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We suggest the model of lattice low branch (LB) polaritons based on the array of weakly coupled micro-
size cavities, each containing a small but macroscopic number of two-level systems (qubits). We reveal
various dynamical regimes, such as diffusive, self-trapped, breathing and solitonic for polariton wave packet
propagation under tight-binding approximation. We focus our attention on the bright polariton soliton
formation in a high quality cavity array emerging due to two-body polariton-polariton scattering processes
that take place at each cavity under the qubit-light interaction. A physical algorithm for the spatially
distributed storage of optical information where various dynamical LB polariton soliton states are used is
proposed. This algorithm can be realized with the help of manipulating group velocity of a polariton soliton
in the cavity array and obtained by smooth variation of qubit-light detuning.

Keywords: polariton, quantum information, qubit, soliton, spatially-periodic structure.

1. Introduction

The current remarkable achievements with trapped atomic gases, semiconductor
technologies and photonic crystal devices represent important progress towards solving
problems for the design of novel devices operating at the quantum level of matter-light field
interaction [1]. In particular, memory devices recently proposed in quantum physics for the
above purposes explore different methods for the entanglement of atoms (or two- or multi-
level oscillators) with quantized electromagnetic fields and mapping of the quantum state of
light onto matter by using slow light phenomenon [2]. Physically, various quantum optical
memory protocols, widely discussed now for different types of interaction of quantized light
field with two or multi-level atoms are linear (see, e.g. [1, 3]) as rule, and based on linear
coupling between matter excitations and quantized field. Actually, they can be realized
in very dilute atomic gases [4]. In this sense, the processes occurring in the systems as
well as relevant quantum optical memory protocols can be explained in a very elegant way
by using polaritons representing a linear superposition of a quantized field and collective
excitations in matter, [5]. In this case, the essential reduction of the group velocity of
an optical pulse emerging in the atomic medium, under EIT effect as an example, may
be controlled by a pump field and can be explained by polariton transformation in the
medium. More precisely, the group velocity of light in this limit is determined by the
velocity of atom-like polaritons that could be low enough due to large polariton mass that
is mpol � mat, cf. [6].

However, this simple physical picture, as well as quantum memory protocols, re-
quires essential clarification if we deal with optical pulse propagation in lattice structures.
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It is worth noting that at present, various lattice models of qubit-light interaction of dif-
ferent dimensionality represent an important tool to provide quantum information storage
and processing within the framework of modern scalable quantum technologies, cf. [7, 8].
In this sense, it seems promising to exploit cavity arrays (or 2D lattices) containing
two-level systems (atoms, quantum dots, Cooper pair boxes) strongly interacting with the
cavity field at each site [9, 10]. Addressability and controlling of qubits at each cavity
make such systems good candidates for quantum computing [11]. Thus, if we speak about
the properties of the group velocity of polaritons in a lattice system, we should take into
account the fact that the group velocity in the lattices is strongly modified within the
Brillouin zone [12].

Nonlinear effects become important under the strong matter-field interaction in
semiconductor microstructures. Recently, macroscopic coherent effects such as polariton
lasing and superfluidity have been observed for low-branch (LB) exciton-polaritons in
semiconductor quantum well structures embedded in Bragg microcavities [13–15]. In such
systems, strong Kerr-like nonlinearity caused by two-body polariton-polariton interaction
leads to the formation of bright polariton solitons, even for a small number of particles;
this open new perspectives for storing and processing quantum information, cf. [16].

Thus, in solid state systems the behavior of a coupled matter-field state is connected
with the interplay between dispersion characteristics and strong nonlinearity. In this sense,
it seems to be important and useful to refer to the problem of dynamical phases of atomic
Bose-Einstein condensates (BEC) confined in a deep optical lattice potential [17, 18]. In
particular, it is shown that intrinsically localized excitations, such as breathers and/or
solitons, as well as self-trapping and diffusive regimes can exist in the presence of a
repulsive atom-atom interaction.

In the present paper, we continue our theoretical investigation of mean field collec-
tive properties of coupled atom-light states – LB polaritons emerging due to the interaction
of two-level systems (qubits) with a single-mode optical field in a cavity array, [19]. In
previous work, we reveal the existence of bright polariton soliton solutions by using the
complex Ginzburg-Landau equation that was derived in the continuum limit, taking into
account the effects of cavity field dissipation and qubit dephasing [20]. Although we sug-
gested rubidium atoms for numerical simulations, our model could be applied to different
qubit systems, such as quantum dots, Cooper pair boxes, etc. One of the main features
of our approach is strong nonlinearity which occurs due to small cavity volumes occu-
pied by optical field, that is V � (λ/2n)3, where λ is light wavelength, n is refractive
index. Current nanotechnologies enable the design of such cavities by using, for example,
defects in semiconductor membranes, representing 2D photonic crystals [21], or cavities
with whispering gallery modes [22]. In this paper, we consider a tight-binding model that
includes neighbor hopping effects for photonic fields. This model leads to strong photonic
correlations and nonlinear properties for coupled matter-field states in the lattice. In prac-
tice, small period 1D lattices could be created by using silicon heterostructures [23] or by
a waveguide array [24].

The paper is arranged as follows: in Sec. 2, we explain in detail our model where
qubit-light interaction in a cavity array is realized at microscales. In this case, a tight-
binding model will be established. In Sec. 3, we introduce a coupled qubit-light excitation
basis for our system. Apart from the results obtained previously (see e.g. [20]), LB
polaritons emerging at each site of the cavity array are the subject of our study in the rest
of the paper. In order, to obtain polariton wave packet behavior in the QED cavity array, we
use a time dependent variational approach. Basic equations for the wave packet parameters
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and their general properties are established in Sec. 4. The main results of the paper are
given in Sec. 5 and relay to investigation of 1D lattice polariton wave packet dynamical
regimes. In Sec. 6 we propose a novel algorithm of storing of optical information by
using lattice polariton solitons. In the conclusion, we summarize the results obtained. In
the Appendix we discuss realistic properties of cavity-QED array parameters for two-level
rubidium atoms chosen as a qubit system and interacting with an optical field.

2. Qubit-light interaction model

d
xξ

Fig. 1. Schematic for the proposed 1D cavity QED arrays, where each
cavity contains an ensemble of two-level systems (TLS) – qubits. Parameter
d represents the size of the cavity, ξx is characteristic spatial scale of the
optical field localization. The shaded region in the center of each cavity
depicts the TLS wave function of scale σx. In the paper we assume
that σx < ξx � d

We consider a one-dimensional (1D) array of small (microscale) cavities, each con-
taining an ensemble of small but macroscopic number Nn of interacting two-level systems
(TLS) – qubits, see Fig. 1. The total Hamiltonian Ĥ for the qubit–light coupled system in
Fig. 1 can be represented as:

Ĥ = ĤTLS + ĤPH + ĤI, (1)

where ĤTLS is a quantum field theory Hamiltonian for noninteracting qubits, ĤPH is
responsible for the photonic field distribution, and term ĤI characterizes the qubit-light
interaction in each cavity. The parts of the total Hamiltonian can be written in the second
quantized form as:

ĤTLS =
∑

i,j=1,2
i �=j

∫
Φ̂†

j

(
− �

2Δ

2Mat

+ V
(j)
ext

)
Φ̂jd�r, (2)

ĤPH =

∫
Φ̂†

ph

(
− �

2Δ

2Mph

+ Vph

)
Φ̂phd�r, (3)

ĤI = �κ

∫ (
Φ̂†

phΦ̂
†
1Φ̂2 + Φ̂†

2Φ̂1Φ̂ph

)
d�r, (4)

where Mat is a mass of free two-level particles, Mph is a mass of trapped photons. In
(2) – (4), quantum field operators Φ̂1,2(�r), Φ̂

†
1,2(�r) (Φ̂ph(�r), Φ̂

†
ph(�r) ) annihilate and create

particles (photons) at position �r; V (j)
ext (j = 1, 2), and Vph are trapping potentials for TLS

and photons, respectively.
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In general, one can expand atomic (Φ̂j) and photonic (Φ̂ph) field operators as follows:

Φ̂j(�r) =
∑
n

âj,nϕj,n (�r) , Φ̂ph(�r) =
∑
n

ψ̂nξn (�r) , j = 1, 2, (5)

where wave functions ϕj,n (�r), ξn (�r ) are real (Wannier) functions responsible for the
spatial distribution of qubits and photons at n–site. They fulfill a normalization condition∫ +∞
−∞ (ϕj,n (�r))

2 d�r =
∫ +∞
−∞ (ξn (�r))

2 d�r = 1. In the Appendix, we use a variational Gaussian
ansatz approach for estimating ϕj,n (�r), ξn (�r) functions.

Annihilation operators â1,n and â2,n in (5) characterize the dynamical properties of
qubit ensembles (quantum modes) at internal lower (|1〉) and upper (|2〉) levels, respectively.
Annihilation operator ψ̂n in (5) describes the temporal behavior of a photonic mode located
at the nth lattice cavity. Substituting (5) for (2)–(4) one can obtain:

ĤTLS = �

2∑
j=1

M∑
n

[
ω(j)
n â†j,nâj,n − βj,n

(
â†j,nâj,n+1 + â†j,nâj,n−1

)]
, (6)

ĤPH = �

M∑
n

[
ωn, phψ̂

†
nψ̂n − αn

(
ψ̂†
nψ̂n+1 + ψ̂†

nψ̂n−1

)]
, (7)

ĤI = �

M∑
n

g√
Nn

[
ψ̂†
nâ

†
1,nâ2,n + â†2,nâ1,nψ̂n

]
, (8)

where Nn = â†1,nâ1,n + â†2,nâ2,n is an operator of a total number of TLS at nth lattice cell.

Frequencies ω(j)
n , ωn, ph and hopping constants βj,n, αn look like:

ω(j)
n =

1

�

∫ (
�
2

2Mat

(�∇ϕj,n)
2 + ϕj,nV

(j)
extϕj,n

)
d�r, (9)

ωn,ph =
1

�

∫ (
�
2

2Mat

(�∇ξn)2 + ξnVphξn

)
d�r, (10)

βj,n = −1

�

∫ (
�
2

2Mat

�∇ϕj,n · �∇ϕj,n+1 + ϕj,nV
(j)
extϕj,n+1

)
d�r, (11)

αn = −1

�

∫ [
�
2

2Mph

�∇ξn · �∇ξn+1 + ξnVphξn+1

]
d�r, (12)

g = κ

∫
ξnϕ1,nϕ2,nd�r. (13)

Thereafter, we assume for simplicity that all cavities are identical to each other and
contain the same average number N = 〈Nn〉 of qubits. In this case, it is convenient to
suppose that functions ϕj,n (�r) are identical for all n, that is ϕj,n (�r) � ϕj,n±1 (�r).

Parameter αn ≡ α in (12) describes overlapping of the optical field for nearest-
neighbor cavities. Coupling coefficients βj,n ≡ βj in (11) are hopping constants for qubits
in the 1D lattice structure.

3. Polaritons in the cavity array

Now, we use the Schwinger representation to describe a matter-field interaction and
introduce TLS excitation operators Ŝ+, n = â†2,nâ1,n, Ŝ−, n = â†1,nâ2,n and population imbal-

ance operator Ŝz, n = 1
2

(
â†2,nâ2,n − â†1,nâ1,n

)
. Then, we map the operators onto the atomic
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excitation operators φ̂n, φ̂†
n, applying the so-called Holstein–Primakoff transformation:

Ŝ+, n = φ̂†
n

√
N − φ̂†

nφ̂n, Ŝ−, n =

√
N − φ̂†

nφ̂nφ̂n, Ŝz, n = φ̂†
nφ̂n −N/2. (14)

It is worth noting that atomic excitation operators φ̂n , φ̂†
n obey usual bosonic

commutation relations
[
φ̂n, φ̂

†
m

]
= δmn. Strictly speaking, it is possible to treat the

operators â1,n and â2,n describing particles at lower and upper levels respectively, as â1,n ≈√
N − φ̂†

nφ̂n

2N1/2 , cf. [19].
Thus, if number N at each cavity is macroscopic, but not so large, one can keep

all the terms in expansion of â1,n. In this limit, for Hamiltonian Ĥ = ĤL + ĤC + ĤNL, we
obtain the following:

ĤL = �

∑
n

[
ω̃12φ̂

†
nφ̂n + ωn, phψ̂

†
nψ̂n + g

(
ψ̂†
nφ̂n +H.C.

)]
, (15)

ĤC = −�

∑
n

[
βφ̂†

nφ̂n+1 + αψ̂†
nψ̂n+1 +H.C.

]
, (16)

ĤNL = −�

∑
n

[ g

2N

(
ψ̂†
nφ̂

†
nφ̂

2
n +H.C.

)]
, (17)

where we have introduced new parameters ω̃12 = ω
(2)
n − ω

(1)
n + 2β1,n, β = β2.

Let us introduce lattice polariton operators as follows:

Ξ̂1,n = Xnψ̂n + Cnφ̂n, Ξ̂2,n = Xnφ̂n − Cnψ̂n, (18)

where Xn and Cn are Hopfield coefficients defined as:

(
Xn

Cn

)
=

1√
2

(
1± δn√

4g2 + δ2n

)1/2

. (19)

In Eq. (19), δn = ωn, ph − ω̃12 is a qubit-light field detuning chosen at each cavity.
Note that parameters Xn and Cn are considered equivalent for all cavities (sites n), as-
suming that X ≡ Xn and C ≡ Cn. This approach implies equal qubit-light detuning δ = δn
for all cavities as well.

Operators Ξ̂1,n and Ξ̂2,n in (18) characterize two types of Bose-quasiparticles, i.e.
upper and lower branch polaritons occurring at each site of the lattice due to the matter–
field interaction. At the low density limit, Eqs. (18) and (19) represent the exact solution
that diagonalizes a linear part ĤL of the total Hamiltonian Ĥ.

At equilibrium, the lowest polariton branch is much more heavily populated. Here,
we use a mean-field approach to replace the corresponding polariton field operator Ξ̂n with

its average value
〈
Ξ̂n

〉
, which simply characterizes the LB polariton wave function at the

nth cavity. For further processing, we introduce the nth normalized polariton amplitude

as Ψn =
〈
Ξ̂n

〉/√
Npol, where Npol =

∑
n

〈
Ξ̂†
nΞ̂n

〉
is the total number of LB polaritons at

the array. Under this approach, substituting (18) for (15)–(17) and keeping LB polariton
terms only, we arrive at:

H = �

M∑
n

[
ΩLB |Ψn|2 − ΩT (Ψ∗

nΨn+1 + C.C.) +
1

2
ΩI |Ψn|4

]
, (20)
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where we have introduced characteristic frequency ΩLB, polariton tunneling rate ΩT and
interaction strength ΩI as follows:

ΩLB =
1

2

(
ω̃12 + ωn, ph −

√
δ2 + 4g2

)
, ΩT = βX2 + αC2, ΩI = 2gCX3Npol

N
. (21)

Actually, in the limit of negative and large qubit-light field detuning chosen as |δ| 	
g, δ < 0 (X � g/ |δ|, C � 1), the LB polaritons behave as photons, i.e. Ξ2,n � ψn. Thus,
we can represent the frequency parameters as ΩLB � ωph, ΩT = α, ΩI = 2Npolg

4
/
N |δ|3.

In another limit, we can take |δ| 	 g, δ > 0 (X � 1, C � g/δ ) and then LB
polaritons behave as excited atoms, i.e. Ξ2,n � φn. We readily find for the coefficients
ΩLB � ω̃12, ΩT = β + α g2

δ2
, ΩI =

2g2

δ

Npol

N
.

4. Time-dependent variational approach

To analyze different regimes of polaritons in the lattice, we study the dynamical
evolution of in-site Gaussian shape wave packet, which we represent as:

Ψn = N exp

[
−(x− X(t))2

Γ(t)2
+ ik(t)(x− X(t)) + i

θ(t)

2
(x− X(t))2

]
, (22)

where X(t) and Γ(t) are a time dependent center and a width of the wave packet, respec-

tively, k(t) is momentum and θ (t) is curvature, N =
(√

2/
√
πΓ(t)

)1/2
is a normalization

constant (the wave packet amplitude). Lattice coordinate x relays to the number of sites
(cavities) n as x = nd. The wave packet dynamical evolution can be obtained in accordance
with a variational principle from the Lagrangian density:

L = �

M∑
n

[
i

2

(
Ψ∗

n

∂Ψn

∂t
−Ψn

∂Ψ∗
n

∂t

)
− ΩLB |Ψn|2 + ΩT (Ψ∗

nΨn+1 + C.C.)− 1

2
ΩI |Ψn|4

]
.

(23)
Plugging Eq. (22) into Eq. (23), it is possible to calculate the effective Lagrangian

L̄ by averaging the Lagrangian density (23), as

L̄ = �

[
kẊ − θ̇Γ2

8
+ 2ΩT cos (kd) e−σ − ΩId

2Γ
√
π

]
, (24)

where we gave the following denotation σ = Γ2θ2d2

8
+ d2

2Γ2 . Noting that Eq. (24) is valid
when parameter Γd is not too small, that is Γd � 1, cf. [17, 18].

Using Lagrangian (24), one can obtain the following variational equations for the
canonically conjugate polariton wave packet parameters:

k̇ = 0, Ẋ = 2dΩT sin (kd) e−σ, Γ̇ =
�Γθ

M∗ , θ̇ =
�

M∗

(
4

Γ4
− θ2

)
+

2ΩId√
πΓ3

. (25)

In Eq. (25), we also introduced an effective polariton mass in the lattice

M∗ =
1

�2

∂2H

∂k2
=

mexmph

mexC2 +mphX2
, (26)

for which we use the definition of photon mph = �eσ sec (kd)/2d2α and qubit exciton mex =
�eσ sec (kd) /2d2β masses in the lattice respectively. In Eq. (26) H is the Hamiltonian for
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the system (25) that looks like:

H = − �
2

d2M∗ +
�ΩId

2
√
πΓ

. (27)

Using Eq. (26) for the group velocity of a polariton wave packet one can obtain

vg ≡ 1

�

∂H

∂k
= Ẋ =

�

d

tan (kd)

M∗ . (28)

The first equation in (25) implies that the momentum of a polariton wave packet is
preserved in time, i.e. k(t)|t=0 ≡ k0. Hence, we are able to consider the properties of a
polariton wave packet by fixing initial value of momentum k. For a small momentum such
as kd 
 1, which is typically associated with the middle area of the Brillouin zone from
Eqs. (26) and (28), one can obtain a convenient result for the polariton group velocity,
that is vg ≈ �k

M∗ , where M∗ � �eσ/2d2ΩT.
In this paper, we are interested mainly in the polaritons with large and negative

effective mass M∗. Practically, in this case we anticipate slow soliton regimes for a
polariton wave packet spreading in the lattice.

The maximal negative polariton mass M∗
0 = −�eσ/2d2ΩT can be obtained at

cos (kd) = −1 that corresponds to the edge of the Brillouin zone, cf. [19]. Obviously,
the group velocity of a polariton wave packet vanishes, i.e. vg = 0.

For further analysis, it is also fruitful to rewrite Eq. (25) introducing dimensionless
variables p = kd, ξ = X/d, γ = Γ/d and η = θd2. In this case, the set of Eq. (25) takes
the form of:

ξ̇ = ωT sin (p) e−σ, γ̇ =
γη

m∗ , η̇ =
1

m∗

(
4

γ4
− η2

)
+

4ωI

γ3
, (29)

where t → t/2 |ΩT| and m∗ = 2 |ΩT| d2M∗/� are dimensionless time coordinate and polari-
ton mass, respectively, ωT = sgn (ΩT), ωI = ΩI/ (4

√
π |ΩI|).

Phase diagrams for various dynamical regimes are determined by the property of
polariton mass m∗ and by the sign of Hamiltonian H that is supposed to be a conserved
quantity. In particular, at m∗ > 0 a polariton wave packet exhibits diffusive and self-
trapping regimes for which γ → ∞, η → 0 and γ → const, η → ∞ at large, and in the
limit case – at infinite, time scales (t→ ∞), respectively.

A phase diagram of a polariton wave packet is richer in the case of a negative
polariton mass, i.e. at m∗ < 0. In this case, the sign of the Hamiltonian function H
becomes important, and in dimensionless coordinates, it looks like:

H = −ωT cos (p) e−σ +
ωI

γ
. (30)

The transition between different regimes occurs at H = H0 = 0, which implies
cos (p) � 0; we denote H0 as the initial value of Hamiltonian H which is, obviously, a
conserved quantity in the absence of dissipation.

A physically important bound state for our problem occurs in the domain of negative
polariton mass (m∗ < 0) and this can be associated with the soliton formation for a
polariton wave packet. The polariton (bright) soliton wave packet propagates with the
initial width γ0 ≡ γ (t = 0), mass m∗ = m∗

0 < 0 and velocity vg = −tan (p0)/|m∗
0| being

unchanged in time. The mass of a soliton wave packet can be found from:

1

m∗
0

= ωT cos (p0) e
−σ0 . (31)
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Strictly speaking, Eq. (31) defines a characteristic domain of the allowed wave
packet momentum where solitonic regime can be achieved. In particular, this domain is
determined by characteristic values of the polariton momentum which obeys the inequality
cos (p) < 0 that corresponds to the physical situation described in [17] for atomic BEC
lattice solitons.

5. Polariton wave packet dynamics

For further analysis, it is much better to regard special cases which reflect physical
features of polaritons in the lattice. In Fig. 2, we build a phase diagram for various
dynamical regimes of the polariton wave packet formation in the lattice. In particular,
according to our analysis of Eqs. (29)–(31), we deal with only two domains defined for
cos (p0) > 0 and cos (p0) < 0 respectively. To be more specific, we suppose that ΩT > 0,
i.e. ωT = 1.

In Fig. 2a, we plotted trajectories in the γ − η plane which are relevant to the
area where cos (p0) > 0. Such trajectories can be found by using the equation for energy
conservation, i. e. H = H0 which implies that:

η =
2

γ

(
2 ln

[
γ2 cos(p0)

γωI −H0γ2

]
− 1

γ2

)1/2

. (32)

From (32), when H0 > 0, we can obtain the maximal the value of the wave packet
width γmax = ωI

H0
for which a self-trapping regime is realized. Actually, in this case,

polariton group velocity vg and effective mass m∗ are limited by the value vg � tan(p0)
m∗ with

mass m∗ = sec (p0) exp
{

γ2
maxη

2

8
+ 1

2γ2
max

}
, respectively.
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Fig. 2. (a) – Dynamical phase diagram in δ − cos (p0) plane, and, (b) –
relevant Hamiltonian contour for d = 4μm. Initial conditions are: γ0 = 5,
η0 = 0. The right inset shows the behavior of inverse polariton mass 1 / m∗

0

versus cos (p0). The dashed curve corresponds to the soliton regime and
separates two breathing domains, respectively

Asymptotic properties of the wave packet at infinite time (t→ ∞) for which η 	 1
implies that LB polaritons in the cavity array can be fully stopped, i.e. vg → 0 when the
effective mass goes to infinity, i. e. m∗ → ∞, see Fig. 3a.

Now, let us consider the limit of the negative Hamiltonian, that is H0 < 0. At
long times, i. e. for t 	 1 the width is γ 	 1; the LB polariton wave packet spreads with
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mass m∗ ≈ 1/ |H0| and parameter η ≈ 2
γ

√
2 ln [m∗ cos(p0)] ≡ ηD, that corresponds to the

diffusive regime of polariton wave packet propagation.
In practice, it is more convenient to change atom-light detuning δ for tuning

polariton-polariton scattering parameters. In this case, the equation H0 = 0 defines some
critical value δC of atom-field detuning for which transition between different regimes oc-
curs – see Fig. 3a. Analytically, it is easy to elucidate a polariton behavior for small
values of the momentum parameter cos (p0). In this case, the critical value of δC can be
inferred from the equation ωI

γ0
= |cos (p0)| e−σ0. Since the atom-field coupling parameter g

is essentially smaller than the photon tunneling rate α for the appropriate experimental
situation, the equation under discussion permits only negatively defined solutions for δ. In
other words, in this limit, we deal with photon-like polaritons for which modulus of critical
detuning δC approaches

|δC| �
(

g4Npole
σ0

2
√
πγ0 |cos (p0)|αN

)1/3

, (33)

where we suppose that condition g 
 |δ| is satisfied.
Now we suppose that the initial wave packet momentum obeys to a condition

cos (p0) < 0, which implies initially negative polariton mass, Fig. 3a. Analysis of different
regimes can be performed by using the initial value of Hamiltonian H0 =

1

|m∗
0| +

ωI

γ0
which

is certainly positive – see Fig. 3b. By using the energy conservation law H0 = H, it is
easy to determine if H0 > |cos (p0)|, a wave packet width remains finite and we deal with
localized polariton states, i.e. with self-trapping or breathing regimes. Conversely, the
diffusive regime with γ → ∞ and η = ηD occurs if H0 < |cos (p0)|.
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are: −10GHz, δC/2π ≈ 5.112GHz (bold curve) for solid curves, respectively;
7.1GHz, 10GHz and 18GHz, 23GHz, 27GHz for dashed curves, respectively;
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dashed-dotted curves, respectively. The black dot in (b) corresponds to the
solitonic regime of wave packet parameters obtained at δS/2π ≈ 13.422GHz
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The transition between the discussed physical situations is characterized by the
condition H0 = |cos (p0)|. Thus, polaritons with detuning δ < δC undergo a diffusive
regime for which we asymptotically have γ → ∞ and η → 0.

If atom-field detuning belongs to δC < δ < δS domain, the first breathing regime
can be obtained. The trajectories in η − γ space are closed; the effective mass m∗ (t) and
γ (t) oscillating in time. The latest one oscillates between the initial value γ0 and the value
γoscmax, that is γ

osc
max > γ0. For atom-field detuning chosen from the second breathing region

δS < δ < δBR, parameters γ (t) and η (t) also undergo temporal oscillations. However, in
this case, the width γoscmin of a polariton wave packet is limited by the initial value γ0, that
is γoscmin < γ0.

Frequencies ωBR1,2 of small amplitude oscillations of the wave packet width γ for
the above discussed breathing regimes could be easily found by linearizing Eqs. (29)
around some average values γ1,2, and have the form:

ωBR 1,2 =

[
8ωI

γ31,2

(
1

γ21,2
− 1

)
|cos(p)| − 4

γ41,2

(
5

γ21,2
− 3

)
|cos(p)|2

]1/2
, (34)

where indexes “1” and “2” are relevant to two types of breathing regimes, respectively.
The dashed curve in Fig. 2a (see also inset to Fig. 3b), which corresponds to

detuning δS and separates two breathing regimes, characterizes bright soliton solution of
Eqs. (29) taken for γ̇ = 0, η = 0.

On the other hand, a half-matter–half-photon polariton soliton with δS = 0 propa-

gates in the cavity array with momentum p0 �
∣∣∣arccos(gNpolγ0e

σ0

4
√
παN

)∣∣∣.
Finally, if δ > δBR, a polariton self-trapping regime is established. However, apart

from the case of cos (p0) > 0 in this limit one can obtain γ → γmin < γ0 with η → ∞.
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Fig. 4. Polariton wave packet group velocity vg versus time t for γ0 = 5,
cos(p0) = −0.2. Beginning from the top of the figure, δ/2π = δC/2π ≈
5.112GHz and v0 ≡ vg (t = 0) = 2888030m/s (solid curve); 10GHz and
v0 = 2150090m/s (upper dashed curve); δ/2π = δS/2π ≈ 13.421GHz and
v0 = 1630070m/s (dotted line); 23GHz and v0 = 812925m/s (lower dashed
curve); δ/2π = δBR/2π ≈ 36.138GHz and v0 = 387474m/s (dashed-dotted
bold curve); 60GHz and v0 = 152560m/s (dashed-dotted curve)

Figure 4 demonstrates typical temporal dynamics of the wave packet group velocity
vg in the discussed case. For detuning δ < δC, we deal with the diffusive regime for which
a group velocity tends to the constant value vg ≈ sin (p0) asymptotically. On the other
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hand, a group velocity oscillates in time within the window δC < δ < δBR (small-amplitude
oscillations of the group velocity are shown in the inset in Fig. 4). For δ > δBR, i.e.
for a self-trapping regime, vg rapidly vanishes and goes to zero. The soliton regime is
established for atom-field detuning δ = δS and is obviously characterized by a constant
value of the group velocity – dotted line in Fig. 4.

6. Physical algorithm of storing of photonic information

Different regimes obtained in the paper enable us to use them for the quantum
optical information storage with the help of LB polariton solitons. As an example, here
we establish a physical protocol of optical information storage by using specific points A
and B in the phase diagram represented in Fig. 2, these points corresponding to polariton
soliton formation. Physical principles of our protocol are established in Fig. 5. The protocol
is based on the manipulation with a group velocity of photonic field (polariton mass) in
the cavity array which has been discussed in detail in Sec. 4. In particular, at the first
(writing) stage a photonic wave packet should enter a cavity array completely. In this
case, LB polaritons are photon-like (Ξ2,n ∝ ψn) with mass M∗ ≈ mph. Initially, soliton

parameters that correspond to point A in Fig. 2a were given by the values cos
(
pph0

)
=

−0.01, δ ≡ δph ≈ −2π × 12.763GHz, respectively. Then, we should switch atom-filed
detuning to magnitude δ ≡ δat ≈ 2π × 70.328GHz and choose LB polariton momentum
as cos(pat0 ) = −1 for mapping optical information into coherent matter excitations. This
situation is displayed in Fig. 2 by moving across the solitonic phase boundary toward point
B that corresponds to matter-like LB polaritons (Ξ2,n ∝ φn) with the mass M∗ ≈ mex

posing low enough group velocity – see Fig. 4.
At the last stage the original wave packet can be reconstructed at the entrance of

the cavity array. The time interval τR corresponds to the restoration of optical information
by using the process which is reversed with respect to detuning δ and momentum p0. In
the ideal case, we should obtain the same, photon-like polariton soliton wave packet as a
result – see Fig. 5.

However, in the real world all time intervals characterizing writing, storing and
retrieving stages for quantum memory purposes strictly depend on dissipation and deco-
herence effects with a coupled qubit-light system in the cavity array. The specifics of
these effects that leads to diminishing quantum optical information storage fidelity de-
pends on the peculiarities of a concrete realization of the system represented in Fig. 1.
This important question requires separate analysis and this will be discussed elsewhere.

7. Conclusion

In this work, we consider the problem of lattice polariton soliton formation in the
array of weakly coupled qubit ensembles interacting with the quantized photonic field in
a tunnel-coupled cavity array – 1D lattice structure. Such cavities can be designed by
using photonic crystal structures with the defects posing small (micro-scale) spatial sizes.
We have demonstrated that this feature plays an essential role in the consideration of
fundamental tunneling processes between cavities at different spatial scales. In particular,
we focus on LB polariton wave packet properties obtained in the limit of strong qubit-
light coupling condition and under the low temperatures when the upper polariton branch
population can be neglected. We have shown that polariton wave packet exhibits four
different dynamical regimes. First, there is a diffusive regime for which a polariton wave
packet extends representing approximately a half matter–half photon quasi-particle state.
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The second regime corresponds to intrinsically localized polaritonic modes; this is the so-
called breathing regime when a wave packet moves with an oscillating width. Third, we
deduce a self-trapping regime when a matter-like polariton wave packet can be stopped and
localized within a few cavities only. Finally, we elucidate the regime of bright polariton
soliton formation that corresponds to the propagation of the polariton wave packet in the
lattice with constant velocity and its shape unchanged. One of the important features
of the solitonic regime being under discussion is connected with the fact that it may be
formed for both photon-like and matter-like domains of a coupled qubit-light system in
the cavity array. Such a property of polariton solitons in our problem seems to be very
attractive for the storage of quantum optical information.

In this paper we suggest a new physical algorithm for quantum optical memory
which is based on the transformation and manipulation by polariton solitons in the cavity
array. Although we do not examine any dissipation and quantum decoherence effects for
a coupled qubit-light system considered in the paper, we hope that our approach opens
new perspectives for quantum information processing with the help of polariton solitons
containing a small particle number. Here, we would like to represent some arguments in
favor of our point of view.

Obviously, the quantum optical information can be stored within the time interval
that in practice depends on the qubit decoherence time and quality factor of a cavity array.
One can expect that for the qubits based on the semiconductor QDs cavity QED array it is
possible to achieve the storage time within tens of picoseconds domain with high enough
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fidelity, [25]. Conversely, if we use two-level ultracold atoms, or NV-centers in diamonds
as qubits we can operate with a memory device within tens of nanoseconds or more [26].

Second, our protocol of the optical information storage with the help of soliton
states posses some important advantages with respect to other methods, which are based
on the quantum information storage of operating other Gaussian-type optical pulses. In
particular, solitons seem to be much more robust to small perturbations. Even in the
presence of small dissipation and decoherence effects, it is possible to operate with a
soliton-like shape, preserving wave packets in accordance with perturbation approach for
polariton solitons, cf. [20].

Third, if dissipation and decoherence effects become significant, we hope that it
will be possible to find some solitonic regimes for pulse propagation that corresponds
to dissipation solitons. In this limit, solitons are formed due to some additional optical
pumping. Quantum properties of such solitons and the fragility of their quantum states
against decoherence and dissipation effects, which seem very important, especially for
quantum optical information memory devices, can be optimized by using non-classical
states for a pumping field, cf. [27].

Appendix: Estimation of tunneling coefficients for atomic system

Here, we discuss properties of parameters (11), (12) for the cavity-QED array
containing two-level atoms as a qubit system. To be more specific, we consider ultracold
two-level rubidium atoms with resonance frequency ω12 / 2π = 382THz that corresponds
to mean weighted rubidium D-lines. To get a variational estimate for the tunneling
coefficients mentioned above, we assume that the Wannier wave functions for atomic and
photonic parts localized at the jth cavity may be approached by (cf. [28]):

ϕj,n (�r) = Cje
−(x−xn)2

2σ2
x,j e

−(y2+z2)
2σ2

j , ξn (�r) = Cξe
−(x−xn)2

2ξ2x e
−(y2+z2)

2ξ2 , (A.1)

where Cj =
(
π3/2σx,jσ

2
j

)−1/2
(j = 1, 2), Cξ =

(
π3/2ξxξ

2
)−1/2

are relevant normalization
constants. Taking into account the realistic values of variational parameters σx,j, σj and
ξx, ξ, which are widths of atomic and photonic wave functions, respectively, we assume
that:

σx,j 
 σj, ξx 
 ξ. (A.2)

Here, we also propose some trapping of the atoms in the cavity. In the simplest
case, we can choose harmonic trapping potentials Vexp = Vopt + Vm with components:

Vm =
Mat

2

(
ω2
mag,xx

2 + ω2
mag,⊥

(
y2 + z2

))
, Vopt = sER sin2 (kx) ≈ Mat

2
ω2
x (x− xn)

2 , (A.3)

where ER = �
2k2/2Mat is recoil energy, s = V0/ER is a dimensionless parameter which

denotes the lattice depth. We take a cylindrically symmetric trap potential with charac-
teristic axial and radial frequencies ωmag,x and ωmag,⊥ respectively. We suppose that the
minima of the 1D periodic potential (A.3) are located at the centers xn = nd of nth cavity,
i. e. ωx = (2sERk

2/Mat)
1/2. For the typical values of trapping frequencies ωmag,x and ωx,

it is possible to obtain ωx 	 ωmag,x, cf, [28]. After substituting (A.1), for (11), (12) and
taking into account (A.2), for the atomic tunneling rate β we obtain:

β = − �

4Matσ2
x

e
−d2

4σ2
x

(
1− d2

2σ2
x

)
− Matω

2
x

4�
e

−d2

4σ2
x

(
σ2
x +

d2

2

)
. (A.4)
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In the experimental situation the second term in (A.4) is essentially smaller than

the first one. Thus, we can assume that β ≈ − �

4Matσ2
x
e

−d2

4σ2
x

(
1− d2

2σ2
x

)
. The atomic tunneling

rate β is positive if the cavity effective size is d >
√
2σx ≈ 1.414σx. The latest one (σx) is

typically few hundred nanometers in real experiments [18].
A calculation of the photon tunneling rate α between the cavities can be given in

the same way. In particular, we obtain:

α = − �

4Mphξ2x
e
− d2

4ξ2x

(
1− d2

2ξ2x

)
. (A.5)

Since Mat 	 Mph the relation |α| 	 |β| is fulfilled for the relevant tunneling rates
and we can assume that ΩT � αC2 in Eq. (21).
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