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Development of the orbital-free approach for hetero-atomic systems
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The key problem of the orbital-free approach is calculation of kinetic energy, especially for hetero-atomic systems. In this work, we used the

mono-atomic functionals of kinetic energy to construct the kinetic functionals of complicated systems. We constructed some atomic weights

associated with densities of single atoms and then calculated kinetic functions for some atomic complexes. For the examples of SiC, SiAl, AlC,

SiO and CO dimers we have demonstrated possibility of our approach to find equilibrium interatomic distances and dissociation energies for

hetero-atomic systems.
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1. Introduction

Nanotechnology requires simulation methods, which could operate with huge numbers of atoms – up to
millions. The most effective quantum methods (for example the Kohn-Sham (KS) method [1]) can work with only
hundreds. Therefore, researchers are obliged to use for large nanosystems some less accurate methods with empiric
potentials (for example [2, 3]).

The Kohn-Sham method is based on density functional theory (DFT) [4]. The orbital-free (OF) approach also
follows this theory, however, it operates with the electron density only (without wave functions or orbitals) and
if properly developed, can be applied for the simulation of very large systems: up to millions atoms [5]. Several
groups [5–13] are working in this area with different success, and the calculation of the kinetic energy is noted as a
main problem. In our previous papers [14–16], we suggested that there is no universal way to describe the kinetic
energy of different atoms and compounds. We proposed some simple formulas for systems containing atoms of
identical types and simulated the dimers and trimers with metallic and covalent bonds. For examples of Al, Si, and
C, we obtained equilibrium interatomic distances, binding energies and interbonding angles in good accordance
with published data. Now we try to describe how it is possible to extend our approach to systems with different
types of atoms.

2. A general description of the OF approach

As it is known, DFT claims that the energy E of the ground state of any quantum system can be found by
minimization of the some functional depending only on the electronic density of this system ρ(r):

E[ρ] =

∫
ε(ρ)dr =

∫
V (r)ρ(r)dr +

1

2

∫
ϕ(r)ρ(r)dr +

∫
εex−c(ρ)dr +

∫
εkin(ρ)dr, (1)

where V (r) is an external potential, ϕ(r) =

∫
ρ(r′)
|r− r′|

dr′ is the electrostatic electron potential Hartree, εex−c and

εkin are exchange-correlation and kinetic energies (per electron).
Minimization of (1) means solution the following equation:

F [p] ≡ δε[ρ]

δρ
= V (r) + ϕ(r) + µex−c(ρ) + µkin(ρ) = 0, (2)

where ρ have to satisfy the condition
∫
ρ(r)dr = N , N is the number of electrons in the system, µex−c(ρ) =

δεex−c(ρ)

δρ
, µkin(ρ) =

δεkin(ρ)

δρ
.

There are some realistic approximations for exchange-correlation potential µex−c(ρ) there; the potential Hartree
ϕ(r) may be calculated using Fourier transformations or Poisson equations; the external potential V (r) usually
consists of atomic potentials or pseudopotentials. The only real problem is the kinetic potential µkin.
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3. Pseudopotential approach

In practice, the DFT calculations are simpler if one uses pseudopotentials instead of full electron potentials.
Therefore, let us rewrite the above equations in the pseudopotential approach, and, for simplicity, let us limit our-
selves by s- and p-components of pseudopotentials and a diatomic system. Their distribution on more complicated
cases is possible without any trouble. Thus, we will present the total density ρ12 as a sum of partial densities:
ρ12 = ρ12−s + ρ12−p + . . .

The electron energy of this system E12 =
∫
ε12(ρ12−s, ρ12−p)dr must be minimal with the condition∫ (

ρ12−s + ρ12−p

)
dr = N12, where ε12 is the electron energy per electron for the two-atomic system with

the total number of electrons N12. In the other words, we have to find the density ρ12 that satisfies the system of
two equations:

F12−s = 0, F12−p = 0.

Here

F12−s ≡
δε12
δρ12−s

= V1−s(r) + V2−s(r) + ϕ12(r) + µex−c12 (ρ12) + µkin12−s(ρ12−s), (3a)

F12−p ≡
δε12
δρ12−p

= V1−p(r) + V2−p(r) + ϕ12(r) + µex−c12 (ρ12) + µkin12−p(ρ12−p), (3b)

where V1−s(r), V2−s(r), V1−p(r) and V2−p(r) are s and p components of pseudopotentials of the first and
second atoms, ϕ12(r) and µex−c12 (ρ12) are the electrostatic and exchange-correlation potentials calculated for the
total electron density ρ12 of a dimer, µkin12−s(ρ12−s) and µkin12−p(ρ12−p) are partial kinetic potentials depending on
corresponding partial densities ρ12−s and ρ12−p.

Thus we can write equations for finding ρ12−s and ρ12−p:

V1−s(r) + V2−s(r) + ϕ12(r) + µex−c12 (ρ12) + µkin12−s(ρs) = 0, (4a)

V1−p(r) + V2−p(r) + ϕ12(r) + µex−c12 (ρ12) + µkin12−p(ρp) = 0, (4b)

Obviously, for two isolated atoms we can write equations similar to (4a) and (4b):

V1−s(r) + ϕ0
1(r) + µex−c1 (ρ01) + µkin1−s(ρ

0
1−s) = 0, V1−p(r) + ϕ0

1(r) + µex−c1 (ρ01) + µkin1−p(ρ
0
1−p) = 0 (5a)

V2−s(r) + ϕ0
2(r) + µex−c2 (ρ02) + µkin2−s(ρ

0
2−s) = 0, V2−p(r) + ϕ0

2(r) + µex−c2 (ρ02) + µkin2−p(ρ
0
2−p) = 0 (5b)

As ρ01−s, ρ
0
1−P , ρ02−s, and ρ02−P are equilibrium atomic densities taken from DFT calculations, we can write

for V1−s(r), V1−p(r), V2−s(r) and V2−p(r):

V1−s(r) = −ϕ0
1(r)− µex−c1 (ρ01)− µkin1−s(ρ

0
1−s), V1−p(r) = −ϕ0

1(r)− µex−c1 (ρ01)− µkin1−p(ρ
0
1−p), (6a)

V2−s(r) = −ϕ0
2(r)− µex−c2 (ρ02)− µkin2−s(ρ

0
2−s), V2−p(r) = −ϕ0

2(r)− µex−c2 (ρ02)− µkin2−p(ρ
0
2−p). (6b)

Putting (6a) and (6b) in (4) we obtain:

ϕ12(r)−ϕa1(r)−ϕa2(r)+µex−c12 (ρ12)−µex−c1 (ρ01)−µex−c2 (ρ02)+µkin12−s(ρ12−s)−µkin1−s(ρ
0
1−s)−µkin2−s(ρ

0
2−s) = 0, (7a)

ϕ12(r)−ϕa1(r)−ϕa2(r)+µex−c12 (ρ12)−µex−c1 (ρ01)−µex−c2 (ρ02)+µkin12−p(ρ12−p)−µkin1−p(ρ
0
1−p)−µkin2−p(ρ

0
2−p) = 0. (7b)

The kinetic dimer functionals µkin12−s(ρ12−s) and µkin12−p(ρ12−p) may be presented as follows:

µkin12−s(ρ12−s) = µkin1−s(ρ
0
1−s) + µkin2−s(ρ

0
2−s) + ∆µkin12−s(ρ12−s), (8a)

µkin12−p(ρ12−p) = µkin1−p(ρ
0
1−p) + µkin2−p(ρ

0
2−p) + ∆µkin12−p(ρ12−p), (8b)

where ∆µkin12−s(ρ12−s) and ∆µkin12−p(ρ12−p) are unknown functions of partial densities of the two-atomic system.
These functions must approach zero if the interatomic distance approaches to infinity. Thus we can take the
following simple approximation for them:

∆µkin12−s(ρ
)
12−s ≈ νkinA−s(ρ

)
12−s − νkinA−s(ρ01−s)− νkinA−s(ρ02−s), (9a)

∆µkin12−p(ρ
)
12−p ≈ νkinA−p(ρ

)
12−p − νkinA−p(ρ01−p)− νkinA−p(ρ02−p), (9b)

where νkinA−s(ρs) and νkinA−p(ρp) are some functions having the same kind for single atoms and for dimers formed
from atoms of the same type A.

We can solve these equations with some fitting functions νkinA−s and νkinA−p and then calculate the total energy.
We find the test functions from the simple request: they must lead to the equilibrium interatomic distances and
binding energy for dimers. We hope that these functions will be suitable for more complicated systems in future.
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The electron energy of a dimer Eeldim contains the electrostatic energy:

Ee−stat12 =

∫
[V1−s(r) + V2−s(r)] ρ12−sdr +

∫
[V1−p(r) + V2−p(r)] ρ12−pdr +

1

2

∫
ϕ12(r)ρ12dr, (10)

the exchange-correlation energy Eex−c12 =
∫
εex−c12 (ρ12)dr and the kinetic energy:

Ekin12 = Ekin1 + Ekin2 +

∫∫ [
νkin12−s(ρ12−s)dρ12−s + νkin12−s(ρ12−p)dρ12−s

]
dr. (11)

To find the equilibrium distance and the total energy Etotdim, we need to add the repelling energy Erep12 =
Z1Z2

|R1 − R2|
, where Z1 and Z2 are positive charges of atomic ions with coordinates R1 and R2. Thus Etotdim =

Ee−stat12 + Eex−c12 + Ekin12 + Erep12 . The binding energy for a dimer (per one atom) would be calculated as follows:
Eb = 1

2 (Etotdim − 2Ea), where Ea is the atomic energy.

4. Dimers with identical atoms

We took Al, Si, and C as test elements. We used the FHI98pp [17] package as a generator of pseudo-potentials
and equilibrium partial electron densities. We calculated exchange and correlation potentials in the local density
approach [18,19]. Studied atoms were located in a cubic cell of the L size (L=30 a.u.; 1 a.u. = 0.529 Å). The cell
was divided on 150× 150× 150 elementary sub-cells for the integration with the step ∆L of 0.2 a.u. The results
of these calculations were compared with published data.

We used the same types of kinetic functions µkins and µkinp for isolated atoms and dimers and trimers, however
they were found different for different types of atoms. Namely, we used
for Al: νkins = 1.0ρ

1/4.5
s ; νkinp = 22.0ρ

1/1.5
p ;

for Si: νkins = 8.0ρ
1/1.5
s ; νkinp = 1.6ρ

1/3
p ;

for C: νkins = 1.75ρ
1/3
s ; νkinp = 1.8ρ

1/3
p .

Calculated values of interatomic distances and binding energies for the Al2, Si2, and C2 dimers are collected
in Table 1 in comparison with other data. Agreement is rather satisfactory, when one considers that other calculated
data are often differing from experimental results and each other.

TABLE 1. Equilibrium distances d and binding energies Eb (absolute values, per atom) for Si2,
Al2 and C2 in comparison with known data

Dimer Source d, Å Eb,eV

Si2

Our OF method 2.2 1.8

Other calculations 2.21a 2.23b 1.599a 1.97b

Experiment 2.24c 3.0c

Al2

Our OF method 2.8 1.4

Other calculations 2.95d 2.51e 1.23d 1.55e

Experiment 2.56f 1.56f

C2

Our OF method 1.4 3.0

Other calculations 1.24g 1.36h 2.6g 2.7h

Experiment 1.24i 3.1i

Notations: a[20], b[21], c[22], d[23],e[24], f [25], g[26], h[27], i[28].



Development of the orbital-free approach for hetero-atomic systems 1013

5. Dimers with different atoms

Let us rewrite equations (8a) and (8b) for a dimer contained atoms of types A and B:

µkinAB−s(ρAB−s) = µkinA−s(ρ
0
A−s) + µkinB−s(ρ

0
B−s) + ∆µkinAB−s(ρAB−s), (12a)

µkinAB−p(ρAB−p) = µkinA−p(ρ
0
A−p) + µkinB−p(ρ

0
B−p) + ∆µkinAB−p(ρAB−p). (12b)

The functions ∆µkinAB−s(ρAB−s) and ∆µkinAB−p(ρAB−p) have to be approximately equal to atomic functions
∆µkinA−s(p) or ∆µkinB−s(p) near atoms A or B, but they have to be mixtures of the atomic functions in the whole

space. It seems to us that the simplest way to construct the functions ∆µkinAB−s(p) and µkinAB−s(p) is to summarize
the atomic functions with some weights:

∆µkinAB−s(ρAB−s) = WA−s∆µ
kin
A−s(ρAB−s) +WB−s∆µ

kin
B−s(ρAB−s); (13a)

∆µkinAB−p(ρAB−p) = WA−p∆µ
kin
A−p(ρAB−p) +WB−p∆µ

kin
B−p(ρAB−p). (13b)

For ∆µkinA−s(p) and ∆µkinB−s(p) we propose the following approximations:

∆µkinA−s(ρAB−s) ≈ νkinA−s(ρAB−s)− νkinA−s(ρ0A−s)− νkinA−s(ρ0B−s), (14a)

∆µkinB−s(ρAB−s) ≈ νkinB−s(ρAB−s)− νkinB−s(ρ0A−s)− νkinB−s(ρ0B−s), (14b)

∆µkinA−p(ρAB−p) ≈ νkinA−p(ρAB−p)− νkinA−p(ρ0A−p)− νkinA−p(ρ0B−p), (14c)

∆µkinB−p(ρAB−p) ≈ νkinB−p(ρAB−p)− νkinB−p(ρ0A−p)− νkinB−p(ρ0B−p), (14d)

where νkinA−s, ν
kin
A−p, ν

kin
B−s and νkinB−p are functions related to atoms A and B. For Al, Si and C they are found in

the previous Section.
The weights WA−s, WA−p, WB−s and WB−P may be determined through Gauss functions fitted to atomic

densities:

WA−s =
αA−s exp

(
− (r−RA)2

βA−s

)
αA−s exp

(
− (r−RA)2

βA−s

)
+ αB−s exp

(
− (r−RB)2

βB−s

) ; (15a)

WB−s =
αB−s exp

(
− (r−RB)2

βB−s

)
αA−s exp

(
− (r−RA)2

βA−s

)
+ αB−s exp

(
− (r−RB)2

βB−s

) ; (15b)

WA−p =
αA−p exp

(
− (r−RA)2

βA−p

)
αA−p exp

(
− (r−RA)2

βA−p

)
+ αB−p exp

(
− (r−RB)2

βB−p

) ; (15c)

WB−p =
αB−p exp

(
− (r−RB)2

βB−p

)
αA−p exp

(
− (r−RA)2

βA−p

)
+ αB−p exp

(
− (r−RB)2

βB−p

) . (15d)

An example of fitting of the densities and weights is demonstrated in Figure 1. Values for α and β for Si, Al, C
and O are presented in Table 2.

TABLE 2. Parameters of weight functions (α and β) for Si, Al, C and O atoms

Type of atom αs αp βs βp

Si 0.065 0.040 3.5 4.5

Al 0.065 0.005 3.5 4.5

C 0.200 0.160 1.5 1.8

O 0.300 0.450 1.0 1.5
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FIG. 1. The s-densities and the weights Ws for oxygen (dashed) and silicon atoms (solid)

We fulfilled calculations for the SiC, SiAl, AlC, SiO, CO, and AlO dimers with parameters shown in Table 2.
The kinetic functions for oxygen νkins = 1.7ρ

1/3
s − 1.0ρs and νkinp = 1.5ρ

1/3.5
p − 1.0ρp have been found through

simulation of the SiO dimer and then they were used for other oxygen contained dimers. Results of calculations
are presented in Table 3. Unfortunately, we did not find published data for the all studied heteroatomic dimers.
Therefore, we compared our OF results also with results calculated by us in the framework of the KS DFT approach
using the well-known package FHI96md [17].

TABLE 3. Equilibrium distances d and energies of dissociation Ed (absolute values) for SiC,
SiAl, AlC, SiO, CO, and AlO

Dimer Source d, Å Ed,eV

SiC
Our OF calculations 1.9 6.9

Published calculations 1.8a 7.7a

Our KS FHI96md calculations 1.69 6.66

SiAl
Our OF calculations 2.5 3.8

Our KS FHI96md calculations 2.30 3.10

AlC
Our OF calculations 2.0 6.1

Our KS FHI96md calculations 1.83 4.32

SiO
Our OF calculations 1.6 7.0

Our KS FHI96md calculations 1.51 12.06

Experiment 1.52b 7.2b

CO
Our OF calculations 1.0 9.5

Our KS FHI96md calculations 1.11 15.96

Experiment 1.13c 9.6c

AlO
Our OF calculations 1.8 3.0

Our KS FHI96md calculations 1.55 9.0

Experiment 1.62c 5.27c

Notations: a[30], b[31], c[32].
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One can see from Table 3 that our OF equilibrium distances slightly exceed the experimental ones as well as
the KS calculation results, except the CO dimer. As for the dissociation energy, the OF results for the SiO and CO
dimers are closer to experimental data than the KS ones. The OF result for SiC correlates with our KS and known
calculated values (there is no experimental data). OF calculated energies for the Al contained dimers are rather
far from experimental values and from results of KS calculations. The reason for this discrepancy requires future
investigation; however, it is remarkable that the KS results are also far from experimental energies in many cases.
As a whole, we can conclude that the OF method is able to give us a rather satisfactory information on interatomic
distances and energies of systems containing different atoms.

6. Conclusion

We showed the possibility for simulating the interactions of atoms of non-identical types in the framework
of the orbital-free version of the density functional theory. For this purpose, we used a rather simple technique,
namely: first, the atomic kinetic functions were found for homo-atomic dimers Si2, Al2, C2 and for the SiO
dimer; second, some atomic weights were proposed using Gaussians associated with atomic densities; third, kinetic
functions for hetero-atomic dimers were constructed. Equilibrium interatomic distances and dissociation energies
for the SiC, SiAl, AlC, SiO and CO dimers were found to be in satisfactory agreement with the Kohn-Shem
calculations and experimental data.

As the calculation of the kinetic energy is a key point in the modeling of polyatomic systems in the orbital-free
approach, it is possible to consider that our work opens a direct way to design an effective modeling method for
complicated nanosystems and macromolecules with a large number of atoms.
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