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Kicked particle dynamics in quantum graphs
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1. Introduction

Particle dynamics in branched systems, such as networks and lattices are of impor-
tance in many topics of physics such as optics, acoustics, condensed matter and polymer
physics. Particle and wave transport in such systems can be effectively modeled using the
evolution equation on so-called metric graphs. Earlier, the Schrödinger equation on a metric
graph was subject of extensive research (see review papers [1-8] and references therein). The
nonlinear wave equation on metric graphs has also attracted much attention recently [9-16].
Graphs are the systems consisting of bonds which are connected at the vertices. The bonds
are connected according to a rule, which is called the topology of a graph. The topology of
a graph is given in terms of the adjacency matrix [1, 2]:

Cij = Cji =

{
1, if i and j are connected;

0, otherwise.
i, j = 1, 2, ..., V. (1)

A graph is called a metric graph when each of its bonds is associated with an interval
[0, Lij].

Earlier, quantum graphs were extensively studied in the context of quantum chaos
theory [17-21]. Strict mathematical formulation of the boundary conditions was given by
Kostrykin and Schrader [4]. Inverse problems on quantum graphs have been studied in Refs.
[5]- [7]. An experimental realization of quantum graphs on (optical) microwave waveguide
networks is discussed in the Ref. [8].

Despite the fact that different issues of quantum graphs and their applications have
been discussed in the literature, the problem of graphs driven by external fields has not yet
been treated.

In this paper, we address the problem of particle dynamics in periodically driven
graphs by considering, as a perturbation, delta-kicking potential. The quantum dynamics
of delta-kicked systems were extensively discussed in the context of quantum chaos and
related issues [17] - [21]. A remarkable feature of the kicked quantum system is so-called
quantum localization, which implies suppression of diffusive growth of the average kinetic
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energy as a function of time [18]. For classical kicked systems, energy grows linearly as a
function of time [17,18]. Such a phenomenon can be considered as an analog of the Anderson
localization [18]. We consider delta-kicked particle dynamics in the simplest graph topology,
the so-called star graph. In particular, we study wave-packet evolution in such a system and
the time-dependence of the average kinetic energy.

2. Schrödinger equation on graphs

Quantum particle dynamics on a graph is described by the one-dimensional Schrödinger
equation [1, 2] (in the units ~ = 2m = 1):

d2Ψb(x)

dx2
= k2Ψb(x), b = (i, j), (2)

where b denotes a bond connecting ith and jth vertices, and for each bond b, the component
Ψb of the total wave function Ψb is a solution of the Eq.2. This equation is a multi-component
equation where the components are related through boundary conditions, providing conti-
nuity and current conservation [1]:

• Continuity,

Ψi,j|x=0 = ϕi, Ψi,j|x=Li,j
= ϕj for all i < j and Ci,j 6= 0

• Current conservation,∑
j<iCi,j

d
dx

Ψj,i(x)
∣∣∣
x=Li,j

+
∑

j>iCi,j
d
dx

Ψi,j(x)
∣∣∣
x=0

= −λiϕi.

(3)

Here, the parameters λi are free parameters which determine the type of boundary conditions.
In particular, the special case of zero λi’s corresponds to the Neumann boundary conditions.
The Dirichlet boundary conditions correspond to the case when all the λi =∞.

The eigenfunctions obeying continuity conditions can be written as:

Ψi,j =
Ci,j

sin kLi,j
(ϕi sin k(Li,j − x) + ϕj sin kx), (4)

while current conservation gives:∑
j 6=i

kCi,j
sin kLi,j

(−ϕi cos kLi,j + ϕj) = λiϕi. (5)

Corresponding eigenfunctions can be found from the following quantization condition:

det (hi,j(k)) = 0, (6)

where

hi,j(k) =

 −
∑
m6=i

Ci,m cot kLi,m − λi
k
, i = j

Ci,j sin−1 kLi,j, i 6= j
(7)

For the star graph, the boundary conditions can be written as [22]:
Ψ1|y=0 = Ψ2|y=0 = ... = ΨN |y=0,

Ψ1|y=L1 = Ψ2|y=L2 = ... = ΨN |y=LN
= 0,

N∑
j=1

d
dy

Ψj|y=0 = 0.

(8)

where N is the number of bonds emanating from the central vertex.
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In the case of the star graph, the energy spectrum can be found from the following
spectral equation [22]:

N∑
j=1

tan−1(knLj) = 0, (9)

while the corresponding eigenfunctions are written as [22]:

Ψ
(n)
j =

Bn

sin(knLj)
sin(kn(Lj − y)) (10)

where the normalization coefficients are given by:

Bn =

[∑
j

(Lj + sin (2knLj)) sin−2 (knLj)/2

]−1/2
. (11)

3. Kicked star graph

Consider a quantum particle on a primary star graph, i.e. on a graph with three
bonds, in the presence of an external time-periodic potential. Such system is described by
the following time-dependent Schrödinger equation:

i
∂Ψb(x, t)

∂t
=

[
− ∂2

∂x2
− ε cosxδT (t)

]
Ψb(x, t), b = 1, 2, 3. (12)

where:

δT (t) =
∞∑

l=−∞

δ(t− lT ), (13)

with T being the kicking period.
Eq.12 can be analytically integrated over a single kicking period. To do this, we note

that the solution of Eq. 12 can be expanded in terms of complete set {φ(n)
b }(b = 1, 2, 3), of

solutions of Eq. 2 as:

Ψb(x, t) =
∑
n

An(t)φ
(n)
b (x) (14)

Integrating Eq.12 over a single period T , using the same prescription as in the case of the
kicked rotor [17,18] for the time evolution of An(t), during one kicking, period we have:

Am(t+ T ) =
∑
n

An(t)Vmne
−iEnT , (15)

where En represents the eigenvalues of unperturbed star graph:

Vmn =
3∑
b=1

∫ Lb

0

φ
(m)
b

∗
(x)eiε cosxφ

(n)
b (x)dx. (16)

Using Eq.15, we can compute wave function for an arbitrary number of kicks and
average kinetic energy as:

〈E(t)〉 = −1

2

3∑
b=1

∫ Lb

0

Ψ∗b(x, t)
∂2Ψb(x, t)

∂x2
dx. (17)

In Fig. 1, 〈E(t)〉 is plotted as a function of time for different kicking strength values.
As is seen from these plots, the average energy is a periodic function of time with a

period much longer than that of the kicking period. This behavior is completely different than
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Fig. 1. Average kinetic energy as a function of time for different kicking
strength values: ε = 0.3(dotted), ε = 0.2(dashed) and ε = 0.1 (solid) at the
kicking period, T = 0.001

that of the kicked rotor case [18] and the kicked one dimensional box [20]. Such a periodicity
may be caused by a more complicated structure for the graph, which implies different (than
those for kicked rotor or box) boundary conditions in the Schrödinger equation.

Furthermore, we consider wave packet evolution in kicked star graph by taking the
wave function at t = 0 (for the first bond) as the following Gaussian wave packet:

Ψ1(x, 0) = Φ(x) =
(√

2πσ
)−1/2

e−(x−mu)
2/4σ, (18)

with µ and σ being the initial position and the width of the packet. For other bonds, initial
wave function is assumed to be zero, i.e. Ψ2(x, 0) = Ψ3(x, 0) = 0. Then for the initial values
of the wave functions Ψb(x, t), the expansion coefficients at t = 0 can be written as:

An(0) =

∫ L1

0

Φ(x)φ
(n)
1

∗
(x)dx. (19)

Fig. 2 presents the time evolution of the Gaussian wave packet on kicked star graph
for kicking parameters ε = 0.1 and T = 0.01 at time moments t = 100T, 300T and 500T .
As these plots show, complete dispersion of the wave packet is not possible, even for a high
number of kicks, due to the confined nature of the system. Also, wave packet revival can be
observed in such systems.
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Fig. 2. Time evolution of the Gaussian wave packet in kicked quantum star
graph for kicking parameters ε = 0.1, T = 0.001

4. Conclusion

In this work, we have studied the quantum dynamics of a delta kicked particle in a star
graph driven by external periodic delta-kicking field by considering the time-dependence of
the average kinetic energy and wave packet evolution. It was shown that the average kinetic
energy of a kicked particle in a star graph is a periodic function of time. The amplitude
and period of the average kinetic energy depend on the kicking parameters (kicking strength
and period). By tuning the kicking parameters, it is possible to find a regime when the
average kinetic energy grows monotonically over time. The absence of complete wave packet
dispersion was also shown for this system. The results can be used for the realization of
quantum Fermi acceleration in nanoscale networks and achieving tunable electronic transport
in nanoscale devices.
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