the free–space
wave number); np =

√
εpµp is the refractive index for the region inside the spherical particle

(scatterer), where r < Rp (i = p) and ki = kp = npkvac.
The electromagnetic field can always be expanded using the vector spherical harmonic

basis [42]. There are three cases of these expansions that are of particular interest. They
correspond to the incident wave, {Einc,Hinc}, the outgoing scattered wave, {Esca,Hsca} and
the electromagnetic field inside the scatterer, {Ep,Hp}:

Eα =
∑
jm

[
α
(α)
jmM

(α)
jm(ρi, r̂) + β

(α)
jmN

(α)
jm(ρi, r̂)

]
, α ∈ {inc, sca, p} (2a)

Hα = ni/µi
∑
jm

[
α
(α)
jmN

(α)
jm(ρi, r̂)− β

(α)
jmM

(α)
jm(ρi, r̂)

]
, (2b)

M
(α)
jm(ρi, r̂) = ik−1i ∇×N

(α)
jm = z

(α)
j (ρi)Y

(m)
jm (r̂), (2c)

N
(α)
jm(ρi, r̂) = −ik−1i ∇×M

(α)
jm =

√
j(j + 1)

ρi
z
(α)
j (ρi)Y

(0)
jm(r̂) +Dz

(α)
j (ρi)Y

(e)
jm(r̂), (2d)

i =

{
med, α ∈ {inc, sca}
p, α = p

, z
(α)
j (ρi) =


jj(ρ), α = inc

h
(1)
j (ρ), α = sca

jj(ρp), α = p

, (2e)

where ρ ≡ ρmed = kmedr, ρp = kpr ≡ nρ, and n = np/nmed is the ratio of refractive indexes
also known as the optical contrast; Df(x) ≡ x−1∂x(xf(x)).
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According to Ref. [10], the spherical harmonics can be conveniently expressed in terms
of the Wigner D–functions [42, 43] as follows:

Y
(m)
jm (r̂) = Nj/

√
2
{
Dj ∗
m,−1(r̂) e−1(r̂)−D

j ∗
m, 1(r̂) e+1(r̂)

}
, (3a)

Y
(e)
jm(r̂) = Nj/

√
2
{
Dj ∗
m,−1(r̂) e−1(r̂) +Dj ∗

m, 1(r̂) e+1(r̂)
}
, (3b)

Y
(0)
jm(r̂) = NjD

j ∗
m, 0(r̂) e0(r̂) = Yjm(r̂)r̂, Nj = [(2j + 1)/4π]1/2, (3c)

where Y
(m)
jm , Y

(e)
jm and Y

(0)
jm are electric, magnetic and longitudinal harmonics, respectively;

e±1(r̂) = ∓(ex(r̂) ± iey(r̂))/
√
2; ex(r̂) ≡ ϑ̂ = (cos θ cosφ, cos θ sinφ,− sin θ), ey(r̂) ≡ ϕ̂ =

(− sinφ, cosφ, 0) are the unit vectors tangential to the sphere; φ (θ) is the azimuthal (polar) angle
of the unit vector r̂ = r/r = (sin θ cosφ, sin θ sinφ, cos θ) ≡ e0(r̂) ≡ ez(r̂); f(r̂) ≡ f(φ, θ).
(Hats will denote unit vectors and an asterisk will indicate complex conjugation).

Note that, for the irreducible representation of the rotation group with the angular number
j, the D-functions, D j

mν(α, β, γ) = exp(−imα)d jmµ(β) exp(−iµγ), give the elements of the
rotation matrix parametrized by the three Euler angles [42,43]: α, β and γ. In formulas (3) and
throughout this paper, we assume that γ = 0 and D j

mν(r̂) ≡ D j
mν(φ, θ, 0). These D-functions

meet the following orthogonality relations [42, 43]

〈D j ∗
mν(r̂)D

j′

m′ν(r̂)〉r̂ =
4π

2j + 1
δjj′ δmm′ , (4)

where 〈 f 〉r̂ ≡
2π�

0

dφ

π�

0

sin θdθ f(r̂). The orthogonality condition (4) and Eqs. (3) show that a

set of vector spherical harmonics is orthonormal:

〈Y(α) ∗
jm (r̂) ·Y(β)

j′m′(r̂)〉r̂ = δαβ δjj′ δmm′ . (5)

It can be shown [38] that the vector spherical harmonics (3) can also be recast into the
well-known standard form [44]:

Y
(m)
jm (r̂) = njLYjm = −ir̂×Y

(e)
jm, (6)

Y
(e)
jm(r̂) = njr∇Yjm = −ir̂×Y

(m)
jm , nj ≡ [j(j + 1)]−1/2, (7)

where ∂x stands for a derivative with respect to x and Yjm(r̂) ≡ Yjm(φ, θ) is the normalized
spherical function; L is the operator of angular momentum given by:

iL = r×∇ = ϕ̂ ∂θ − ϑ̂ [sin θ]−1∂φ. (8)

The vector wave functions, M(α)
jm and N

(α)
jm , are the solenoidal solutions of the vector

Helmholtz equation that can be derived (a discussion of the procedure can be found, e.g., in
Ref. [45]) from solutions of the scalar Helmholtz equation, (∇2 + k2)ψ(r) = 0, taken in the
form:

ψ
(α)
jm = njz

(α)
j (kr)Yjm(r̂), nj ≡ [j(j + 1)]−1/2, (9)

where z(α)j (x) is either a spherical Bessel function, jj(x) = [π/(2x)]1/2Jj+1/2(x), or a spherical

Hankel function [46], h(1, 2)j (x) = [π/(2x)]1/2H
(1, 2)
j+1/2(x).
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In the far field region (ρ � 1), the asymptotic behavior of the spherical Bessel and
Hankel functions is known [46]:

ij+1h
(1)
j (ρ), ijDh

(1)
j (ρ) ∼ exp(iρ)/ρ, (10)

(−i)j+1h
(2)
j (ρ), (−i)jDh(2)j (ρ) ∼ exp(−iρ)/ρ, (11)

ij+1jj(ρ), i
j+1Djj+1(ρ) ∼

[
exp(iρ)− (−1)j exp(−iρ)

]
/(2ρ). (12)

So, the spherical Hankel functions of the first kind, h(1)j (ρ), describe the outgoing waves,

whereas those of the second kind, h(2)j (ρ), represent the incoming waves.
Thus, outside the scatterer, the optical field is the sum of the incident wave field with

z
(inc)
j (ρ) = jj(ρ) and the scattered waves with z(sca)j (ρ) = h

(1)
j (ρ), as required by the Sommerfeld

radiation condition. The incident field is the field that would exist without a scatterer and
therefore includes both incoming and outgoing parts (see Eq. (12)) because, without scattering,
what comes in must go outwards again. As opposed to the spherical Hankel functions that are
singular at the origin, the incident wave field should be finite everywhere, and thus, is described
by the regular Bessel functions jj(ρ).

Now the incident wave is characterized by amplitudes α(inc)
jm , β(inc)

jm and the scattered

outgoing waves are similarly characterized by amplitudes α(sca)
jm , β(sca)

jm . As long as the scattering

problem is linear, the coefficients α(sca)
jm and β(sca)

jm can be written as linear combinations of α(inc)
jm

and β(inc)
jm :

α
(sca)
jm =

∑
j′,m′

[
T 11
jm, j′m′ α

(inc)
j′m′ + T 12

jm, j′m′ β
(inc)
j′m′

]
,

β
(sca)
jm =

∑
j′,m′

[
T 21
jm, j′m′ α

(inc)
j′m′ + T 22

jm, j′m′ β
(inc)
j′m′

]
. (13)

These formulas define the elements of the T–matrix in the most general case.
In general, the scattering process mixes angular momenta [6]. The light scattering from

uniformly anisotropic scatterers [10,11,47,48] provides an example of such a scattering process.
By contrast, in simpler scattering processes, such angular momentum mixing does not take place.
For example, radial anisotropy maintains the spherical symmetry of the scatterer [8,10,13]. The
T–matrix of a spherically symmetric scatterer is diagonal over the angular momenta and the
azimuthal numbers: T nn

′

jj′,mm′ = δjj′δmm′T nn
′

j .

In order to calculate the elements of T-matrix and the coefficients α(p)
jm and β

(p)
jm, we

need to use the continuity for the tangential components of the electric and magnetic fields as
boundary conditions at r = Rp (ρ = kmedRp ≡ x). Thus, the coefficients of the expansion
for the wave field inside the scatterer, α(p)

jm and α(p)
jm, are expressed in terms of the coefficients

describing the incident light as follows:

iα
(p)
jm =

α
(inc)
jm

µ−1vj(x)u′j(nx)− n−1v′j(x)uj(nx)
, µ = µp/µmed, (14)

iβ
(p)
jm =

β
(inc)
jm

n−1vj(x)u′j(nx)− µ−1v′j(x)uj(nx)
, n = np/nmed, (15)
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where x = kmedRp, uj(x) = xjj(x) and vj(x) = xh
(1)
j (x). A similar result relates the scattered

and incident waves:

α
(sca)
jm = T 11

j α
(inc)
jm =

n−1u′j(x)uj(nx)− µ−1uj(x)u′j(nx)
µ−1vj(x)u′j(nx)− n−1v′j(x)uj(nx)

α
(inc)
jm , (16)

β
(sca)
jm = T 22

j β
(inc)
jm =

µ−1uj(x)u
′
j(nx)− n−1u′j(x)uj(nx)

n−1vj(x)u′j(nx)− µ−1v′j(x)uj(nx)
β
(inc)
jm , (17)

defining the T-matrix for the simplest case of a spherically symmetric scatterer. In addition,
since the parity of electric and magnetic harmonics with respect to the spatial inversion r̂→ −r̂
({φ, θ} → {φ+ π, π − θ}) is different:

Y
(m)
jm (−r̂) = (−1)jY(m)

jm (r̂), Y
(e)
jm(−r̂) = (−1)j+1Y

(e)
jm(r̂), (18)

where f(r̂) ≡ f(φ, θ) and f(−r̂) ≡ f(φ + π, π − θ), they do not mix provided the mirror
symmetry has not been broken. In this case the T-matrix is diagonal and T 12

j = T 21
j = 0. The

diagonal elements T 11
j ≡ aj and T 22

j ≡ bj are also called the Mie coefficients.

3. Far-field matching

The formulas (14)–(17) are useful only if the expansion for the incident light beam is
known. First we briefly review the most studied and fundamentally important case where the
incident light is represented by a plane wave.

The electric field of a transverse plane wave propagating along the direction specified
by a unit vector k̂inc is:

Einc = E(inc) exp(ikinc · r) , E(inc) =
∑
ν=±1

E(inc)
ν eν(k̂inc) , kinc = kk̂inc . (19)

where the basis vectors e±1(k̂inc) are perpendicular to k̂inc. Then, the vector version of the
well-known Rayleigh expansion (see, for example, [2, 10, 38]) immediately gives the expansion
coefficients for the plane wave:

α
(inc)
jm = iαj

∑
ν=±1

Dj
mν(k̂inc)νE

(inc)
ν , β

(inc)
jm = −αj

∑
ν=±1

Dj
mν(k̂inc)E

(inc)
ν , (20)

where αj = ij+1[2π(2j + 1)]1/2.
Now, we consider a more general, case where an incident electromagnetic wave is

written as a superposition of propagating plane waves:

Einc(r) ≡ Einc(ρ, r̂) = 〈exp(iρ k̂ · r̂)Einc(k̂)〉k̂, Einc(k̂) =
∑
ν=±1

Eν(k̂) eν(k̂), (21a)

Hinc(r) ≡ Hinc(ρ, r̂) =
n

µ
〈exp(iρ k̂ · r̂)

[
k̂× Einc(k̂)

]
〉k̂ , (21b)

where 〈 f 〉k̂ ≡
2π�

0

dφk

π�

0

sin θkdθk f .

Our first step is to examine asymptotic behavior of the wave field (21) in the far-field
region, ρ � 1. The results can be easily obtained by using the asymptotic formula for a plane
wave (see, e.g., [4])

exp(iρ k̂ · r̂) ∼ −2πi
ρ

[
exp(iρ)δ(k̂− r̂)− exp(−iρ)δ(k̂+ r̂)

]
at ρ� 1, (22)
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where δ(k̂∓ r̂) is the solid angle Dirac δ-function symbolically defined through the expansion:

δ(k̂∓ r̂) =
∞∑
l=0

l∑
m=−l

Ylm(±r̂)Y ∗lm(k̂). (23)

Applying relation (22) to the plane wave superposition (21a) gives the electric field of the
incident wave in the far-field region:

Einc(ρ, r̂) ∼ E
(∞)
inc (ρ, r̂) =

1

ρ

[
exp(iρ)E

(inc)
out (r̂) + exp(−iρ)E(inc)

in (r̂)
]
, (24)

E
(inc)
in (r̂) = −E(inc)

out (−r̂), (25)

where Eout(r̂) is the far-field angular distribution for the outgoing part of the electric field of
the incident wave:

E
(inc)
out (r̂) = −2πiEinc(r̂) = E

(out)
θ (r̂) eθ(r̂) + E

(out)
φ (r̂) eφ(r̂), (26)

whereas the incoming part of the incident wave is described by the far-field angular distribution
E

(inc)
in (r̂).

The result for the far-field distribution of the magnetic field (21b) can be written in the
similar form:

Hinc(ρ, r̂) ∼ H
(∞)
inc (ρ, r̂) =

1

ρ

[
exp(iρ)H

(inc)
out (r̂) + exp(−iρ)H(inc)

in (r̂)
]
, (27)

H
(inc)
in (r̂) = −H(inc)

out (−r̂), (28)

µ/nH
(inc)
out (r̂) = r̂× E

(inc)
out (r̂), µ/nH

(inc)
in (r̂) = r̂× E

(inc)
out (−r̂). (29)

Formulas (24)-(29) explicitly show that, in the far-field region, the incident wave field is defined
by the angular distribution of the outgoing wave (26).

Alternatively, the far-field distribution of an incident light beam, E(inc)
out (r̂), can be found

from the expansion over the vector spherical harmonics (2a). The far-field asymptotics for the
vector wave functions that enter the expansion for the incident wave (2):

M
(inc)
jm (ρ, r̂) ∼ (−i)j+1

2ρ

[
exp(iρ)Y

(m)
jm (r̂)− exp(−iρ)Y(m)

jm (−r̂)
]
, (30)

N
(inc)
jm (ρ, r̂) ∼ (−i)j

2ρ

[
exp(iρ)Y

(e)
jm(r̂)− exp(−iρ)Y(e)

jm(−r̂)
]
, (31)

can be derived from Eqs. (2c)-(2d) with the help of the far-field relation (12). Substituting
Eqs. (30) and (31) into expansion (2a) gives the far-field distribution of the form (24) with:

E
(inc)
out (r̂) = 2−1

∑
jm

(−i)j+1
[
α
(inc)
jm Y

(m)
jm (r̂) + iβ

(inc)
jm Y

(e)
jm(r̂)

]
. (32)

The coefficients of the incident wave can now easily be found as the Fourier coefficients of
the far-field angular distribution, Eout, expanded using the vector spherical harmonics basis (3).
The final result reads:

α
(inc)
jm = 2 ij+1〈Y(m) ∗

jm (r̂) · E(inc)
out (r̂)〉r̂ = iαj

∑
ν=±1

ν〈D j
mν(k̂)Eν(k̂)〉k̂, (33a)

β
(inc)
jm = 2 ij〈Y(e) ∗

jm (r̂) · E(inc)
out (r̂)〉r̂ = −αj

∑
ν=±1

〈D j
mν(k̂)Eν(k̂)〉k̂. (33b)
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A comparison between the expressions on the right hand side of Eq. (33) and those for the plane
wave (20) shows that, in agreement with the representation (21a), the result for plane waves
represents the limiting case where the angular distribution is singular: Eν(k̂) = E(inc)

ν δ(k̂−k̂inc).
By using Eqs. (6) and (7) formulas (33) can conveniently be rewritten in the explicit

form:

α
(inc)
jm = 2nj i

j+1〈Y ∗jm(r̂) (L · E
(inc)
out (r̂))〉r̂ =

2nj i
j

2π�

0

dφ

π�

0

dθ Y ∗jm(φ, θ)
[
∂θ(sin θE

(out)
φ )− ∂φE(out)

θ

]
, (34a)

β
(inc)
jm = −2nj ij 〈Y ∗jm(r̂) (r∇ · E

(inc)
out (r̂))〉r̂ =

− 2nj i
j

2π�

0

dφ

π�

0

dθ Y ∗jm(φ, θ)
[
∂θ(sin θE

(out)
θ ) + ∂φE

(out)
φ

]
, (34b)

which might be useful for computational purposes.
We conclude this section with the remark concerning the effect of translation:

{Einc(r),Hinc(r)} → {Einc(r− rp),Hinc(r− rp)} (35)

on the far-field angular distribution (26). Note that, under the action of transformation (35), the
focal plane is displaced from its initial position by the vector rp. From Eqs. (21) and (26), it
follows that, for the far-field distribution (26), translation results in a phase shift:

E
(inc)
out (r̂)→ E

(inc)
out (r̂, rp) = E

(inc)
out (r̂) exp[−ik(rp · r̂)]. (36)

3.1. Poynting vector, Maxwell’s stress tensor and optical force

From Eqs. (24)-(29), it is not difficult to obtain the far-field expression for the time-
averaged Poynting vector of the incident wave Sinc = c/(8π) Re(Einc ×H ∗inc):

Sinc(ρ, r̂) ∼ S
(∞)
inc (ρ, r̂) = ρ−2

{
S
(inc)
in (r̂) + S

(inc)
out (r̂)

}
, (37)

S
(inc)
in (r̂) = −S(inc)

out (−r̂), µ/nS
(inc)
out (r̂) = c/(8π) |E(inc)

out (r̂)|2 r̂, (38)

where |E(inc)
out (r̂)|2 = (E

(inc)
out (r̂) · [E(inc)

out (r̂)] ∗). From this expression, it immediately follows
that the flux of the Poynting vector for the outgoing wave, S(inc)

out (r̂), through a sphere Sf of
sufficiently large radius, Rf , is exactly balanced by the flux of Poynting vector of the incoming
wave, S(inc)

in (r̂).
For the total optical field, which is a sum of the incident and scattered wavefields, the

electric and magnetic fields in the far-field region can also be separated into incoming and the
outgoing portions as follows:

Etot = Einc + Esca ∼ E
(∞)
tot =

1

ρ

[
exp(iρ)Eout(r̂) + exp(−iρ)Ein(r̂)

]
, (39)

Htot = Hinc +Hsca ∼ H
(∞)
tot =

1

ρ

[
exp(iρ)Hout(r̂) + exp(−iρ)Hin(r̂)

]
, (40)

µ/nHout(r̂) = r̂× Eout(r̂), µ/nHin(r̂) = −r̂× Ein(r̂), (41)

Eout(r̂) = E
(inc)
out (r̂) + E

(sca)
out (r̂), Ein(r̂) = −E(inc)

out (−r̂), (42)
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where, similar to the case of the incident wave (32), the far-field angular distribution of the
scattered wave, E(sca)

out (r̂), is determined by the expansion in vector spherical harmonics:

E
(sca)
out (r̂) =

∑
jm

(−i)j+1
[
α
(sca)
jm Y

(m)
jm (r̂) + iβ

(sca)
jm Y

(e)
jm(r̂)

]
. (43)

We can now generalize the Poynting vector expression (37) to the case of the total wavefield
given in Eqs. (39)–(41):

µ/nS
(∞)
tot (ρ, r̂) =

c

8πρ2

{
|Eout(r̂)|2 − |Ein(r̂)|2

}
r̂, (44)

and use the relations (42) to evaluate the flux of the Poynting vector (44) through the far-field
sphere Sf of the radius Rf . The result can be written in the following well-known form:

�

Sf

(S
(∞)
tot · ds) = R2

f〈(S
(∞)
tot (kRf , r̂) · r̂)〉r̂ ≡ −Wabs = Wsca −Wext, (45)

Wsca =
cn

8πµk2
〈|E(sca)

out (r̂)|2〉r̂, Wext = −
cn

4πµk2
Re〈(E(sca)

out (r̂) · [E(inc)
out (r̂)] ∗)〉r̂, (46)

where Wsca is the energy scattering rate (the rate at which the scattered energy crosses the
sphere in an outward direction), Wabs is the energy absorption rate and Wext = Wsca +Wabs

is the extinction rate. When the scatterer and the surrounding medium are both non-absorbing,
the energy absorption rate vanishes, Wabs = 0, and Eq. (45) yields unitarity relations for the
T-matrix [4]. In our spherically symmetric case, these are: |2T 11

j + 1| = |2T 22
j + 1| = 1.

The far-field angular distributions, E
(sca)
out (r̂) and E

(inc)
out (r̂), also determine the time-

averaged optical force, F, acting upon the particle. This force can be expressed in terms of the
time-average of Maxwell’s stress tensor TM :

TM =
1

8π
Re{εE⊗ E∗ + µH⊗H∗ − I3(ε|E|2 + µ|H|2)/2}, (47)

where I3 is the 3× 3 identity matrix, as follows:

F =

�

Sf

(T
(∞)
M · ds), (48)

where T
(∞)
M is the Maxwell stress tensor (47) in the far-field region. Substituting Eqs. (39)–(41)

into the stress tensor (47) gives the following expression for the dot product:

(T
(∞)
M · r̂) = − ε

8πρ2

{
|Eout(r̂)|2 + |Ein(r̂)|2

}
r̂, (49)

that enter the integrand on the right-hand side of Eq. (48). The final result for the optical force
reads:

F(rp) = −
ε

8πk2

{
〈r̂|E(sca)

out (r̂, rp)|2〉r̂ + 2〈r̂Re(E(sca)
out (r̂, rp) · [E(inc)

out (r̂, rp)]
∗)〉r̂
}
, (50)

where we have indicated that the net force exerted on the particle depends on the displacement
vector rp describing position of the scatterer with respect to the focal plane.
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3.2. Remodelled Laguerre–Gaussian beams

In the paraxial approximation, the beams are described in terms of scalar fields of the
form: u(r) exp(ikz), where u(r) is a solution of the paraxial Helmholtz equation:

[∇2
⊥ + 2ik∂z]u = 0, ∇2

⊥ = ∂2x + ∂2y . (51)

For LG beams, the solution can be conveniently written in the cylindrical coordinate system,
(r⊥, φ, z), as follows

unm(r⊥, φ, z) = |σ|−1ψnm(
√
2r⊥/w) exp{−r2⊥/(w2

0σ) + imφ− iγnm}, (52a)

σ ≡ σ(z) = 1 + iz/zR, w ≡ w(z) = w0|σ|, (52b)

γnm ≡ γnm(z) = (2n+m+ 1) arctan(z/zR), ψnm(x) = x|m|L|m|n (x2), (52c)

where Lmn is the generalized Laguerre polynomial given by [49]:

Lmn (x) = (n!)−1x−m exp(x) ∂nx [x
n+m exp(−x)], (53)

where n (m) is the radial (azimuthal) mode number; w0 is the initial transverse Gaussian
half-width (the beam diameter at waist) zR = kw2

0/2 = [2kf 2]−1 is the Rayleigh range and
f = [kw0]

−1 is the focusing parameter.
The problem studied in Refs. [27,29,30] deals with the exact propagation of the optical

field in the half-space, z > 0, when its transverse components at the initial (source) plane,
z = 0, are known. In Ref. [29], the results describing asymptotic behavior of the linearly
polarized field:

E(r⊥, φ, 0) = unm(r⊥, φ, 0) x̂ = ψnm(
√
2r⊥/w0) exp{−r2⊥/w2

0 + imφ} x̂, (54)

were derived using the angular spectrum representation (Debye integrals) and comply with
both results of rigorous mathematical analysis performed in Ref. [50] and those obtained using
the vectorial Rayleigh-Sommerfeld integrals [27, 30]. The resulting expression for the far-field
angular distribution can be written in the following form:

E
(LG)
out (φ, θ) = Enm(f

−1 sin θ/
√
2) exp(imφ)eout, (55a)

eout = cosφ eθ(r̂)− cos θ sinφ eφ(r̂) = cos θ x̂− sin θ cosφ ẑ, (55b)

Enm(x) =
xm

i2n+m+12f 2
Lmn (x

2) exp(−x2/2). (55c)

We can now combine relations (26) and (21) with the outgoing part of the far-field
distribution (55a) to deduce the expression for the electric field of the remodelled LG beam:

E
(LG)
inc (ρ⊥, φ, ρz) = E(LG)

x (ρ⊥, φ, ρz) x̂+ E(LG)
z (ρ⊥, φ, ρz) ẑ =

i

2π
〈exp [i(ρ⊥ sin θk cos(φ− φk) + ρz cos θk)] E

(LG)
out (k̂)〉k̂, (56)

where ρ⊥ = kr⊥ and ρz = kz.

3.3. Laser beam symmetries

In Sec. 3.1, we have shown that the scattering characteristics such as the cross-sections
and the radiation force can be expressed in terms of the far-field angular distributions that can
be regarded as vector fields on a sphere. Under the action of the orthogonal transformation M :
r̂ 7→ r̂′ =M r̂, such fields transform as follows:

Eout(r̂) 7→ E ′out =MEout(M
−1r̂). (57)
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From Eqs. (21a) and (50), we derive the following relations:

Einc(r) 7→ E ′inc =MEinc(M
−1r), F[Eout] 7→ F[E ′out] =MF[Eout], (58)

which define transformations of the incident wave and the optical force.
The symmetry transformation Ms for the far-field angular distribution of the incident

wave may generally be defined through the symmetry relation:

MsE
(inc)
out (M−1

s r̂) = UsE
(inc)
out (r̂), (59)

where Us is the matrix of a unitary transformation. At |rp| 6= 0, we can use Eq. (36) combined
with the orthogonality relation: (r̂ ·rp) = (M−1

s r̂ ·M−1
s rp) to recast the symmetry condition (59)

in the form:

UsE
(inc)
out (r̂, rp) =MsE

(inc)
out (M−1

s r̂,M−1
s rp). (60)

As a direct consequence of the generalized symmetry relation (60) for the optical force, we
have:

F(rp) =MsF(M
−1
s rp), K(rp) =MsK(M−1

s rp)M
−1
s , (61)

where the elements of the stiffness (force) matrix K(rp) are given by:

Kij(rp) = ∂jFi(rp). (62)

At equilibria, the force vanishes (F(req) = 0) and the stiffness matrix, Keq = K(req), is known
to govern the regime of linearized particle dynamics [51].

For the LG beams with the angular distribution (55a), it can easily be verified if the
direction of propagation (the z axis) is the axis of twofold rotational symmetry C2 with C2 :
φ 7→ φ+ π and C2 = diag(−1,−1, 1). From Eq. (55a), we have:

C2E
(LG)
out (C2r̂) = C2E

(LG)
out (φ+ π, θ) = (−1)m+1E

(LG)
out (r̂). (63)

When rd ‖ ẑ and C2rd = rd, equation (61) for the twofold symmetry implies that the
optical force is directed along the symmetry axis, F ‖ ẑ, and the stiffness matrix is of the form:

K =

Kxx Kxy 0
Kyx Kyy 0
0 0 Kzz

 . (64)

Since C2Y
(e,m)
jm (C2r̂) = (−1)mY(e,m)

jm (r̂), for C2 symmetric LG beams, the azimuthal numbers
of nonvanishing beam shape coefficients are of the same parity (all m are either odd or even).

4. Near-field nanostructures

In this section, we present the results of numerical computations for the light scattering
problem for the case where the incident wave is represented by the remodelled LG beams (56)
with the vanishing radial mode number n = 0 and the nonzero azimuthal number, m = mLG ≥
0. Such beams are also known as purely azimuthal LG beams [52].

In agreement with our symmetry analysis, substituting the far-field distribution (55) into
Eq. (34) gives the beam shape coefficients of these beams in the following form:

α
(inc)
jm = α

(+)
j,mLG

δm,mLG+1 + α
(−)
j,mLG

δm,mLG−1, (65a)

β
(inc)
jm = β

(+)
j,mLG

δm,mLG+1 + β
(−)
j,mLG

δm,mLG−1. (65b)

Then, the coefficients of expansions (2) describing scattered wave and electromagnetic field
inside the scatterer can be evaluated from formulas (14)–(17).
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FIG. 1. Near-field intensity distributions of the total wavefield in (a) the x − z
plane and (b) the y − z plane for the LG beam with mLG = 0, f = 0.05 and
|rp| = 0. The parameters are: Rp = 1.5λ is the scatterer radius and np = 1.3
(nmed = 1.0) is the refractive index inside (outside) the particle.

4.1. Photonic nanojets

For spherical particles illuminated by plane waves, the formation of photonic nanojets
and their structure was previously discussed in Refs. [53–55]. Plane waves can be regarded as
Gaussian beams with n = mLG = 0 and sufficiently small focusing parameter, f � 1, which is
defined after Eq. (53) through the ratio of wavelength, λ, and the beam diameter at waist, w0,
f = (2π)−1λ/w0. This limiting case is illustrated in Fig. 1 which shows the near-field intensity
distributions for the total light wavefield in both the x − z and the y − z planes computed at
mLG = 0 and f = 0.05 for the spherical particle of the radius Rp = 1.5λ with the refractive
index np = 1.33 (water) located in air (nm = 1).

It can be seen that the distributions are characterized by the presence of elongated
focusing zones formed near the shadow surface of the scatterer. The transverse sizes of these
zones are smaller than the wavelength of incident light, whereas their longitudinal size in the
direction of incidence, which is along the z axis from top to bottom, is relatively large. Such
a jetlike light structure is typical for the photonic nanojets. The characteristic length and width
of nanojets along with the peak intensity are known to strongly depend on a number of factors,
such as the scatterer size Rp, the particle absorption coefficient and the optical contrast ratio
np/nm. For microspheres, the results of a comprehensive numerical analysis including the case
of shell particles are summarized in a recent paper [55].

The effects of non-plane incident waves, such as laser beams on the structure of photonic
nanojets, are much less studied. Some theoretical results for tightly focused Gaussian beams are
reported in Ref. [56] and the case of Bessel-Gauss beams was studied experimentally in [57].

For the LG beams, we begin with the effects of the azimuthal mode number and describe
what happens to the near-field structure shown in Fig. 1 when the azimuthal number takes the
smallest nonzero value, mLG = 1. The latter represents the simplest case of an optical vortex
beam in which, owing to the presence of phase singularity, the intensity of incident light at the
beam axis (the z axis) vanishes (see Fig. 2(a)). From Fig. 2, it can be seen that, even though
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FIG. 2. Near-field intensity distribution in the x − z plane of (a) the incident
wave beam and (b) the total wavefield for the LG beam with mLG = 1, f = 0.1
and |rp| = 0. Other parameters are described in the caption of Fig. 1.

FIG. 3. Near-field intensity distribution in the x−z plane of (a) the incident wave
beam and (b) the total wave field for the LG beam with mLG = 2, f = 0.08 and
|rp| = 0.

the bulk part of the scatterer is in the low intensity region surrounding the optical vortex, the
scattering process is efficient enough to produce scattered waves that result in the formation
of a pronounced jetlike photonic flux, emerging from the surface of the particle’s shadow (see
Fig. 2(b)).

A comparison between Fig. 2(b) and Fig. 1(a) shows that the three-peak structure of
the photonic jet formed with Mie scattering of the optical vortex LG beam with mLG = 1
significantly differs from the well-known shape of the nanojet at mLG = 0. Interestingly,
similar to the case of Gaussian beams with mLG = 0, the focusing zones at mLG = 1 involve
the beam axis where one of the light intensity peaks is located.

From Fig. 2, it can be seen that, even though the bulk part of the scatterer is in the
low intensity region surrounding the optical vortex, the scattering process is efficient enough
to produce scattered waves that result in the formation of a pronounced jetlike photonic flux
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emerging from the surface of the particle’s shadow (see Fig. 2(b)). Figure 3 demonstrates that,
for the weakly focused LG beam with f = 0.08, this effect can be even more pronounced at
mLG = 2.

FIG. 4. Near-field intensity distribution in the x−z plane of (a) the incident wave
beam and (b) the total wave field for the LG beam with mLG = 2, f = 0.25 and
rp = (0, 0, 3λ).

The results for tightly focused LG beams with mLG = 2 and f = 0.25 are shown in
Fig. 4. When the displacement vector, rp defined in Eqs. (35) vanishes, the focal (waist) plane
of the incident LG beam is z = 0 and the bulk part of the four-peak structure of the focusing
zones is localized inside of the particles. For rp = (0, 0, 3λ), the focal plane, z = 3λ, is located
behind the particle (see Fig. 4(a)). From Fig. 4(b), it is seen that four peaks of light intensity
now develop in the immediate vicinity of the scatterer surface.

FIG. 5. Near-field intensity distribution in the x − z plane of (a) the incident
wave beam and (b) the total wave field for the LG beam with mLG = 2, f = 0.2
and rp = (0, 0, λ). The small scatterer (Rp = 0.5λ) is made of the negative index
(left-handed) metamaterial with εp = µp = −1.

What all the wavefields depicted in Figs. 2(b)–4(b) have in common is that, in contrast
to the incident optical vortex beams with mLG = 1 and mLG = 2, the light intensity at the
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incident beam axis (the z axis) clearly differs from zero. In other words, in the near-field
region, the optical vortex with 0 < |mLG| ≤ 2 has been destroyed by Mie scattering. As it will
be explained in the subsequent section this is no longer the case at mLG ≥ 3.

In the conclusion of this section, we briefly discuss the structure of the nanojets for
scatterers made of the negative index (left-handed or double negative) metamaterial (such ma-
terials are reviewed in a number of books and papers [58–61]). This is case where Re εp and
Reµp are both negative. For the limiting case of a nonabsorbing Veselago medium [62] with
εp = µp = −1, Fig. 5 shows a rather unusual nanojet structure formed in the illuminated part of
the small particle as opposed to the structures shown in Figs. 1–4. An important point is that,
in real metamaterials, the effects of absorption cannot be neglected. In particular, these effects
may prevent formation of jetlike structures near metallic particles and this is why, to the best
of our knowledge, the current literature on photonic nanojets has been focused exclusively on
the case of dielectric scattering. Figure 6 demonstrates that a jetlike structure may form near
the shadow surface of a metallic particle illuminated by a vortex laser beam (the LG beam with
mLG = 1). A comprehensive study of absorption effects in metallic and metamaterial scatterers
is well beyond the scope of this paper and the corresponding results will be published elsewhere.

FIG. 6. Near-field intensity distribution in the x − z plane of (a) the incident
wave beam and (b) the total wave field for the LG beam with mLG = 1, f = 0.2
and rp = (0, 0, λ). The metallic scatterer (Rp = 0.5λ) is made of gold with
εp ≈ −22 + 1.8i (λ ≈ 800 nm).

4.2. Optical vortices

In this section, we consider optical vortices and their near-field structure. The optical
vortices are known to represent phase singularities of complex-valued scalar waves which are
zeros of the wavefield ψ = |ψ| exp(iχ) where its phase χ is undefined. A phase singularity is
characterized by the topological vortex charge mV , defined as the closed loop contour integral
of the wave phase χ modulo 2π:

mV =
1

2π

�

L

dχ, (66)

where L is the closed path around the singularity.
Optical vortices associated with the individual components of electric field will be of

our primary concern. More specifically, we shall examine the optical vortex structure of the
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components Ez and Ex in the planes z = z0 parallel to the x− y plane. Since, in such planes,
circles naturally play the role of closed loops, the starting point of our analysis is the electric
field vector, expressed as a function of the azimuthal angle φ in the following form:

E =
2∑

µ=−2

Eµ exp[i(mLG + µ)φ], (67)

E±2 ‖ x̂∓ iŷ, E±1 ‖ ẑ, E0 ⊥ ẑ. (68)

This formula gives the φ dependence of electric field expansion (2a), in which the coefficients
are of the form given by Eq. (65). An immediate consequence of Eq. (67) is that Eµ can be
different from zero on the z axis, Eµ(0, 0, z) 6= 0, only if mLG + µ = 0.

From Eq. (68), at |mLG| = 1, the electric field non-vanishing at the beam axis is
linearly polarized along the z axis, whereas it is circular polarized at |mLG| = 2. The intensity
distributions shown in Figs 1– 4 clearly indicate that the z axis is not entirely in the dark region
provided that 0 ≤ mLG < 3.

At |mLG| ≥ 3 and |µ| ≤ 2, a sum mLG +µ cannot be equal to zero and the beam axis is
always a nodal line for the components of electric field. For two-dimensional (2D) electric field
distributions in planes normal to the z axis, it implies that there is an optical vortex located at
the origin.

FIG. 7. Near-field phase maps of the electric field components Ex (a,b,c) and Ez
(d,e,f) in the planes z = 0 (a,b,d,e) and z = Rp = 1.5λ (c,f) for the LG beam with
mLG = 1 and f = 0.1. (a) [(d)] Phase map of the electric field component E(LG)

x

[E(LG)
z ] of the incident wave beam in the x− y plane (z = 0). (b,c) [(e,f)] Phase

maps for the electric field component Ex [Ez] of the total light wavefield in the
planes z = 0 and z = Rp, respectively.
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Now we return to the optical vortex structure for the components Ez and Ex. The φ
dependence of Ez can be written in the following form:

exp[−imLG φ]Ez = exp[−imLG φ+ iχz]|Ez| = E
(z)
+1 exp[iφ] + E

(z)
−1 exp[−iφ] =

exp[iψ
(z)
+ ]
{
|E(z)

+1 | exp[i(φ+ ψ
(z)
− )] + |E(z)

−1 | exp[−i(φ+ ψ
(z)
− )]

}
, (69)

where E(z)
±1 =

(
E±1 · ẑ

)
, 2ψ(z)

± = arg(E
(z)
+1)± arg(E

(z)
−1) and χz is the phase of Ez.

The complex plane formula (69) describes an ellipse parametrized by the azimuthal
angle φ. It is centered at the origin with the major (minor) semiaxis of the length E

(z)
+ (R)

(|E(z)
− (R)|), where E(z)

± (R) = |E(z)
+1(R)| ± |E

(z)
−1(R)| R is the radius of circle CR in the plane of

observation, z = z0. Then the closed loop contour integral of the wave phase χz is:

mz =
1

2π

�

CR

dχz = mLG + µz(R), (70a)

µz(R) = sign(E
(z)
− (R)) = sign(|E(z)

+1(R)| − |E
(z)
−1(R)|). (70b)

FIG. 8. Near-field intensity maps of the electric field components |Ex|2 (a,b,c)
and |Ez|2 (d,e,f) in the planes z = 0 (a,b,d,e) and z = Rp = 1.5λ (c,f) for the
LG beam with mLG = 1 and f = 0.1. (a) [(d)] Intensity distribution for the x
[z] component, |E(LG)

x |2 [|E(LG)
z |2], of the incident wave beam in the x− y plane

(z = 0). (b,c) [(e,f)] Intensity distributions for the x [z] component of electric
field of the total light wavefield in the planes z = 0 and z = Rp, respectively.

From Eq. (70), the net topological charge of vortices encircled by CR can be either
mLG + 1 or mLG − 1. At |E(z)

+1(R)| = |E
(z)
−1(R)|, µz(R) is undefined. This is the special case

when |Ez| = 0 at cos(φ + ψ
(z)
− ) = 0 and the circle contains a pair of symmetrically located

vortices. Each of these vortices carries a charge of the magnitude equal to unity. Generally,
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the vortices are of the same sign, which is determined by the change of µz(R) as the radius R
passes a critical value. When µz(R) changes from +1 (−1) to −1 (+1) two vortices of the
charge −1 (+1) intersect the boundary and move into the interior part of the circle.

The case of the x component of the electric field, Ex, can be analyzed along similar
lines. From Eq. (67), we deduce the φ dependence of Ex in the form:

exp[−imLG φ+ iχx]|Ex| − E(x)
0 = E

(x)
+2 exp[2iφ] + E

(x)
−2 exp[−2iφ] =

exp[iψ
(x)
+ ]
{
|E(x)

+2 | exp[i(2φ+ ψ
(x)
− )] + |E(x)

−2 | exp[−i(2φ+ ψ
(x)
− )]

}
, (71)

where E(x)
±2, 0 =

(
E±2, 0 · x̂

)
, 2ψ(x)

± = arg(E
(x)
+2 )±arg(E

(x)
−2 ) and χx is the phase of Ex. The center

of the ellipse described by Eq. (71) is generally displaced from the origin and is determined
by E

(x)
0 . The length of its major (minor) semiaxis is E(x)

+ (R) (|E(x)
− (R)|), where E(x)

± (R) =

|E(x)
+2 (R)| ± |E

(x)
−2 (R)|.

The closed loop contour integral of the wave phase χx is:

mx =
1

2π

�

CR

dχx = mLG + µx(R), µx(R) ∈ {−2, 0, 2}. (72)

When the origin is enclosed by the ellipse (71), similar to Eq. (70b), we have the
relation:

µx(R) = 2 sign(E
(x)
− (R)) = 2 sign(|E(x)

+2 (R)| − |E
(x)
−2 (R)|). (73)

In the opposite case, when the origin is outside the area encircled by the ellipse, µx(R) is zero.
The latter is the case for the near-field phase maps shown in Figs. 7(a)–(c) that represent the
2D distributions of χx in the x− y plane for the LG beam with mLG = 1 (see Fig. 2).

As is evident from Figs. 7(a)–(c) (see also the intensity maps in Figs. 8(a)–(c)), in these
distributions, the only vortex is positioned at the center and possesses the charge mx = mLG =
+1. As opposed to the case with mLG = 2 discussed in Ref. [38], at mLG = 1, the central
vortex of the x component, Ex, is structurally stable and cannot be destroyed.

The near-field phase maps for χz are presented in Figs. 7(d)–(f). Figure 7(d) shows the
2D map for the incident optical vortex LG beam with mLG = 1 in the focal plane z = 0. The
corresponding intensity map is depicted in Fig. 8(d). It is seen that there are no vortices at the
center, so that, at sufficiently small R, mz = 0 and µz = −1. In addition, there is a pair of the
symmetrically-arranged vortices of the charge +1 inside the particle. So, when the radius R is
large enough for the circle to enclose the vortices, the total charge is mz = mLG + 1 = 2 and
µz = 1.

For the total wavefield at z = 0, the phase and intensity maps are given in Fig. 7(e)
and Fig. 8(e), respectively. It can be seen that the vortex pattern is complicated by interference
between the incident and the scattered waves. Referring to Fig. 7(e), there are two additional
pairs of vortices whose charges are opposite in sign. The negatively charged vortices (the charge
is −1) are located inside the particle, whereas the positively charged ones (the charge is +1) are
formed on the surface of the particle. A similar structure is discernible from Figs. 7(f) and 8(f),
representing the results for the plane tangent to the particle surface z = Rp.

5. Conclusions

In this paper, we have used a T–matrix approach in the form described in Refs. [10,38] to
study the light scattering problem for optically isotropic spherical scatterers illuminated with LG
beams that represent optical vortex laser beams. Our approach uses the remodelling procedure
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in which the far-field matching method is combined with the results for nonparaxial propagation
of LG beams. Scattering of such beams is thus described in terms of the far-field angular
distributions, E(inc)

out and E
(sca)
out , that determine the outgoing parts of the incident and scattered

waves. The far-field distributions play a central role in the method giving, in particular, the
differential cross-sections and the optical (radiation) force acting upon the Mie scatterer.

The analytical results are employed to perform numerical analysis of the optical field in
the near-field region. In order to examine the effects of incident beam spatial structure on the
light wavefield near the scatterer, we have computed a number of the 2D near-field intensity
and phase distributions for purely azimuthal LG beams. In this case, a LG beam possesses
the vanishing radial mode number and carries the optical vortex with the topological charge
characterized by the azimuthal number mLG.

The 2D near-field intensity distributions computed for the plane-wave limiting case in
which the incident wave is a Gaussian beam (mLG = 0) with small focusing parameter f
(2πf = λ/w0 < 1) reveal the well-known structure of photonic nanojets (see Fig. 1). Figures 2–
4 represent the results for the LG beams with 1 ≤ mLG ≤ 2 and show that the morphology of
photonic jets formed at mLG 6= 0 significantly differs from the well-known shape of nanojet at
mLG = 0. The effect that a jetlike photonic flux emerging from the particle shadow surface can
be formed even if the bulk part of the scatterer is in the low intensity region is illlustrated in
Figs. 2(b)–3(b)). In contrast, as can be seen from Fig. 5, the jetlike flux near negative index
metamaterial Mie scatterers may emerge from the illuminated part of the particle surface.

The form of the beam shape coefficients (65) is dictated by the twofold rotational
symmetry of the LG beam (see Sec. 3.3) and underlies general formula (67) giving the electric
field vector expressed as a function of the azimuthal angle φ. The latter is at the heart of our
analysis of optical vortices associated with the electric field components.

An important consequence of Eq. (67) is that, at sufficiently large azimuthal numbers,
|mLG| ≥ 3, light scattering of LG beams takes place without destroying the optical vortex
located on the beam axis. By contrast, at |mLG| < 3, the intensity of scattered wavefield does
not vanish on the beam axis so that, in the near-field region, light scattering has a destructive
effect on the optical vortex (see Figs. 2–4).

Using analytical expressions (69) and (71), we have described the geometry of optical
vortices for the components Ez and Ex in the planes z = z0 normal to the beam axis (the
z axis). It was found that, except for the central vortex, the topological charge of off-center
vortices generally equals unity in magnitude. They are organized into pairs of symmetrically-
arranged and equally-charged vortices. These pairs lie on concentric circles and their vortex
charge alternate in sign with the circle radius (see, e.g., Fig. 7(f)).

The phase maps of Ex shown in Figs. 7(a)-(e) (the corresponding square amplitude
distributions are presented in Figs. 8(a)-(e)) are computed for the LG beam with mLG = 1. The
central vortex having azimuthal number mLG = 1 was found to be the only vortex for both
the incident beam and the total wavefield. Formula (69) implies that the z axis is a nodal line
for the x component of the electric field, Ex, and the central vortex is structurally stable at
mLG = 1. When mLG = 2, a similar result applies to the z component [38].

In the phase maps for Ez, depicted in Fig. 7(d)-(f), there are no vortices at the origin. For
the incident wave, there is a pair of equally charged vortices (see Fig. 7(d)). As is seen from
Figs. 7(e)-(f), interference between the incident and the scattered waves produces additional
pairs of symmetrically arranged vortices.
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