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A number of simple model systems are used to examine the applicability of the “tangent technique”, employed in the small-angle X-ray

scattering for estimating the particle size distribution function, as well as to ascertain the relative contributions of the scattering intensity by

differently sized particles to the total scattering intensity. The undertaken analysis has shown that, even in the most favorable case-an ensemble

of two groups of different-size particles-the “tangent technique” cannot be used either to find the particle size proper, or to ascertain the relative

contributions of individual groups to the total scattering intensity.
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1. Introduction

The numerous methods used to process experimental curves of X-ray small-angle scattering with the view to
derive information on the structure of scattering objects include the “tangent technique” [1,2]. This seemed simple
and convenient enough for estimating the size distribution of globular nanoparticles as well as for ascertaining the
relative contributions of particles of each size to the total scattering intensity. At the same time, the technique, as
even its authors remarked, is rather limited in its scope. Though it was proposed as early as the 1950’s and has
since been repeatedly used in the small-angle scattering [3, 4], no one has tried to evaluate the errors arising from
its application. Moreover, no one has raised the issue whether its use is altogether possible. Will errors drive the
required parameters beyond the reasonable values even in the case of the simplest scattering systems and in the
scattering angle region, which is most suitable for application of the technique?

The present work attempts to answer the questions by undertaking a detailed analysis of applicability of the
“tangent technique” in the cases of both model systems and a globular protein mixture.

2. Description of the technique

As is known, the intensity I(q) of the small-angle X-ray scattering by a particle, which comprises N different
scattering centers (atoms) and is chaotically oriented relative to the primary X-ray beam, can be represented with
Debye formula [5]:

I(q) =

N∑
i,j=1

fi(q)fj(q)
sin(qrij)

qrij
, (1)

where rij is the distance between the i-th and j-th atoms, q = (4π/λ) sin(θ/2) is the magnitude of the reciprocal
space vector (λ is the X-ray wavelength, θ is the scattering angle), fi(q) is the scattering factor of the i-th atom.
If q is small, fi(q) is weakly dependent on q and fi(q) = fi(0) = fi, the number of electrons in the i-th atom.

Expansion of Eq. (1) into a series gives:

I(q) =

N∑
i,j=1

fifj

(
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q2r2ij
6

+ ...

)
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(
1−
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)
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where R2
g =

N∑
i,j=1

fifjr
2
ij

2
N∑
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is the squared electron radius of gyration of a particle and A2 =

N∑
i,j=1

fifj is the squared

number of electrons in a particle.
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The series expansion of function A2 exp
(
− 1

3R
2
gq

2
)

is easily seen to have first two terms coincident with
Eq. (2). This property underlies the Guinier technique (e.g. [6–9]): plotting the scattering intensity as ln I(q) vs.
q2 in the region of small angles yields a straight line, its slope allowing one to find R2

g , i. e., the particle size.
Consider a system, consisting of differently sized particles, and assume the scattering intensity for each particle

to follow the exponential law. Then, the scattering intensity for the entire system – without interference between
individual particles – is presentable in the form:

Ĩ(q) =

N∑
i=1

KiA
2
i exp

(
− 1

3R
2
giq

2
)
, (3)

where N is the number of groups of particles with radii of gyration Rgi and Ki is the particle count in each group.
Let the summation be from the largest (i = 1) to the smallest particle (i = N ).

If the number of groups is rather small and radii of gyration Rgi vary from group to group appreciably, the
“tangent technique” was believed to be fully justified, with inclusion of the following stages:

1) Plotting ln Ĩ(q) vs. q2.
2) Drawing a tangent to the curve at the largest values of q, but in the scattering angle region, where exponential

approximation Eq. (3) is valid for all groups of scattering particles.
3) Finding squared radius of gyration R̃2

gN for the smallest particles by the tangent slope according to Eq. (2)

and value K̃NA
2
N by the intercept of the tangent on axis ln Ĩ(q). If AN is known (roughly, the value AN is

one-half of the molecular mass of the particle), one also finds K̃N , the particle count in group N .

4) Subtracting function K̃NA
2
N exp

(
− 1

3 R̃
2
gNq

2
)

with already known values of K̃N and R̃2
gN from the

experimental intensity Eq. (3). One finds scattering intensity Ĩ(q) by the remaining particles and passes on to
Operation 1) with substituting group N with group N − 1.

Upon completion of the said cycle, the following sought parameters are calculated: radii of gyration R̃gi
(sizes) of all particles included in the scattering system and the relative particle count in each group. One can also
plot K̃i vs. R̃gi (which is sometimes done [4]) to evaluate the particle size distribution, which is dedicated to other
methods in the small-angle scattering [10, 11].

Despite the deceptive simplicity of the technique and the value of the derived information, the application of
the technique gives rise to several somewhat complex questions:

a) How is the angle region to be chosen for the condition of Eq. (2) to hold?
b) What are the grounds to believe that the scattering intensity in the vicinity of drawing each tangent is

governed by but one group of particles, while other groups make no contributions whatsoever to the scattering
curve in this angular region?

c) How is, when drawing tangents, the straight-line segment of the scattering curve to be distinguished from
the curvilinear one, and in the presence of the unavoidable experimental error at that?

d) How is the number of groups with different values of Rg to be found under the conditions of an actual
experiment?

There is, apparently, no general answer to the questions, so the present work examines a number of specific
different-size systems to assess the applicability of the technique.

3. Analysis of the technique applicability

Simplify the problem statement as much as possible. To begin with, assume only two groups of differently
sized particles (N = 2). This is evidently the most favorable model. If the technique proves inapplicable even for
this model, there is no sense to increase the number of groups. Next, an interval of scattering angles is to be selected
for drawing the tangents and, accordingly, to specify the particle sizes in each. The basic condition is that the
intensity, plotted in Guinier coordinates for particles of both groups, had the shape of a straight line in the selected
scattering angle interval. Of importance is also for the angular interval to be available experimentally. In terms of
the magnitude of reciprocal space vector, the interval is defined from qmin = 0.01 nm−1 to qmax = 0.14 nm−1

(hereinafter, a bounded interval), which corresponds (at X-ray wavelength λCuKα = 0.154 nm) to scattering angles
from θmin = 2.5 · 10−4 rad to θmax = 3.4 · 10−3 rad and, respectively, to Bragg spacings from dmax = 300 nm to
dmin = 23 nm. Particle sizes (radii of gyration Rg) were chosen as Rg1 = 15.56 nm, Rg2 = 9.21 nm. It has been
shown for particles of such sizes that the required condition of straightness of Guinier plots in the said scattering
angle interval holds reasonably well. Let K1 and K2 be the initial particle counts in each group, and K̃1 and K̃2

be those found by the “tangent technique”.
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For all particle groups considered under the said conditions, we calculated scattering intensities, constructed
Guinier plots, evaluated the quantities R̃g1, R̃g2, K̃1, K̃2 by the “tangent technique” in a wide variation range of
K2/K1, and estimated the errors of the quantities as compared to their true values. The results are presented in
Tables 1-4. In each table, column 1 is the selected value of K2/K1; columns 2 and 3 are the calculated relative

errors of quantities R̃g1 and R̃g2
(
δRgi =

(
R̃gi −Rgi

)/
Rgi

)
; columns 4 and 5 are the calculated relative errors

of quantities K̃1 and K̃2

(
δKi =

(
K̃i −Ki

)/
Ki

)
.

Hypothetical particles with scattering intensity defined by Eq. (3) at N = 2. The scattering curve for each
particle is shaped in Guinier coordinates as a straight line, yet the dependence of ln[K1A

2
1 exp
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3R
2
g1q

2
)

+

K2A
2
2 exp

(
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3R
2
g2q

2
)
] on q2 is no longer a straight line. In a wide scattering angle interval (qmin = 0.01 nm−1 to

qmax = 0.4 nm−1), of course, the effects related to the influence of different groups on the total scattering curve
are separable (Fig. 1), and the “tangent technique” yields reasonable values for radii of gyration and particle counts
in each group (Table 1). However, the effects cannot be separated in the said bounded scattering angle interval.

FIG. 1. Hypothetical particles. Curve 1 is the scattering intensity found according to Eq. (3) at
N = 2; curve 2 is the difference scattering curve between intensity of Eq. (3) and the intensity of

K̃2A
2
2 exp

(
− 1

3 R̃
2
g2q

2
)
. All curves are plotted in Guinier coordinates. Straight lines are tangents

to Curves 1 and 2. Wide scattering angle interval. See details in the text

TABLE 1. Hypothetical particles. Wide scattering angle interval (qmin = 0.01 nm−1 to qmax =
0.4 nm−1). Relative errors of radii of gyration R̃g1, R̃g2 and weighting factors K̃1, K̃2 at
different ratios K2/K1. See details in the text

K2/K1 δRg1,% δRg2,% δK1,% δK2,%

5 0.08 0.13 –0.3 1.3

10 0.08 0.06 –0.3 0.6

20 0.08 0.03 –0.3 0.3

50 0.08 0.013 –0.3 0.13

100 0.08 6·10−3 –0.3 6·10−2

150 0.08 4·10−3 –0.3 4·10−2

Table 2 presents the results of applying the technique in a bounded interval at different ratios K2/K1. As
seen, in the case of the number of small particles much greater than that of larger ones (K2/K1 = 150 and
more), the contribution of the latter tells little on the scattering curve. Hence, quantities R̃g2 and K̃2 are evaluated
comparatively well, but the calculation of quantities R̃g1 and K̃1 yields unacceptable errors. At a smaller K2/K1
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TABLE 2. Hypothetical particles. Bounded scattering angle interval (qmin = 0.01 nm−1 to
qmax = 0.14 nm−1). Relative errors of radii of gyration R̃g1, R̃g2 and weighting factors K̃1, K̃2

at different ratios K2/K1. See details in the text

K2/K1 δRg1,% δRg2,% δK1,% δK2,%

5 47 48 -90 419

10 46 38 -86 200

20 44 26 -82 96

50 43 14 -79 37

100 43 8 -78 18

150 43 5 -78 12

ratio, likely unacceptable errors emerge in evaluation of all four quantities in question. This can now be explained
by the effect of the scattering intensity of larger particles on the total curve in the entire bounded interval. As a
consequence, quantities R̃g2 and K̃2 are evaluated with great errors, while the errors in the evaluation of quantities
R̃g1 and K̃1, naturally, grow significantly.

Homogeneous ellipsoids of revolution and spheres. As previously shown [12], the scattering intensity by
the i-th homogeneous ellipsoid of revolution with electron density ρ is defined by expression A2

i I
el
i (q), where

Ai = ρVi, V = 4
3πa

2b is the volume of the ellipsoid (b is the semi-major axis, a is the semi-minor axis),

Ieli (q) =

1∫
0

Φ2

(
q
√

5R2
gi (1 + x2 (ν2 − 1))

/
(2 + ν2)

)
dx (4)

is its formfactor (Ieli (0) = 1), Φ(t) = 3
sin t− t cos t

t3
, and ν = b/a. Radius of gyration Rg is related to semi-axes

a and b by Rg =
√

(2a2 + b2)
/

5.

The total scattering intensity for two groups of ellipsoids is representable as:

Iel(q) = K1A
2
1I
el
1 (q) +K2A

2
2I
el
2 (q), (5)

where, as before, K1 and K2 are the particle counts in the first and second groups, respectively. We chose
anisotropy ν = 2 the same for ellipsoids of both groups, since the calculations show the straight-line segment in
Guinier plotting to prove to be the most extended at this anisotropy.

Table 3 presents the calculation results. They are close to those obtained for hypothetical particles in a bounded
interval of scattering angles. And while the relative errors for quantities R̃g2 and K̃2 are comparatively small in
the most favorable case (K2/K1 = 150), those for R̃g1 and K̃1 are as high as tens of percent.

TABLE 3. Ellipsoids of revolution. Relative errors of radii of gyration R̃g1, R̃g2 and weighting
factors K̃1, K̃2 at different ratios K2/K1. Bounded scattering angle interval (qmin = 0.01 nm−1

to qmax = 0.14 nm−1). See details in the text

K2/K1 δRg1,% δRg2,% δK1,% δK2,%

5 47 44 -87 404

10 46 34 -83 194

20 45 24 -80 93

50 43 12 -77 36

100 43 6.3 -75 17

150 42 4.1 -73 11
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The model of a scattering system is very often taken to be spheres. As follows from Eq. (4), the form-factor
of the scattering intensity for spheres (ν = 1) is:

Isphi (q) = Φ2

(√
5
3qRgi

)
, (6)

and the total intensity for two groups of spheres is:

Isph(q) = K1A
2
1I
sph
1 (q) +K2A

2
2I
sph
2 (q). (7)

The results of the corresponding calculation are given in Table 4. They demonstrate that the errors in evaluating
all four quantities prove to be unacceptable. In the most favorable case (as before, at K2/K1 = 150), the errors in
evaluating quantities R̃g1 and K̃1 are as high as tens of percent, whereas quantity R̃g1 at K2/K1 = 5 cannot be
calculated at all, for the slope of the corresponding tangent happens to be positive.

TABLE 4. Spheres. Relative errors of radii of gyration R̃g1, R̃g2 and weighting factors K̃1, K̃2

K2/K1. Bounded scattering angle interval (qmin = 0.01 nm−1 to qmax = 0.14 nm−1). See
details in the text

K2/K1 δRg1,% δRg2,% δK1,% δK2,%

5 unevaluable 64 unevaluable 482

10 26 49 -96 223

20 37 35 -91 105

50 40 20 -88 41

100 42 13 -91 21

150 49 10 -94 15

Globular proteins. The procedure for calculating the intensity of X-ray scattering by globular proteins in a
solution, which was developed by one of the authors jointly with others [13–15], is applicable in the case when
the coordinates of all atoms of the protein under study are known. Were we concerned with the scattering intensity
of such protein in vacuum, the problem would not be difficult: it would suffice to use Debye formula Eq. (1).
However, as was shown experimentally as early as in works [16,17], the presence of the solvent has an effect upon
the entire scattering curve of a protein.

Briefly, the method of allowing for the solvent effect can be described as follows. If a protein contains N non-
hydrogen atoms with coordinates ri and scattering factor fi(q), its scattering intensity can be found in accordance
with the expression:

I(q) = 〈I(q)〉 =

〈∣∣∣∣∣∣
N∑
j=1

fj(q) exp (iqr)− ρsΨ(q)

∣∣∣∣∣∣
2〉

, (8)

the averaging is done over all possible orientations of the protein relative to the primary beam, ρs is the solvent
electron density, and function:

Ψ(q) =

∫
V

exp (iqr) dr (9)

is the amplitude of scattering by that homogeneous volume of a protein particle, which is inaccessible to the solvent
molecules. The calculation of the amplitude is a major difficulty. We developed a “cube method” [18], which bases
on filling the entire particle volume, inaccessible to the solvent, with small cubes (with edges 0.0279 nm long);
their dense packing ensures the homogeneity of density inside the molecule. Thus, the calculation of the amplitude
of scattering in Eq. (9) reduces to finding the amplitude of scattering by a system of cubes (parallelepipeds). Next,
scattering intensity I(q) is evaluated at point q of the reciprocal space, and intensity I(q) is found by averaging
I(q) over a sphere of radius q = |q| of the space. The procedure of the said averaging is described in [19].

Consider a mixture of two globular proteins with atom coordinates given in the PDB: human hemoglobin
(http://files.rcsb.org/view/4ESA.pdb) and hen egg-white lysozyme (http://files.rcsb.org/view/6LYZ.pdb). Their radii
of gyration are specified as Rg1 = 15.56 nm and Rg2 = 9.21 nm, respectively. For aqueous solution of the two
proteins, scattering intensities were calculated and total curves were derived at different ratios K2/K1. Table 5
gives the values of all four estimated parameters in a wide variation range of K2/K1.
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TABLE 5. Globular proteins in solution: human hemoglobin and hen egg-white lysozyme. Rela-
tive errors of radii of gyration R̃g1, R̃g2 and weighting factors K̃1, K̃2 at different ratios K2/K1.
Bounded scattering angle interval (qmin = 0.01 nm−1 to qmax = 0.14 nm−1). See details in the
text

K2/K1 δRg1,% δRg2,% δK1,% δK2,%

5 18 24 -77 56

10 19 15 -75 27

20 16 8.8 -75 14

50 3.5 4.8 -79 5.8

100 -61 3.3 -87 3.2

150 unevaluable 2.8 unevaluable 2.3

As is readily seen, when the number of lysozyme molecules is predominant in the solution, the lysozyme
radius of gyration and the relative number of molecules are evaluated within 10% accuracy down to K2/K1 = 50.
However, the hemoglobin scattering intensity in the region of very small angles is distorted by the scattering
intensity of all lysozyme molecules, and, as a consequence, the errors in evaluation of quantities R̃g1 and K̃1

prove to be too great or the quantities are unevaluable altogether. At smaller ratios K2/K1, the evaluation errors
of all four quantities are unacceptable. This result, likewise to the earlier-treated case of hypothetical particles, is
explained by the effect of the scattering intensity of large particles upon the total curve now in the entire bounded
interval, in particular, upon its right-hand part, which is used to calculate R̃g2 and K̃2.

4. Discussion of results

The main conclusion, following from the above examination, is that the “tangent technique” is, from the
practical viewpoint, inapplicable to any of the analyzed scattering systems. This is demonstrated by the data given
in all five tables.

To exemplify the conclusion graphically, consider the scattering intensity for two groups of ellipsoids of
revolution in Guinier coordinates at a great value of ratio K2/K1 = 150 (Fig. 2a) and a small value of K2/K1 = 5
(Fig. 2b). Both figures show four scattering curves: 1 and 2 are those for the first and second groups of particles;
3 is the total scattering intensity, corresponding to Eq. (5); 4 is the difference scattering curve between intensities

of Eq. (5) and K̃2A
2
2 exp

(
− 1

3 R̃
2
g2q

2
)
, where R̃g2 is the radius of gyration of smaller particle, which was found

by the slope of the tangent to the curve in the right-hand part of the bounded scattering angle interval.
For larger K2/K1 ratio values, the prevailing contribution to the total scattering intensity is seen from Fig. 2a

to come from the scattering by small particles; still, the tangents to curves 2 and 3 in the right-hand part of the
bounded interval differ a little both in the slope and the intercept on the axis of ordinates. The differences suffice
to distort sought quantities R̃g1 and K̃1 substantially: the slopes of the tangents to curves 1 and 4 in the left-hand
part of the bounded interval differ markedly, and the intercepts on the axis of ordinates differ, too. At the same
time, quantities R̃g2 and K̃2 proper are evaluated well enough.

At relatively small values of ratio K2/K1 (Fig. 2b), the principal contribution to the total scattering intensity
in the entire bounded interval comes from the large particle, so the tangents to curves 2 and 3 differ markedly even
in the right-hand part of the interval. The intercepts of the tangents on the axis of ordinates differ markedly, too.
In other words, a large error arises in the evaluation of quantities R̃g2 and K̃2, and, hence, even larger error in the
evaluation of quantities R̃g1 and K̃1.

If the bounded scattering angle interval is extended, the technique is seen from Fig. 1 to be completely
applicable, but solely for hypothetical particles, which are non-existent in nature. Indeed, there is no realistic
particle, for which the scattering intensity would follow the exponential law in a wide angular region. Under any
other dependence, even at the first stage of applying the technique (that is, in evaluation of R̃g2 by the tangent
slope), an appreciable error arises, which grows sharply in calculation of other quantities at hand.

It may seem that if the particle sizes (Rg1 and Rg2) differ markedly, say, by an order of magnitude, the
“tangent technique” is completely applicable. However, as follows from Eq. (3), the contributions to the total
scattering intensity by large and small particles (at their equal shares in terms of numbers) differ (Rg1/Rg2)6

times. In this case, for their contributions to the scattering intensity to be comparable, one should take at least
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FIG. 2. Scattering intensities for two groups of ellipsoids of revolution. 1 and 2 are scattering
curves for the first (Rg1 = 15.56 nm) and second (Rg2 = 9.21 nm) groups of ellipsoids,
respectively; (3) is the total scattering intensity, found according to Eq. (5); 4 is the difference

scattering curve between intensities of Eq. (5) and K̃2A
2
2 exp

(
− 1

3 R̃
2
g2q

2
)
. All curves are plotted

in Guinier coordinates. See details in the text

million more small particles, which renders the technique absolutely impractical and the calculation of quantities
R̃g1 and K̃1 fraught with even greater errors.

5. Conclusion

The results of the present work can be deemed negative. The grand total is that the “tangent technique” cannot
be used for any different-size scattering particle groups either to find the particle size proper, or to ascertain the
relative contributions of individual groups to the total scattering intensity. The statement is true for two groups of
particles and even more so for a greater number of groups. The ratio of particle sizes in different groups does not
affect the general negative result.
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