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1. Introduction

In the following the fermion current going through a quantum dot is analyzed as a function of

(1) the electro-chemical potentials on leads and of
(2) the contact with the external photon reservoir.

Although the latter is the canonical JC'-interaction, the coupling of the JC model with leads needs
certain precautions, if we wish to remain in the one-particle quantum mechanical Hamiltonian
approach and scattering theory framework. To this end, we proposed a new Jaynes-Cummings-
Leads (JC'L-) model [19]. This model makes possible a photon flux into the resonator, created by
a fermion current through the dot; i.e. it describes a light-emitting device, as well as to transform
the external photon flux into a current of fermions, which corresponds to a quantum dot light-
absorbing device.

The paper is an extended version of [19], which means that the JC'L-model, as well as all
theorems, corollaries of this article one can already find in [19], however, without any proofs. In
the following article, we are going to close this gap and give full proofs of all statements. In doing
so, we have added some statements absent in [19].

The paper is organized as follows. The JC'L-model is introduced and discussed in Sections
2.1-2.7. For simplicity, we choose for the lead Hamiltonians the one-particle discrete Schrodinger
operators, with constant one-site (electric) potentials on each of leads. In Section 2.5, we show
that the our model fits into the framework of trace-class scattering. In Section 2.7, we verify
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the important property that the coupled Hamiltonian has no singular continuous spectrum. Our
main tool for analysis of different currents is an abstract Landauer-Biittiker-type formula applied
in Sections 3.1 and 3.2 to the case of the .JC'L-model. This allows us to calculate the outgoing flux
of photons induced by electric current via leads. This corresponds to a light-emitting device. We
also found that pumping the JCL quantum dot with a photon flux from a resonator may induce a
current of fermions into the leads. This reversing imitates a quantum light-absorbing cell device.
These are the main properties of our model and the main application of the Landauer-Biittiker-
type formula of Sections 3.1 and 3.2. They are presented in Sections 4 and 5, where we distinguish
contact-induced and photon-induced fermion currents.

To describe the results of Sections 4 and 5, note that in our setup, the sample Hamiltonian
is a two-level quantum dot decoupled from the one-mode photon resonator. Then, the unperturbed
Hamiltonian H, describes a collection of four totally decoupled sub-systems: a sample, a resonator
and two leads. The perturbed Hamiltonian H is a fully coupled system, and the feature of our
model is that it is totally (i.e. including the leads) embedded in the external electromagnetic field
of the resonator. Hence, each electron can be interpreted as a fermion with internal harmonic
degrees of freedom, or a Fermi-particle caring its individual photon cloud.

Similar to the “Black Box” system-leads (SL-) model {Hgy, Ho}, [1], [4], it turns out
that the JC'L-model also fits into the framework of the abstract Landauer-Biittiker formula, and
in particular, is a trace-class scattering system {H o, = H, Hgy}. The current in the S L-model
is called the contact-induced current J. This current was the subject of numerous papers, see
e.g. [1,5], or [4]. Note that the current J.; is due to the difference of the electro-chemical potentials
between two leads, but it may be zero even if this difference is not null [12, 13].

The fermion current in the JC' L-model, takes into account the effect of the electron-photon
interaction under the assumption that the leads are already coupled. This is called the photon-
induced component JZh of the total current. To the best of our knowledge, the present paper is
the first which rigorously studies this phenomenon. We show that the total free-fermion current
Je; in the JC'L-model decomposes into a sum of the contact- and the photon-induced currents:
Jop 1= JG + th. An extreme case is when the contact-induced current is zero, but the photon-
induced component is not, c.f. Section 5.1. In this case, the flux of photons .J,; out of the quantum
dot (sample) is also non-zero, i.e. the dot serves as a light emitting device, c.f. Section 5.2. In
general the J,;, # 0 only when the photon-induced component Jflh # 0.

By choosing the parameters of the model in an suitable manner, one can get either a photon
emitting or a photon absorbing system. Hence, the JC L-model can be used either as a light
emission device or as a solar cell. Proofs of explicit formulas for fermion and photon currents .J;’ Ql,
Jpn, are contained in Sections 4 and 5.

Note that the JC'L-model is called mirror symmetric if (roughly speaking) one can inter-
change left and right leads and the JC L-model remains unchanged. In Section 5 we discuss a
surprising example of a mirror symmetric JC'L-model such that the free-fermion current is zero
but the model is photon emitting. This peculiarity is due to a specific choice of the photon-electron
interaction, which produces fermions with internal harmonic degrees of freedom.

2. Jaynes-Cummings quantum dot coupled to leads
2.1. Jaynes-Cummings model

The starting point for the construction of our JC'L-model is the quantum optics Jaynes-Cummings
Hamiltonian H7C. Its simplest version is a two-level system (quantum dot) with the energy spacing
e, defined by Hamiltonian hg on the Hilbert space hs = C?, see e.g. [16]. It is assumed that this
system is “open” and interacts with the one-mode w photon resonator with Hamiltonian h?",
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Since mathematically hP" coincides with a quantum harmonic oscillator, the Hilbert space
of the resonator is the boson Fock space h*"* = §,(C) over C and

WP = wb*b . 2.1

Here, b* and b are verifying the Canonical Commutation Relations (C'C'R) creation and annihila-
tion operators with domains in §, (C) ~ ¢*(Ny). Operator (2.1) is self-adjoint on its domain:

dom(h?") = {(k:o,k;l,k:g,...) € (Ng): > n’lka)* < oo}.

n€eNg

Note that the canonical basis {¢,, := (0,0,...,k, = 1,0,...) }nen, in £*(Np) consists of eigen-
vectors of operator (2.1): h?"¢,, = nw ¢,,.
To model the rwo-level system with the energy spacing &, one fixes in C? two ortho-normal

vectors {ej, e} }, for example e5 = (?) and e7 := (é), which are eigenvectors of Hamiltonian

hs with eigenvalues {\; = 0, A\{ = ¢}. To this end, we set:

10
hS = (O O) s (22)
and we introduce two ladder operators:

ot = (8 é) and o = ((1) 8) . (2.3)

Then, one obtains hg = € oo~ as well as ¢] = otej, ef = o7 ef and 07 ¢5 = 0. So, €j is

the ground state of Hamiltonian A g. Note that the non-interacting Jaynes-Cummings Hamiltonian
H{® resides in the space /¢ = hg ® h?" = C?> ® F,(C) and it is defined as the matrix operator:

H{® == hs @ Iyon + Iyy @ hP" . (2.4)

Here, Iy»» denotes the identity operator in the Fock space hP", whereas I, stays for the identity
matrix in the space fg.

With operators (2.3), the interaction Vg, between quantum dot and photons (bosons) in the
resonator is defined (in the rotating-wave approximation [16]) by the operator:

Vap :=gsp (07 @b+0~ ®@0b*) . (2.5)
Operators (2.4) and (2.5) define the Jaynes-Cummings model Hamiltonian:
Hjc = HJ + Vs, (2.6)

which is a self-adjoint operator on the common domain dom(H{“) N dom(Vs,). The standard
interpretation of H ;¢ is that (2.6) describes an “open” two-level system interacting with an external
one-mode electromagnetic field [16].

Since the one-mode resonator is able to absorb infinitely many bosons, this interpretation
sounds reasonable, but one can see that the spectrum o(H”/¢) of the Jaynes-Cummings model is
discrete. To this end, note that the so-called number operator My = 070~ ® lgpn + Iy ® b*D
commutes with H jo. Then, since for any n > 0:

ﬁ,{go = {Coe§ ® ¢p + Clef ® Pn—1}¢oreC 5 55;{20 = {Coef)q ® Po}eoec

are eigenspaces of operator M ,c, they reduce H;c, i.e. Hjc : Sﬁic — .6;{0. Note that
H7C = @20 9., where each $H/¢ is invariant subspace of operator (2.6). Therefore, it has
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the representation:
Hjo= @ HY, n>1, H =0. 2.7)

n€ENg

n)

Here operators [ f,c are the restrictions of H ¢, which act in each /¢ as follows:

HS2(Coe§ ® b+ G ef @ fon)
= [Conw + Cgspv/n] €5 @ ¢ + [G1(e + (n — Dw) + Cogspv/n] €7 @ dp_1 -

Hence, the spectrum o (H j¢) = U0 a(HSTg). By virtue of (2.8), the spectrum J(H%) is defined

for n > 1 by eigenvalues F(n) of two-by-two matrix H %) acting on the coefficient space {(o, (1}:

T(n —Dw gspv/n\ (G G
(o) = (5 + —F . 2.9
¢ (Co gsp\/n nw Co Q Co 9
Then, (2.7) and (2.9) imply that the spectrum of the Jaynes-Cummings model Hamiltonian H ;¢ is
pure point:

o(He) = 05y (Hye) = {0} U | {nw + ;(5 —w) e —w/at ggbn} .

neN

(2.8)

This property evidently persists for any system Hamiltonian hg with discrete spectrum and linear
interaction (2.5) with a finite mode photon resonator [16].

We resume the above observations concerning the Jaynes-Cummings model, which is our
starting point, by following remarks:

(a) The standard Hamiltonian (2.6) describes instead of flux only oscillations of photons be-
tween resonator and quantum dot, i.e. the system hg is not “open” enough.

(b) Since one our aim is to model a light-emitting device, the system hg needs an external
source of energy to pump it into the dot, which will be transformed by interaction (2.5)
into the outgoing photon current by pumping the resonator.

(c) To reach this aim we extend the standard Jaynes-Cummings model to our JC'L-model
by attaching to the quantum dot hg (2.2) two leads, which are (infinite) reservoirs of free
fermions. Manipulating with electro-chemical potentials of fermions in these reservoirs we
can force one of them to inject fermions in the quantum dot, whereas another one to absorb
the fermions out the quantum dot with the same rate. This current of fermions throughout
the dot will pump the dot and induce a photon current according scenario (b).

(d) The most subtle point is to invent a leads-dot interaction Vg, which ensures the above
mechanism and which is simple enough that one would still be able to treat this JC'L-
model using our extension of the Landauer-Biittiker formalism.

2.2. The JCL-model

First, let us make some general remarks and formulate certain indispensable conditions when one
follows the modeling (d).

(1) Note that since the Landauer-Biittiker formalism [13] is essentially a scattering theory on
a contact between two subsystems, it is developed only on a “one-particle” level. This
allows one to study with this formalism only ideal (non-interacting) many-body systems.
We impose this condition on many-body fermion systems (electrons) in two leads. Thus,
only direct interaction between different components of the system: dot-photons Vg, and
electron-dot Vg are allowed.
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(2) It is well-known that fermion reservoirs are technically simpler to treat than boson ones
[13]. Moreover, in the framework of our model, it is also very natural since we study
electric current, although produced by “non-interacting electrons”. So, below we use
fermions/electrons synonymously.

(3) In spite of the precautions formulated above, the first difficulty to consider in an ideal many-
body system interacting with quantized electromagnetic field (photons) is induced indirect
interaction. If electrons can emit and absorb photons, it is possible for one electron to emit
a photon that another electron absorbs, thus creating an indirect photon-mediated electron-
electron interaction. This interaction makes it impossible to develop the Landauer-Biittiker
formula, which requires a non-interacting framework.

Assumption 2.1. To solve this difficulty, we forbid in our model the photon-mediated interaction.
To this end, we assume that every electron (in leads and in dot) interacts with its own distinct copy
of the electromagnetic field. So, considering electrons together with their photon fields as non-
interacting “composed particles”, allows us to apply the Landauer-Biittiker approach. Formally, it
corresponds to the “one-electron” Hilbert space h* @ hP"*, where hP" is the Hilbert space of the
individual photon field. The fermion description of composed-particles h* @ hP* corresponds to
the antisymmetric Fock space §_(h* @ hPh).

The composed-particle assumption 2.1 allows us to use the Landauer-Biittiker formalism
developed for ideal many-body fermion systems. Now, we come closer to the formal description
of our JCL-model with two (infinite) leads and a one-mode quantum resonator.

Recall that the Hilbert space of the Jaynes-Cummings Hamiltonian with two energy levels
is §7¢ = C?®F, (C). The boson Fock space is constructed from a one-dimensional Hilbert space,
since we consider only photons of a single fixed frequency. We model the electrons in the leads as
free fermions residing on discrete semi-infinite lattices. Thus:

b = 2(N) @ C2 @ (N) = b’ @ hg @ b, (2.10)

is the one-particle Hilbert space for the electrons and for the dot. Here, h%, o € {I,r}, are the
respective Hilbert spaces of the left and right lead, while hg = C? is the Hilbert space of the
quantum dot. We denote by:

{52}7161\17 {65}]1':07

the canonical basis consisting of individual lattice sites of gl , o € {l,r}, and of hg, respectively.
With the Hilbert space for photons, h?" = §, (C) ~ ¢*(Ny), we define the Hilbert space of the full
system, i.e. quantum dot with leads and with the photon field, as follows:

H=bh"@p" = ((N) o C*@ (N)) ® (*(No). 2.11)

Remark 2.2. Note that the structure of full space (2.11) takes into account the condition 2.1 and
produces composed fermions via the last tensor product. It also manifests that electrons in the dot
as well as those in the leads are composed with photons. This is different than the picture imposed
by the the Jaynes-Cummings model, when only the dot is composed with photons:

H=CN)eC*2 ANy ®AN) , H/9=C*® *(Ny), (2.12)
see (2.4), (2.5) and (2.6), where $7¢ = h ® hP"*. The next step is a choice of interactions between
subsystems: dot-resonator-leads.

According to (2.10), the decoupled leads-dot Hamiltonian is the matrix operator:

hto0 0 w
hgl = 0 hg O on u=|us| , {ua c 52(N)}QG{Z’T} , Ug € CZ ,
0 0 hne Uy
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where hgf = —AP + v, with a constant potential bias v, € R, o € {l,r}, and hg can be any
self-adjoint two-by-two matrix with eigenvalues {\J, \; = \J + €}, ¢ > 0, and eigenvectors

{e5, e}, cf (2.2). Here, AP denotes the discrete Laplacian on ¢?(N) with homogeneous Dirichlet
boundary conditions given by:

(APf)(@) == flw+1)—2f@@)+ fl@—1), weN,
dom(AP) = {f € 2(Ny): £(0) = 0},

which is obviously a bounded self-adjoint operator. Notice that o(AP) = [0, 4].

We define the lead-dot interaction for coupling g.; € R by the matrix operator acting in

(2.10) as follows:
v = ga | (- 01)d5 0 (0007 | (2.13)
0 (-, 60)o7 0
where non-trivial off-diagonal entries are projection operators in the Hilbert space (2.10) with the
scalar product u, v + (u,v) for u,v € he.. Here, {45,67} is ortho-normal basis in h¥, which
in general may be different from {ej, ¢7' }. Hence, interaction (2.13) describes quantum tunneling
between leads and the dot via contact sites of the leads, which are supports of §' and 7.

Then we define the Hamiltonian for the system of interacting leads and dot as h® :=
hél + ve. Here, both hS' and h¢ are bounded self-adjoint operators on h<.

Recall that photon Hamiltonian in the one-mode resonator is defined by operator h?" =
wb*b with domain in the Fock space §,(C) ~ *(Ny), (2.1). We denote the canonical basis in
(%(Np) by {T,, }nen,- Then for the spectrum of A”" one obviously gets:

(W) = opp () = | {nw}. (2.14)
n€eNy

We introduce the following decoupled Hamiltonian H,, which describes the system when
the leads are decoupled from the quantum dot and the electron does not interact with the photon
field:

Hy := H{' + H"", (2.15)
where
H = hi' @ Ln and  H" := Iju @ P
The operator Hy is self-adjoint on dom(Hy) = dom ([« ®h*"). Recall that h&' and h?" are bounded
self-adjoint operators. Hence, HS' and H¢ are semi-bounded from below, which yields that Hy is
semi-bounded from below.

The interaction of the photons and the electrons in the quantum dot is given by the coupling
of the dipole moment of the electrons to the electromagnetic field in the rotating wave approxima-
tion. Namely:

Vb = Gpn ((, ed)el @b+ (-, ed)es ® b*) , (2.16)
for some coupling constant g,;, € R. The total Hamiltonian is given by:
H:=H"+ H" 4+ V,;, = Hy+ Vo + Vi, (2.17)

where HY := h® @ Ijpn and V= v @ Iypn.

In the following, we call § = {H, Hy} the Jaynes-Cummings-leads system, in short JC'L-
model, which we are going to analyze. In particular, we are interested in the electron and photon
currents for that system. The analysis will be based on the abstract Landauer-Biittiker formula,
cf. [1,13].

Lemma 2.3. H is bounded from below self-adjoint such that dom(H) = dom(H,).
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Proof. Let ¢ > 2. Then,
6L, |1? < I TulP =n+1<c'n*+c¢, neN,.
Consider elements f € hg ® h”" N dom(Iy« ® hP") with the following:

f=> Bue; @Y, je{0,1}, €N,
i

which are dense in $7¢ := h®@AP". Then, || f[|* = 3°;,|8;|* and || (I« @b*D) f||* = 3=, 11|81
We obtain the following:

I(C ev)es @ D)FII* < Zlﬂgzl I71* <
> _1Bal* (e + C) = [y @ D) fII* + €l £1°
75l

Similarly,

(- ed)es @ b)FIP < (g @ DD FI* + LI
If ¢ > 2 is large enough, then we obtain that V,, is dominated by H?" with relative bound less than
one. Hence, H is self-adjoint and dom(H,) = dom(H). Since H§' and V,; are bounded and H"
is self-adjoint and bounded from below, it follows that H = Hg' + HP" + V,; + V), is bounded
from below [17, Thm. V.4.1]. O

2.3. Time reversible symmetric systems

A system described by the Hamiltonian / is called time reversible symmetric if there is a conju-
gation I" defined on ) such that '/ = HT'. Recall that I" is a conjugation if the conditions I'> = T

and (I'f,T'g) = (f,9), f,9 € 9.
Let h?, n € Ny, the subspace spanned by the eigenvector T, in h”". We set:

O, =h2 @02 neNy, ac{lr} (2.18)
Notice that
f) == @ ﬁna
n€Np,ae{l,r}

Definition 2.4. The JC L-model is called time reversible symmetric if there is a conjugation I
acting on $) such that // and H, are time reversible symmetric and the subspaces $),, ., n € Ny,
a € {l,r}, reduces I'.

Example 2.5. Let v¢ and ¢ be conjugations defined by the followmg
fa = fa = {fa( )}kENa foa av OéE{l,’l“},

61 (1) = (365)

We set v := 7f! @ v¢ @ <. Further, we set:

fyphw = 2/1 = {w(n)}neNou w S hph~
Let I := ° ® vP". One easily checks that I' is a conjugation on $) = h* @ hP".

and

Lemma 2.6. Let ¢, o € {S,1,r}, and v*" be given by Example 2.5.

() If the conditions v&e5 = e5 and v&ey = ef are satisfied, then Hy is time reversible

symmetric with respect to I and, moreover, the subspaces $,., n € No, o € {l,r},
reduces I'.
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(ii) If in addition the conditions v255 = 65 and &6y = 67 are satisfied, then JC L-model is
time reversible symmetric.

Proof. (i) Obviously we have

VAR = heNe e {l,r}, and AP"RPM = pPhAPR,
If vdes = e5 and y&e;y = ef are satisfied, then Y& he = h¥~¢ which yields v*'h¢! = hgl~! and,
hence, 'Hy = ['Hy. Since v9h¢ = h< and yP"hP" = hP" one gets I'$),,, = 9, which shows that
$n,, reduces I'.
(i) Notice that y¢'6¢ = 6%, a € {l,r}. If in addition the conditions v¢d5 = 45 and

g7 = o7 are satisfied, then y“v, = vgy® is valid, which yields vh? = h¢~°. Hence,
I'H = HT'. Together with (i), this proves that the JC'L-model is time reversible symmetric. I

Choosing the following:

1 0 1 (1 1 1
eg = <O> e — (1) , 569 = E <1> . 0= ﬁ (_1> (2.19)

one satisfies the condition v&e§ = e5 and v&e) = ef as well as y&es = ef and y&e; = ef.

2.4. Mirror symmetric systems

A unitary operator U acting on ) is called a mirror symmetry if the following conditions are met:
USpo = 9, a,d €{l,r}, a#d

are satisfied. In particular, this yields U$H'¢ = $7¢, §/¢ := p¢ @ h»".

Definition 2.7. The JC L-model is called mirror symmetric if there is a mirror symmetry commut-
ing with Hy and H.

One can easily verify that if /, is mirror symmetric, then
H, ,U=UH,,, neNy, o e{lr}, a#d,
where
Hp, = b @ In + Iya @ WY = bl +nw, neNy, a0’ €{l,r}, a#d.
In partiCI;llar, this yields that v, = v,/. Moreover, one gets U Hg = HsU where Hg := h¥ ® I, poh +
Tyer @ hP".

Notice that if // and [, commute with the same mirror symmetry U, then also the operator
H.:=h" @ Ijpn + Iya @ h*" also commutes with U, i.e, is mirror symmetric.

Example 2.8. Let S = {H, Hy} be the JCL-model. Let v; = v, and let e; and e} as well as 5
and 07 be given by (2.19). We set:

el S ._ S el S _ __S
ugey :=e¢; and wuge] = —e7, (2.20)

as well as
uPh Y, = e Y, n e N,. (2.21)
Obviously, Us := u¥ @ uP" defines a unitary operator on $/¢. Straightforward computation shows
that:
UsHs = HsUs and  UgVp, = Vi Us. (2.22)
Furthermore, we set:
uhol =67, and ul'e" =o', neN, (2.23)

Ir¥n
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and
0 0 uf
u? =10 u?d 0
u 0 0
We thus have the following:
Ji < fs, (ug)* 5 > &
vau | fs | = | < frr (uf) 0] > 65+ < fi, (ugy)*o7 > 67 (2.24)
fr < fS> (uesl)*(sig > 5{
Since 05 = %(eg +e7) and 67 = %(65 — e7) we get from (2.20)
(u@)*65 =67 and  (u%)*6Y =65 (2.25)
Obviously, we then have
(up) 0y =07 (u)"07 = dy. (2.26)
Inserting (2.25) and (2.26) into (2.24), we find
i < fs,07 >8]
vau | fs | = | < fr 05 > 65+ < 1,00 > 67 (2.27)
fr < fSa 505 > 61{
Further, we have:
fl < f57 &IS‘ > 5%
uvg | fs| = | < fi, 68 > 07+ < fr, 00 > 65 | . (2.28)
Jr < fs, 05 > 0f

Comparing (2.27) and (2.28), we get uv, = vqu. Setting U = u® @ u”" one immediately
proves that UHy = HoU and UH = HU. Since U$),, = $,_,, it is satisfied that § is mirror
symmetric.

We note that Example 2.8 § is also time-reversible symmetric.

2.5. Spectral properties of [7: first part

In the following, our goal is to apply the Landauer-Biittiker formula to the JC'L-model. By £,(5),
1 < p < oo, we denote in the following the Schatten-v.Neumann ideals.

Proposition 2.9. If S = {H, Hy} is the JC L-model, then (H + i)' — (Hy + )" € £,(9). In
particular, the absolutely continuous parts H and H{¢ are unitarily equivalent.

Proof. We have
(H+i) ™" = (Ho+14) ' =(Ho+14) 'V(H+1)"" =
(Ho+4) "'V (Ho+14i)"" = (Ho+4) "'V (Ho+4) "'V (H + i),

where V. = H — Hy = Vg + V,;,. Taking into account Lemma 2.3, it suffices to prove that
(Ho+ i)'V (Hy + i)t € £1($). Using the spectral decomposition of h?" with respect to h?" =
Dreng Phwhere hP" are the subspaces spanned by T,,, we obtain the following:

(Ho+i)™' = @ (h§' +nw +14i)7' @ L. (2.29)

n€eNg
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We have (Hoy + i)'V (Hy + i)' = (Ho + i)' (Vo + Vpn)(Ho + 4)~'. Since v, is a finite rank
operator, we have ||vy||e, < oo. Furthermore, h?" is obviously one-dimensional for any n € Nj,.
Hence, || 1 [|¢, = 1. From (2.29) and Ve, = ve @ Iypn, we obtain the following:

[(Ho +4) " 'Va(Ho +9) e, = D (7§ + nw + ) va(hf +nw + 1)~ |g,

n€Ng
< D MhE +nw + )72 vl
neNg
Since h¢' is bounded, we get:
-1
(e 4 nw +4)7Y| = sup ( (A 4 nw)? + 1) <ce(n+1)71, (2.30)
Aeo(hgh)

for some ¢ > 0. This immediately implies that ||(Hy + ) "'V (Ho + i) ||, < co.
We are going to handle (Hy + )V, (Hy + i) ~*. Let p2" be the projection from h*" onto
hP". We have the following:
(Ho+1)7" (- eq)ed @b (Ho +i)~
= Y (B +mw+i) (- e5)el (b +nw +1i) 7 @ phrbpht
m,n€eNp

= D (h§ +(n—=Nw+0)7" (eg)ed (7 +nw+0) 7 @ VaTuo1(, Tn)

neN

From (2.30), we get the following:

el N—1(. S\,S (pel N1 2 V1
[6' (= Do )7 el (8 4+ meo +0)71) © VAT L, <€y
n € N, which yields:
I(Ho+ )" (- e5)ey @b (Ho+14) e, < Z < 00

neN TL+ 1)

Since
I(Ho +1)7" (- et)eg @ b" (Ho+14) ey, = [[(Ho + 1) 7" (- e5)ef @b (Ho +0) e,
one gets (Ho + i) ' Vpu(Ho + i)' € £1($), which completes the proof. O

Thus, the JCOL-model S = {H, Hy} is a £;-scattering system. Let us recall that h? =
—AP 0., € {I,7}, on b’ = hs! = £2(N).

Lemma 2.10. Let o € {l,r}. We have the following:
o(h?) = 04o(h?) = [Va, 4 + va)].
The normalized generalized eigenfunctions of h® are given by:
ga(@, X)) =773 (1 = (= A+ 2 4 v,)%/4) 7 sin (arccos((—)\ +2+ va)/2)x)
forz € N, X € (va,4 + vq).

Proof. We prove the absolute continuity of the spectrum by showing that:

{9a(z, ) [ A € (=2,2)}
is a complete set of generalized eigenfunctions. Note that it suffices to prove the lemma for

(AP +2)f)(2) = fz + 1)+ f(z = 1), f(0)=0.
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The lemma then follows by replacing A with —\ + 2 + v,. Let A € (—2,2) and
gan(x, ) = W’%(l - )\2/4)’i sin (arccos()\/Q)x).

Note that gap(0,A) = 0, when the boundary condition is satisfied. We substitute y =
arccos(A/2) € (0,7),i.e. A = 2cos(x) and obtain the following:

sin(pu(x 4+ 1)) + sin(u(x — 1)) = 2sin(ux) cos(u),

when gap(x, \) satisfies the eigenvalue equation. It is obvious that gan (-, \) & (*(Ny) for A €
(—2,2). To complete the proof of the lemma, it remains to show the ortho-normality and the
completeness. For the ortho-normality, we have to show that

> gan(x, N)gap(z,v) = 6(A —v).

zeN

Lety € C° ((—2, 2)) We use the substitution ;1 = arccos(v/2) and the relation

sin(arccos(y)) = (1 — yz)’%

to obtain the following:

/_22 dv Z gap(x, N)gap(x,v)(v)

zeN

— g1 /” d Sin(l.t) sin (lar.ccos(A/2);z:) Sin(/fx)
sen (sin(u))2 (sin(arccos(A/2)))2

27‘(‘ / d (SlH(IM))7 (ei(arccos(A/Q)—u)z+
xeN (sin(arccos(A/2)))2

(2 cos(11))

—i(arccos(A/2)—p)z ez(arccos()\/2)+p,)a7 . e—z(arccos(k/2)+,u)$>¢(2 COS(M)).

Observe that for the Dirichlet kernel:
Yo (e ) — 1 =2m(y),

€Ny

when

/22 dv Y gan(z, N)gan(z,v)¢(v) =

zeN

T (sin(p))? -
/0 du (sin(arccos(1/2)))2 (0(arccos(A/2) — ) + d(arccos(A/2) + 1)) (2 cos(n)) = ().

In the second equality we use that the summand containing J(arccos(A/2) + p) is zero since both
arccos(A/2) > 0 and p > 0. Thus, the generalized eigenfunctions are orthonormal. Finally, using
once more the substitution p = arccos(v/2), we obtain the following:

/_22 dv gan (z,1)gan (y,v) =
/22 v (1 - (V/2)2>_% sin (arCCOS(V/Q)x) sin (arccos(u/2)y) —

ot /07r dp (sin(p)) ™! sin(p)sin(px) sin(uy) = 6.y,

for z,y € N, when the family of generalized eigenfunctions is also complete. 0
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From these two lemmas, we obtain the following corollary that gives us the spectral prop-
erties of Hj.

Proposition 2.11. Let S = {H, Hy} be the JC L-model. Then, o(Hy) = 04.(Ho)Uo,,(Hy), where

0ac(Ho) = | (v + nw, v+ 4+ nw] U [v, + nw, v, + 4 + nw]
n€Ng

and
ow(Ho) = |J {A) +nw:j=01}.
n€eNg
The eigenvectors are given by g(m,n) = 2 @ T,, m = 0,1, n € Ny. The generalized eigenfunc-
tions are given by go (-, A\,n) = go (-, \ — nw) @ T, for A € o,.(Hy), n € Ny, a € {l,7}.

Proof. Tt is well known (see e.g. [15]) that for two self-adjoint operators A and B with o,.(A) =
0s(B) =0, we have 0,.(A® 1+ 1® B) =0,

0l A® 1+1® B) = (04:(4) +0(B)) U (0(A) + 00c(B))

and
op(A®1+1® B) = 0pp(A) + 0y(B).
Furthermore, if 1¥)4(\4) and ¥ p(A\p) are (generalized) eigenfunctions of A and B, respectively,
then ¥4(A4) ® ¥p(Ap) is a (generalized) eigenfunction of A ® [ + I ® B for the (generalized)
eigenvalue A\ 4 + Ap.
The lemma follows now with A = h& and B = h*" using Lemmata 2.10 and (2.14) and
the fact that hg has eigenvectors {ej, e7'} with eigenvalues {\5, \J = A5 + €}, O

2.6. Spectral representation

For the convenience of the reader, we define here what we mean under a spectral representation
of the absolutely continuous part K§ of a self-adjoint operator /, on a separable Hilbert space
A. Let € be an auxiliary separable Hilbert space. We consider the Hilbert space L*(R, d\, £). By
M, we define the multiplication operator induced by the independent variable X in L*(R, d\, ).
Let @ : R*(Ky) — L*(R, d\, ) be an isometry acting from R%“(Kj) into L*(R, d\, £) such that:
ddom(K§°) C dom(M) and

MOf = BKEf, f e dom(Ki).

Obviously, the orthogonal projection P := ®®* commutes with M which yields the existence of
a measurable family, { P(\) } \cr, such that:

(PHN=PNFON), ] eL* R\
We set L2(R, d), €(\)) := PL*(R, A, €), &(\) := P(\)E, and call the triplet
I(K§Y) == {L*(R,d)\, €(\)), M, ®}
a spectral representation of Kg¢. If {L*(R, d\, €()\)), M, ®} is a spectral representation of K,
then K is unitarily equivalent M, := M | L*(R,d\, €()\)). Indeed, one has ®KJP* = M,.

The function &5 (\) := dom(£())), A € R, is called the spectral multiplicity function of K§°.
Notice that 0 < £ (M) < oo for A € R.

For v € {l,7}, the generalized eigenfunctions of h¢ define generalized Fourier transforms
by ¢4 + by = b2 “(hg) = L*([va, va +4]) and

(@ fa)X) = Y galz, M) falz), fa€bE. (2.31)

zE€Np
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We then set:

o C X € [va,vq +4]
(V) = {0 AR\ [ug, v + 4], (2.32)

One can easily verify that TI(hY) = {L*(R,d\, % (N)), M, ¢¢} is a spectral representation of
het = hébec o = [ r, where we always assumed implicitly that (¢¢'f,)(A) = 0 for A € R\
[Va, Vo + 4]. Setting:

bi'(\)
hrN) = @ CC? MNeR, (2.33)
by' ()
and introducing the map:
hel
¢ petae(ng) = ela — L*(R, d), b%(N)), (2.34)
el
defined by:
G f = (jlff’) . where fi— (?) (2.35)

we obtain a spectral representation IT(h5"°) = {L2(R, dX, h(\)), M, ¢} of the absolutely con-
tinuous part hS"* = h¢t @ he of h¢!. One easily verifies that 0 < a(h) < 2for A € R.
Introducing:

A =min{v, v} and A = max{v +4,0, + 4}, (2.36)

one easily verifies that £ (A) = 0 for A € R \ (A e .
Notice, if v, + 4 < vy, then

bl (1) = C, Aev,v+4Ulv,u+4],
{0}, otherwise

which shows that h¢ has a simple spectrum. In particular, it holds Shel( ) = 1for A € [v, v, +
4] U [vy, vy + 4] and otherwise €h€l< ) =0.

Let us introduce the Hilbert space b := [*(Ny, C*) = @D,cn, bn» b := C% n € No.
Regarding h(\ — nw) as a subspace of b,,, one regards:

= @D bV, b (V) =b"A—nw), NER, 2.37)
n€Np

as a measurable family of subspaces in h. Notice that 0 < dim(h(\)) < oo, A € R. We consider
the Hilbert space L*(R, d\, h(N)).
Furthermore, we introduce the isometric map @ : §(H) — L*(R,d), h())) defined by

- @ (). ven aw

where
@ (fl(n)> c @ hel,ac(hel) ® bph _ @ b?l (?;hﬁh
neNp fr(n) neNg 0 " neN bil ® hﬁh

where b, = @,,cn, 2" and h2" is the subspace spanned by the eigenvectors T, of h*". One easily
verifies that ® is an isometry acting from $?¢( Hg¢) onto L?(RR, d), h(\)).
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Lemma 2.12. The triplet { L*(R, d)\, h()\)), M, ®} forms a spectral representation of H{, that is,

II(HE) = {L*(R,d\, h(N)), M, @} where there is a constant d € Ny such that 0 < & (M) <

2dmax for X € R where d . := ’\g“wi/\‘e‘i“ and X and \¢. are given by (2.36).

Proof. It remains to be shown that ® transforms H{ into the multiplication operator M. We have
ae (R 1) (n) + nw fi(n)
'l = © ( B 1) (n) + ety (n)
which yields the following:
ac (&7 (R £1) (n) ) (A = nw) + new (g fi(n)) (A — nw)
OH, A) =
@) = @ (A v L et ()3 -
(
(

n€eNp

(
)
(f' fi(n)) (A = nw)
= . = (MoDf)(N), ek
-® (Na =) = ey
which proves the desired property.

One easily checks that h(\) might only be only non-trivial if A\—nw € [A%._ A< ]. Hence,

min? max
we obtain that h(\) is non-trivial if the condition:

A= N A=,

\TL\
w w

1s satisfied. Hence,

el el
Oéfj'flc()()\)éZCard{nENo A)\maxén\/\)\mm}, A€ R.
w

w
or
)\el _/\el
Oéﬁﬁ)(A)éQcard{neNo:Ogn M}, )\ €R.
w
Hence 0 < &3 (M) < dax for A € R, O

In the following we denote the orthogonal projection from h(\) onto b, () by P,()),
A € R, cf (2.37). Since h(\) = D,.en, hn(A) We have Iy = Y,en, Pn(A), A € R. Further, we
introduce the following subspaces:

Boo(A) == b4\ —nw), AER, neN.

Notice that:
P b..(r), AeR, neN,.
ac{l,r}

By P, ()\) we denote the orthogonal projection from h(\) onto b, (A), A € R. Clearly, we have
Pn()‘) = Zae{l,r} Pna(/\)’ AER

Example 2.13. In general, the direct integral I1( H§¢) can be very complicated, in particular, the
structure of h(\) given by (2.37) is difficult to analyze. However, there are interesting simple cases:
(i) Let v = v; = v, and 4 < w. In this case we have h®(\) = C? for [v,v + 4] and

b)) = C* Me[v+nwv+nw+4], neN,
~ 1{0}, otherwise.
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(i) Letv, = 0, v; = 4, wy = 4. Then

(\)=C, Xel0,4),
‘N =C?, e l4,8),

A Ir
"W = AeBa),
where
bel (M)
aN= @, a, €{l,r}, a#d.
bl (A
Hence, dim(h(\)) = 2 for A > 4. O

Let Z be a bounded operator acting on $°“(Hj) and commuting with H§°. Since Z com-
mutes with H§° there is a measurable family {Z(\) } \er of bounded operators acting on h(A) such
that Z is unitarily equivalent to the multiplication operator induced by {Z(\) } \er in II(H§). We
then set:

Zmon,(A) = P, (N Z(AN) [ b (N), X ER, m,n € No, «a,s € {l,r}.

Let Zn, := Pn,ZP,, where P, is the orthogonal projection from $) onto ,,, C $H(H,),
cf. (2.18). Clearly, the multiplication operator induced {Z,, ... (\)}rer in II(H§¢) is unitarily
equivalent to Z,,_,..

Since, by Lemma 2.12, h(\) is a finite dimensional space, the operators Z(\) are finite
dimensional ones and we can introduce the following quantity:

Oman, A) =0 (Zion, (N Zon,,(A)), A ER, m,n € Ng, «,s € {l,r}.

Lemma 2.14. Let Hy be the self-adjoint operator defined by (2.15) on $). Furthermore, let Z be a
bounded operator on $H*(H,) commuting with H§*

(i) Let T" be a conjugation on %), cf. Section 2.3. If I' commutes with Hy and P, _, n € Ny,
a €{l,r} and TZT' = Z* holds, then o, ,,(N\) = 0 m. (N), X € R,

(ii) Let U be a mirror symmetry on $). If U commutes with Hy and Z, then o, ., (\) =
Omm, (A, AER, m,n €Ny, a,d/, 32,5 € {l,r}, a # o/, 5 # 5.

Proof. (i) Since I' commutes with H, the conjugation I is reduce by $%“(H,). So without loss of
generality, we assume that I" acts on H*(Hy). Weset ', :=T" | £, . Notice that:

r= @ I
neNy,ae{l,r}

There is a measurable family {I'(A)},cr of conjugations such that the multiplication operator
induced by {I'(\) }aer in II(H§€) is unitarily equivalent to I'. Moreover, since I" commutes with
P, we see that the multiplication operator induced by the measurable family:

Lo A):=TA) [0, (A), XeR, meN,, aec{lr}
is unitarily equivalent to I',,,. Using I'ZT" = Z* we get Iy, Zn o, I'n,. = Z;, ... Hence,
Lo N Zimon,, M0, (N) = Zm, (NS, A ER. (2.39)
If X is a trace class operator, then tr(I'XT') = tr(X). Using that we find

Omgn, (A) = (L, (N) Zinan, (N)* Zimgn,, (N, (A)) =
tr(Ch,, (A) Ziman,, AT Tine Zinen,, (M) (X))
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From (2.39), we obtain the following:
Oman(A) = 0(Znima (AN) Znoma (N)*) = 0pnma (A), A ER,

which proves (i).

(ii) Again, without loss of generality we can assume that U acts only $)%“(H,). Since U
commutes with H, there is a measurable family {U(\)},cgr of unitary operators acting on h(\)
such that the multiplication operator induced by {U(\)},cr is unitarily equivalent to U. Since
U$in, = Hn,, we have U(A)b,,, (A) = b,_,(A), A € R. Hence,

Tmans (A) = 1 (U(AN) Zion,.(N) Zingn,, (MU (N)*) =
tr(U(N) Zimg i, (A) UN)U(X) Ziy i, (MU (X))
Hence,

Oman,(A) = tr(P,  UN)Z(X)UN) Py, (NUN)Z(NU(N)P,_, (X)).

@ 2’

Since U commutes with Z, we find that:

Oman,(N) = tr(P, , Z(A) P ,(NZ(N) P, (X)) = 0mm (A, AER,
which proves (ii). O
2.7. Spectral properties of H: second part

Since we have full information for the spectral properties of H, we can use this to show that A has
no singular continuous spectrum. Crucial for that is the following lemma: with the help of [6, Cor.
IV.15.19], which establishes existence and completeness of wave operators and absence of singular
continuous spectrum through a time-falloff method. We cite it as a Lemma for convenience, with
slight simplifications that suffice for our purposes.

Lemma 2.15 ( [6, Corollary IV.15.19]). Let { Hy, H} be a scattering system and let A be a closed
countable set. Let F, and F_ be two self-adjoint operators such that F'y + ' = P{ and

s — lim eTitHo g, oFitHo —
t—o00

If (H =)™ = (Hy— i)™ € £c(9), (1 = Pf)y(Ho) € £x(9), and

/Oioo at| (o — i)™ — (H — i)™ )e o (Ho) Fy |

forall v € CP(R\ A), then Wi (H, Hy) exist and are complete and os.(H) = os.(Hy) = 0.
Furthermore, each eigenvalue of H and Hy in R \ A is of finite multiplicity and these eigenvalues
accumulate the most at points of A or at +o0.

< 00

We already know that the wave operators exist and are complete since the resolvent differ-
ence is trace class. Hence, we need Lemma 2.15 only to prove the following proposition.

Proposition 2.16. The Hamiltonian H defined by (2.17) has no singular continuous spectrum, that
is, osc(H) = ().

Proof. At first we have to construct the operators F.. To this end, let F : L*(R) — L*(R) be the
usual Fourier transform, i.e

FN) = F)i= o= [ f@)to, e PRudn), peR

Further, let IT be the orthogonal projection onto L*(R.) in L*(R). We set:
Fy = 9" FIILF O,
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where ® is given by (2.38). We immediately obtain F_ + F', = P,.(H,). We still have to show
that:

s — tlim |eFiHop* FIIL F*®deFtHo f|| = 0

for f € $H%(H,). We prove the relation only for F, since the proof for F_ is essentially identical.
We have the following:

(I Fr e f)(2) = (27) Fxe, (@) [ due @0 f() = xo. (@)oo +1
with 1) = F f. Now,
||6—itH0q)*FH+f*q)eitHof||2 _

I Foe f? = [ defu(e +1) =% 0.
+

Al

Concerning the compactness condition, we already know that (H —4)™' — (Hy — 1)~ € £,(9) C
£+ ($) from Proposition 2.9. Let

A= U {vi + nw, v, +nw, v, + 4+ nw, v, + 4 + nw},
neNg

which is closed and countable. We know from Corollary 2.11 that H, has no singular continuous
spectrum and the eigenvalues are of finite multiplicity. It follows then that (1 — P,.(Hy))v(Hy) is
compact for every v € C5°(R \ A). The remaining assumption of Lemma 2.15 is as follows:

’/0jEOO di H<(H — i)~ = (Ho - i)_1>7(H0)€_itH°FiH’ =0

If we can prove this, then we immediately obtain that A has no singular continuous spectrum.
Now (H — i)™t — (Hop— i)' = (H —4) " *(Vey + Vpu)(Ho — ©)~'. But (H — i)~! is bounded,

ran(Fy) C $°(Ho) = (b’ ® be') @ b*",
and V,,, P*“(Hy) = 0. Also, Vo = v ® Iypen and
ker(vy)™ C C8} @ hg & C9.

Hence, it suffices to prove:

[ at P, — ) (H)e R < oo,

o € {l,r}, where P* = p ® Iy and pf is the orthogonal projection onto h¢. In the following
we treat only the case F;. The calculations for F'_ are completely analogous. We use that ® maps
H§* into the multiplication operator M induced by \. Hence, we get the following:

| Pra(Ho)e " M0d* F f|| = || PP ®3( Ho)e Hod" F || =
2) 4

(=
n€ENg

where supp (f) C R, 3(A) := (A—4)"'y(A\), A € R, and 6., := [V4 + Nwo, Vo + nw + 4]. Notice

that () € C5°(R \ A). We find:

| gt A =m0 [ dwe e f (o) =

Ry

[NIES

= (2m)"

/5 dX go (1A —nw)F(N\) [ dze 2@ f(x)

Ry

Va+4 .
/ X ga(1, VT +nw) [ da e iOFmed@) £
Vo R+
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which yields:
| Praroq(Ho)e oo Ff| =

(2

n€Ng

1
2

2
dr e—i(/\-i-nwo)(a:—&-t)f(x)’ > ‘

N|=

Vo +4
(2m)" [ gu(1 )00+ )

R

Since the support of () is compact, we see that the sum ), , is finite. Changing the integrals,
we get:

/ dX go (1, A —nw)F(N\) | dze @D f(g) =
604,71

Ry

) Vat4 .
dxf(l,)e—mwo(x-ﬁ—t)/ d\ ga(L )\)ﬁ()\ + nw)e—z)\(x—i-t)

Vo

R
Integrating by parts m-times, we obtain:

/ dA go (1, A — nw)y / dz e @) £ (1) =

o q e—znw (z+t) Va+4 A inat) am = \
(i [, e f@) g [ e (LA )

Hence,

2
/ dA ga(LA —nw)F () [ dee @ f ()] < 02 </R dz !f(:c>\<x+lt)m)

which ylelds:

R4

) 1
[ g A=) [ dee e @)t < e P
5a,n m=

for m € N where:

Ry

Cp = / i ‘d)\m (ga(l, MFO+ nw)') |
Notice that C,, = 0 for sufficiently large n € N. Therefore,

1/2
~ —1 * 1
W%WMWWHK(Z%>#MMWJGW&ML

n€Np

which shows that || Pp3( Ho)e 0 F || € LY(R,, dt) for m > 2. O

3. Landauer-Biittiker formula and applications
3.1. Landauer-Biittiker formula

The abstract Landauer-Biittiker formula can be used to calculate currents through devices. Usually
one considers a pair § = {K, K} be of self-adjoint operators where the unperturbed Hamiltonian
K describes a totally decoupled system, that means, the inner system is closed and the leads are
decoupled from it, while the perturbed Hamiltonian / describes the system where the leads are
coupled to the inner system. An important component is system S = { K, K}, which represents a
complete scattering or even a trace class scattering system.

In [1], an abstract Landauer-Biittiker formula was derived in the framework of a trace
class scattering theory for semi-bounded self-adjoint operators which allows one to reproduce
the results of [18] and [7] rigorously. In [13], the results of [1] were generalized to non-semi-
bounded operators. Following [1], we consider a trace class scattering system § = {K, Ky}. We
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recall that § = {K, K,} is called a trace class scattering system if the resolvent difference of
K and K, belongs to the trace class. If § = {K, Ky} is a trace class scattering system, then
the wave operators W (K, K;) exist and are complete. The scattering operator is defined by
S(K, Ky) := Wo(K, Ko)*W_(K, Ky). The main components, besides the trace class scattering
system S = { K, K}, are the density and the charge operators p and @), respectively.

The density operator p is a non-negative bounded self-adjoint operator commuting with K.
The charge () is a bounded self-adjoint operator commuting also with K. If K has no singular
continuous spectrum, then the current related to the density operator p and the charge () is defined
as follows:

J/f,Q = —utr (W*(Ka KO)pW*([C KU>*[K7 Q])7 3.1

where [K, )] is the commutator of K and (. In fact, the commutator [ K, )] might be not defined.
In this case, the regularized definition:

1 1
K Q). 62

is used, where it is assumed that (I + KZ)p is a bounded operator. Since the condition
(H —4)7'H,QJ(H +1i)~! € £(9) is satisfied, definition (3.2) makes sense. By £,(8)) is the
ideal of trace class operators is denoted.

Let K, be self-adjoint operator on the separable Hilbert space K. We call p be a density
operator for K if p is a bounded non-negative self-adjoint operator commuting with K. Since p
commutes with K|, one sees that p leaves invariant the subspace 8°¢(K,). We then set

Pac =P | ﬁCLC(K-O)'

Jo=—itr (W(K, Ko)(I + K2)pW_ (K, Ko)*

call p,. the ac-density part of p.

A bounded self-adjoint operator, (), commuting with K, is called a charge. If @) is the
charge, then:

Qac = Q f ﬁac(KO)v

is called its ac-charge component.

Let TI(K§¢) = {L*(R,d\,£(\)), M, ®} be a spectral representation of K. If p is a
density operator, then there is a measurable family {p..(\) } \cr of bounded self-adjoint operators
such that the multiplication operator:

(Moo A = pacN) F(A), € dom(M,,,) := L*(R, dA,E(N)),

is unitarily equivalent to the ac-part p,, that is, M, = ®p,.P*. In particular, this yields that:

ess-Sup y gl Pac(N) ) = ||PacllB(sec(iy))- In the following, we call {pa.(\)}rer the density
matrix of pg.

Similarly, one obtains that if () is a charge, then there is a measurable family {Q..(\) }aer
of bounded self-adjoint operators, such that the multiplication operator:

-~ ~

(M. [IA) = Qac(N) f(N),
f €dom(Q..) = {fe LQ(R, dX, B(N)) : Quc(N) f()\) € LQ(R,CZ)\,E()\))},
is unitarily equivalent to (4, i.e. Mg, = ®Q,.P*. In particular, one has:

ess-Sup \cg [|Qac(M)5en) = [|QacllBaue(io))- (3.3)

If @ is a charge, then the family {Q,.()\)}cr is called the charge matrix of the ac-component of
Q.

Let s = {K, Ky} be a trace scattering system. By {S()\)}.cr, we denote the scattering

matrix, which corresponds to the scattering operator S(K, K,) with respect to the spectral repre-

sentation II(K{¢). The operator T := S(K, Ky) — P*(K) is called the transmission operator.
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By {T'(\)} er, we denote the transmission matrix which is related to the transmission operator.
Scattering and transmission matrices are related by S(\) = Ty + T'(A) for a.e. A € R. Notice
that 7'(\) belongs for to the trace class a.e. A € R.

Theorem 3.1 ([13, Corollary 2.14]). Let S := {K, Ko} be a trace class scattering system and let
{S(\) }rer be the scattering matrix of S with respect to the spectral representation I1( K§°). Fur-
thermore, let p and () be density and charge operators and let {p..(\) }acr and {Quc(\) }rcr be
the density and charge matrices of the ac-components pac and charge Q. with respect to I1( K§°),

respectively. If (I + K2)p is bounded, then the current J Q defined by (3.2) admits the represen-
tation:

1
J5a= 3= [ 5(aclN)(@ueclN) = §" (NQueN)S (V) ), (3.4)
where the integrand on the right side and the current J* ,.q Satisfy the estimate:
‘tl" (paC()‘)(QaC()‘) - S*()‘>Qac( ) ( )))‘ < (3~5)

A Mo 1T ) e o QN [l e
fora.e. A€ Rand
T30l < Coll(H +4)™" = (Ho + 1) ]y, (3.6)
where Cy := Z||(1 + HOQ)pHS(R)

In applications, not every charge () is a bounded operator. We say the self-adjoint operator
() commuting with K is a p-tempered charge if Q(H, — i) ~? is a bounded operator for p € Nj.
As above, we can introduce Q.. := @ [ dom(Q) N K*(Kj). It follows that QFEk,(A) is a
bounded operator for any bounded Borel set A. This yields that the corresponding charge matrix,
{Qac(N) }acr, is @ measurable family of bounded self-adjoint operators such that:

€ss-Sup AeR(l + AQ)p/QHQaC()‘)HS (E(\) < O0.

To generalize the current .J3 , to tempered charges @, one uses the fact that Q(A) := QE,(A) is
a charge for any bounded Borel set A. Hence, the current J* 5.0(a) 18 well-defined by (3.2) for any
bounded Borel set A. Using Theorem 3.1 one gets that for p-tempered charges, the limit

Jiq = lim TS0 (3.7)

exists, provided (Hy — )P*2p is a bounded operator. This gives rise to the following corollary:

Corollary 3.2. Let the assumptions of the Theorem 3.1 be satisfied. If for some p € Ny the
operator (Hy — 1)P™2p is bounded and Q) is a p-tempered charge for K, then the current defined
by (3.7) admits the representation (3.4), where the right hand side of (3.4) satisfies the estimate
(3.5). Moreover, the current .J* ¢ can be estimated in the following manner:

TS0l <C, DI(H +0)7" — (Ho +9) |21 ()s (3.8)
where Cp, := 2||(1 + Hg)p+2/2PH£(ﬁ)HQ(I + H) 7P o)

At first glance, the formula (3.4) is not very similar to the original Landauer-Biittiker for-
mula of [7, 18]. To make the formula more convenient, we recall that a standard application exam-
ple for the Landauer-Biittiker formula is the so-called black-box model, cf. [1]. In this case, the
Hilbert space 8 is given by:

N
R=RsdEPR;, 2<N <. (3.9)

J=1
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and K by:
N
Ko=Ks®@PK;, 2<N <o (3.10)

The Hilbert space K is called the sample or dot and K5 is the sample or dot Hamiltonian. The
Hilbert spaces R, are called reservoirs or leads and K; are the reservoir or lead Hamiltonians. For
simplicity, we assume that the reservoir Hamiltonians K; are absolutely continuous and the sample
Hamiltonian Kg has a point spectrum. A typical choice for the density operator is:

N
p=fs(Ks)® @ f;(K;), (3.11)

j=1

where fs(-) and f;(-) are non-negative bounded Borel functions, and for the charge:
N
Q = gs(H.) & P g;(H;), (3.12)
j=1

where gg(-) and g;(-) a bounded Borel functions. Making this choice the Landauer-Biittiker for-
mula (3.4) takes the form:

a =5 MZI L) = g NN, (3.13)
where
o) = (TN Ti(N), k=1, N, AeR, (3.14)

are called the total transmission probability from reservoir k to reservoir j, cf. [1]. We call it
the cross-section of the scattering process going from channel £ to channel j at energy A € R.
{T;k(X) }rer is called the transmission matrix from channel & to channel j at energy A € R with
respect to the spectral representation IT( ). We note that {74 ()} ser corresponds to the trans-
mission operator:

Ty = PT(K, Ko)Py, T(K,Ky) = S(K, Ko) — P*(Ky), (3.15)

acting from the reservoir k to reservoir j where T'(K, K;) is called the transmission operator. Let
{T'()\)} rcr be the transmission matrix. Following [1], the current .J5 , given by (3.13) is directed
from the reservoirs into the sample.

The quantity ||T'(\)[|¢, = tr(T(A\)*T' (X)) is well-defined and is called the cross-section of
the scattering system S at energy A € R. Notice that:

o(A) = [T(Nle, = tx(T(N)TO) = > (D). AeR,

J,k=1

We point out that the channel cross-sections o,;,(\) admit the property:

N N
oA = or(N), AER, (3.16)
Jj=1 J=1

which is a consequence of the unitarity of the scattering matrix. Moreover, if there is a conjugation
J,such that KJ = JK and KyJ = J K| holds, that is, if the scattering system (§ is time reversible
symmetric, then we have even more, namely, it holds that:

O'jk(/\) = Ukj(/\); A eR. (3.17)

Usually, the Landauer-Biittiker formula (3.13) is used to calculated the electron current
entering the reservoir 5 from the sample. In this case one has to choose () := Q;l := —eP; where
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P; is the orthogonal projection form £ onto £; and ¢ > 0 is the magnitude of the elementary
charge. This is equivalent to choosing g;(A\) = —e and g;(\) = 0 for £ # j, A € R. In doing so,
we get the Landauer-Biittiker formula simplifying to:

UL Z [0 = FeA)o () (3.18)
To restore the original Landauer—Buttiker formula, one sets:
i) =f(A=p), AeR, (3.19)

where 1i; is the chemical potential of the reservoir &; and f(-) is a bounded non-negative Borel
function called the distribution function. This gives rise to the following formula:

TS = - Z/ (A= 115) = FON = ) (A)dA. (3.20)
In particular, if we choose one:
1
f(/\) = fFD()‘) = ma B > 07 A€ R7 (321)

where frp(-) is the Fermi-Dirac distribution function, and inserting (3.21) into (3.20) we obtain:

N
JSQEL = —% g::l /R(fFD(A — 1) = fro(A — ) oji(A)dA. (3.22)

If we have only two reservoirs, then they are usually denoted by [ (left) and r (right). Let 7 = [
and £ = r. Then,

Egn = =5 [.(frpO= ) = fep(h =)o (A, (3.23)

One easily checks that Jin < 01if gy = p,. That means, the current is leaving the left reservoir
and is entering the right one which is in accordance with physical expectations.

Example 3.3. Notice that 5. := {h? h¢'} is a £, scattering system. The Hamiltonian h takes
into account the effect of coupling of reservoirs or leads b; := [*(N) and b, := [*(N) to the sample
hs = C? which is also called the quantum dot. The Hamiltonians for the leads are given by:
het = —AP + v,, a = I,7. The sample or quantum dot Hamiltonian is given by h&. The wave
operators are given by:

wi(h® h) = s- Jim e/t eIt pac(pely. (3.24)
The scattering operator is given by s, := w (h, h¢)*w_(he, heh). Let TI(hS"*°) be the spectral
representation of hgl ““ introduced in Section 2.6. If p¢ and ¢ are density and charge operators for
h¢', then the Landauer-Biittiker formula takes the following form:

gt = 5 Lt (O (66— 5 G 0)). (3.25)

where {s.(\)}ers {q (M) }aer and {p°()\)}acr are the scattering, charge and density matrices
with respect to I1(h{"*), respectively. The condition that ((hg')? + Iy1)p is a bounded operator is
superfluous because A is a bounded operator. For the same reason we have that every p-tempered
charge ¢ is in fact a charge, that means, ¢ is a bounded self-adjoint operator.

The scattering system s, is a black-box model with reservoirs h¥ and h¢!. Choosing

= fih) & fs(hg) @ fr (R,
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where f,(-), @ = [, 7, are bounded Borel functions, and

¢ = gi(hi") ® gs(hg) & g-(hy),
where g,(-), « € {l,r}, are locally bounded Borel functions, then from (3.13) it follows that:

PR I A ACV RN ALY PAONCACVY

a,xe{l,r}
aFEx

where {o.(\)}.er is the channel cross-section from left to right and vice versa. Indeed, let
{tc(A\)}rer be the transition matrix which corresponds to the transition operator ¢, := s, — [gei.
Clearly, one has t.(\) = Iy — sc(A), A € R. Let {p?(\)}rer be the matrix which corre-
sponds to the orthogonal projection p¢ from h? onto h?. Further, let t5,()\) = p(A\)t.(\)pf
and t§, := pf(\)t.(\)p?. Notice that both quantities are in fact scalar functions. Accordingly,
the channel cross-sections of.(A) and o0&, () at energy A € R are given by o.(\) := of.(\) =
L5 (NP = [t (N = a7, (A), A € R.
In particular, if g;(A\) = 1 and g, = 0, then:
T = 5 LI = LDV (3.26)

pehq

and qf’ = plel. Following [1], J;; 4l denotes the current entering the quantum dot from the left
]

lead.

3.2. Application to the JC L-model
Let s = {H, Hy} now be the JC L-model. Furthermore, let p and () be the density operator and a
charge for H, respectively. Under these assumptions, the current .J /iQ is defined by:

1 1

and admits representation (3.4). If Q is a p-tempered charge and (Hy—1)P2p is a bounded operator,
then the current JiQ is defined in accordance with (3.7) and the Landauer-Biittiker formula (3.4)
is also valid.

We introduce the intermediate scattering system S, := { H, H.}, where:

He = h" @ Iypn + Iy @ W' = Hy + V.

The Hamiltonian /. describes the coupling of the leads to the quantum dot, but under the assump-
tion that the photon interaction is not switched on.

Accordingly, S,, = {H,H.} and S, := {H., Hy} are £,-scattering systems. The
corresponding scattering operators are denoted by S,, and S, respectively. Let II(H%) =
{L2(R,d), h(N)), M, ®.} of H be a spectral representation of H.. The scattering matrix of
the scattering system { H, H .} with respect to II( H?¢) is denoted by {S,, ()} rer. The scattering
matrix of the scattering system { H,., Hy} with respect to TI( Hj¢) = {L*(R, d)\, bho()\)), M, Py} is
denoted by {S.(\)}rer-

Since S, is a £;-scattering system, the wave operators W (H,, Hy) exist and are complete
and since ®.W, (H,, Hy)®{ commutes with M, there are measurable families {W,(\)},er of
isometries acting from by () onto h () for a.e. A € R such that:

o~

(PWVL(He, Ho) Py f)(N) = WA f(N), AeR, f e L’(R,dA ho(N)).

The families {IWW.(\)}\er are called wave matrices.
Straightforward computation shows that S,, := W, (H., Hy)*S,nW4.(H,, Hy) commutes
with H,. Hence, with respect to the spectral representation I1(H{), the operator S, is unitarily
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equivalent to a multiplication induced by a measurable family { S,;, (A)}rcr of unitary operators
in ho(A). Straightforward computation shows that:

Spn(N) = W (A)*Spn(N) W, (M), (3.28)

for a.e. A € R. Roughly speaking, { §ph (A) }rer is the scattering matrix of S, with respect to the
spectral representation I1( H§°).
Furthermore, let
p° = W_(H., Ho)pW_(H., Hy)" (3.29)
and
Q¢ == Wy(H., Hy) QW (H., Hp)". (3.30)

The operators p© and ()¢ are the density and tempered charge operators for the scattering system
Spn- Indeed, one easily verifies that p© and ()¢ are commute with /.. Moreover, p¢ is non-negative.
Furthermore, if () is a charge, then )¢ is also a charge. This gives rise to the introduction of
currents J;Q = J;fo,

. . L1 1
Pp— (W(HC,HO)pW(HC, Ho)' g 1He Qg l) , (3.31)
and J2% = T,
1 1
ph . c * c
— —itr (W_(H, H)p"W_(H, H,)* ——[H, Q] —— ) , 3.32

which are well defined. If Q) is p-tempered charge and (Hy — i)P*2p is a bounded operator, then
one easily checks that Q° is a p-tempered charge and (H,. — )P is a bounded operator. Hence
the definition of the currents .J gS,QC can be extended to this case and the Landauer-Biittiker formula
(3.4) holds.

Finally, we note that the corresponding matrices {p5.(\) } xer and {QS.(N)} rer are related
to the matrices {pac(A\) }acr and {Quc(\) rcr by

Pl = W- (Ve OW-()" and - QL (N) = Wo(NQue WL ()" (333)
fora.e. A € R.

Proposition 3.4 (Current decomposition). Let S = {H, Hy} be the JC L-model. Furthermore,
let p and () be the density operator and a p-tempered charge, p € Ny, for Hy, respectively. If
(Hy — 9)P™2p is a bounded operator, then the decomposition,

c h
JS,Q - Jij + J;)’Q, (334)

holds where JFC,,Q and Jgfég are given by (3.31) and (3.32).

In particular, let {S.(A\)}aer, {Pac(A) }rer and {Qac(N)}rer be scattering, density and
charge matrices of S., p and Q) with respect to I1(H§¢) and let {Spn(\) }rer, {p5.(A)}rer and
{Q%.(N\) }rer be the scattering, density and charge matrices of the scattering operator Sy, density
operator p°, cf. (3.29), and charge operator Q)°, cf. (3.30), with respect to the spectral representa-

tion TI(H?“}. Then, the following representations:

fo = g [ e (@ul) ~ SN Que VSN (3.35)

Thg = 217T /Rtr@ozc(A)( 2N = Spn(N) Q5 (M) Spn(N)))dA, (3.36)

take place.
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Proof. Since S, and S, are £-scattering systems from Theorem 3.1 the representations (3.35) and
(3.36) are easily follow. Taking into account (3.33), we get the following:

(PG (M) (Qac(A) — Spn(A)*Q5c(N)Spn(N))) =
Er (W= (A) pac W- (A)" (W (X) Qac (M)W (A) = Spn(A)" Qe (A)Spr(A))).-
Using S.(A) = W, (A\)*W_(\) we find that:
tr(P5e(M) (Qac(A) = Spn(A) QG (A) Spn(A))) = tr (pac(A)x (3.37)
(Se(A) Qac(A)Se(A) = W_(A)"Spn(A) Wi (A) Qac(\) W (A)*Spn(M)W-(A))) -

Since {H., Hy} and {H, H.} are £-scattering systems, the existence of the wave opera-
tors Wi (H,H.) and Wy(H,, Hy) follows. Using the chain rule, we find W.(H, Hy) =
Wi (H,H.)Wy(H., Hy) which yields:

S = WJr(HaHO)*WJr(HaHO)
= Wi(H., Hy)W,(H,H.)W_(H,H.)W_(H., Hy) = Wy(H., Hy)*Spn W_(H,, Hp).

Hence, the scattering matrix {S(\)} er of { H, Hy} admits the representation

S(A) = WL (A SpnMW_(N), AeR. (3.38)
Inserting (3.38) into (3.37), we get the following:
1
P == [ 5oV (SN) QuelNSeN) = SO QueNSNAA  (339)
Using (3.39), we obtain the following'
Ta = / t0(pac (V) (QaclA) — SN Que(NS(A))dA.
Finally, taking into account (3.4), we obtain (3.34). ]

Remark 3.5.

(1) The current .J7 ; is due to the coupling of the leads to the quantum dot and it is therefore called
the contact mduced current.

(i1) The current J /I;Z? is due to the interaction of photons with electrons and it is called the photon
induced current. Notice the this current is calculated under the assumption that the leads are
already in contact with the dot.

Corollary 3.6. Let the assumptions of Proposition 3.4 be satlsﬁed With respect to the spectral
representation I1( H{®) of HS the photon induced current JP" 1. can be represented Dy:

= o [0 PelN) (QuelX) — Sy Qe V) Sy (W), (3.40)
where the measurable families { S,,(\) Yrer and { pac(\) }rcr are given by (3.28) and
Pac(A) = Se(A)pac(A)Sec(A)* A €R, (3.41)
respectively.
Proof. Using (3.33) and S.(\) = W (A)*W_()), we find:

tr(pae (A (@ee(A) = Spr(A) Qac(A)Spn(A))) =
tr (Se(A)Pac(A)Se(A ) (Qac(A) = Wi (A) " Spn(A) W (X) Qac(MW (A) " Spn (M)W () -
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Taking into account the representations (3.28) and (3.41), we get the following:
(P (N (@5 (N) — S (V) Qe (N S(M)) =
tr(Se(A)pac(A) Se(A)" (Qac(A) = Spr(A)” Qac(A) Spr(A) ),
which immediately yields (3.40). 0

Remark 3.7. In the following, we call { p,.(A\) }acr, cf. (3.41), the photon modified electron
density matrix. Notice that { p,.()\) } »er might be non-diagonal, even if the electron density matrix

{pac(N) } rer is diagonal.
4. Analysis of currents

In the following, we analyze currents .J; , and Jﬁ% under the assumption that p and () have the
tensor product structure:

p=p"@p" and Q=q"®q", .1
where p and pP" as well as ¢ and ¢P" are density operators and (tempered) charges for ¢ and
hP", respectively. Since pP" commutes with hP", which is discrete, the operator pP"has the form:

=3 () () T, (4.2)
n€Np
where pP"'(n) are non-negative numbers. Similarly, ¢”" can be represented as:
¢ =2 " () T)Ln, (4.3)
neNy
where ¢P"(n) are real numbers.
Lemma 4.1. Let S = {H, Hy} be the JC L-model. Assume that p # 0 and Q) have the structure

(4.1) where p® is a density operator and q% is a charge for hg..
(i) The operator (Hy — i)P*2p, p € Ny, is bounded if and only if the condition:

sup PP (n)nP? < oo, (4.4)
n€Np
is satisfied.
(i1) The charge Q) is p-tempered if and only if:

sup |¢""(n)|n"? < oo, 4.5)

neN

is valid
Proof. (i) The operator (Hy — 7)P*2p admits the representation:
(Ho—i)""p = @ p""(n)(h§ + nw —0)P*2p.

pENg
We have:
I(Ho =0 pllswy = sup g () (G’ + e =) p o (4.6)
p 0
— sup pph(n)np+2n—(p+2) H(hgl + nw — i)p+2pel o
peNo £(het)

Since lim,,_ oo n~#*2) H(hgl +nw — §)P2pel

large n € Ny that:

) WP p| ¢(pe!)» We obtain for sufficiently

wp+2

5 ||Pel||£(hel) < n_(p+2)||(hgl +nw — Z')p+2,08l||2(hel) .
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Using that and (4.6), we immediately obtain (4.4). Conversely, from (4.6) and (4.4), we obtain that
(Hy — i)P*2p is a bounded operator.
(i1) As above, we have:

Q(Hy—1)? = @ ¢ (n)q".
neNg
Hence:
1Q(Ho — i)™ ||es) = sup |¢”"(n)|llg” (h§ + nw — 1) 7|l g (g,

nENp

Since limy, o0 7P| (h§ 41w —0) 7P| g(get) = wP||g%|| ¢yer)» We similarly obtain, as above, that (4.5)
holds. The converse is obvious. [

4.1. Contact induced current
Let us recall that S, = {H,., Hy} is a £;-scattering system. Straightforward computation shows
that:
Wi (H,, Hy) = w(h®, b)) @ Lo,
where w. (h®, hgl) is given by (3.24). Hence:
Se = 8¢® Iy, where s.:=wy(he, h§)w_(he, h).

Proposition 4.2. Let S = {H, Hy} be the JC L-model. Assume that p and Q) are given by (4.1)
where p® and ¢° are density and charge operators for hi and p" and ¢P" for hP", respectively. If
Jor some p € Ny the conditions (4.4) and (4.5) are satisfied, then the current J; ; is well defined
and admits the representation:

0= 7= 2 ¢ (n)p(n), (4.7)

n€Np

where J%, .. is defined by (3.2). In particular, iftr(p"") = 1 and ¢*" = Iypn, then JS

Sc
pelvqel'

Proof. First, we note that by lemma 4.1 the operator (Hy —)P*2p is bounded and @ is p-tempered.
Hence, the current J iCQ is correctly defined and the Landauer-Biittiker formula (3.4) is valid.

With respect to the spectral representation I1(H§°) of Lemma 2.12, the charge matrix
{QucN) }aer Of Que = ¢& ® qph admits the representation:

Quc(N) = P & W) (n), A eR. (4.8)

n€ENg

Since S; = s, ® Iypn, the scattering matrix {S.(\)} \er admits the representation:

Sc(A) = B se(A—nw), AeR.

Hence:
Qac( )_ ()‘)*Qac( ) c()‘) = (49)
P ¢"(n) (qaC —nw) — 8e(A — nw)* L — wn)se(\ — nw)) :

n€eNy

Moreover, the density matrix { pac(/\)} rcr admits the representation:

lOaC @ pph pac TLCL)) (410)

neNp
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Inserting (4.10) into (4.9) we find the following:
p*(A) (QaC(/\) - ()‘)*QaC()‘>SC(>‘)) =
D ¢ ()" (m)pik () = ) (45O = wm) = sl = n) gEE A — wm)se (A — )

neNy

Since v = Y ,en, ¢ (n)pP"(n) is absolutely convergent by (4.4) and (4.5), we obtain that:

tl"( ac()\> (Qac(A) - ()‘>*Qac()‘)sc<)‘))) = (411)
ZN ¢ (n (pac<)\ — nw) (qac()\ wn) — Se(A = nw)* gL (A — wn)s (A — nw)))

Clearly, we have:
‘tr (pac (A — nw) (qac()\ wn) — Se(A = nw)* gL (N — wn)s (A — nw)))‘ <
4l pseX = nw) e lgee X = nw)lleway, A €R.
We insert (4.11) into the Landauer-Biittiker formula (3.35). Using (4.4) and (4.5) as well as

/Hp Mt 00 [1dae (Ml w00 @A < 00,

we see that we can interchange the integral and the sum. By doing so, we get:
1
c h h el
fo= X g o (O - )
n 0
(qac()\ wn) — 8e(A = nw)* geL (N — wn)s (A — nw))) dA.
Using (3.25) we prove (4.7).

If tr(pP") = 1, then Y, p”"(n) = 1. Furthermore, if p*" = Izn, then ¢*"(n) = 1. Hence,
v=1. 0

4.2. Photon induced current

To calculate the current J 0> We use representation (3.40). We then set:
Sot (A) = Pu(X) S () Tha(A), A €ER,

where { S, (A)}acr is defined by (3.28) and P,,()\) is the orthogonal projection from (), cf.
(2.37), onto b,,,(N) := h(\ — mw), A € R.

Proposition 4.3. Let S = {H, Hy} be the JC L-model. Assume that p and Q) are given by (4.1)
where p® and ¢° are density and charge operators for hi and p" and ¢P" for h¥", respectively. If
for some p € Ny the conditions (4.4) and (4.5) are satisfied, then the current Jé’% is well-defined
and it admits the following representation:

pQ = Z PP (m Z " (n /d)\ tr LN — mw) x 4.12)

méENp n€Ng
(45h O\ = 1) — 33;;2 (A)git(A —nw) 528 (V)

where { pct(N) }aer is the photon modified electron density defined, cf. (3.41), which takes the
Jfollowing form:

PN = 5.(N)pt(N)se(N)*, AeER. (4.13)
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Proof. By Lemma 4.1 we get that that the charge () is p-tempered and (H, — 7)?p is a bounded
operator. By Corollary 3. 2 the current Jp h = SP" . 1s well-defined.

Since (Qac( ) = Spr(A)* Qac(A ) oh ()\)) is a trace class operator for A € R, we get from
(3.40) and (4.10) that:

60 ( Pac(N) (Qae(N) = Spr(N)* QuelN) Spn (V))) =
> )t (77O = mw) Pu(A) (Qae(N) = Spn(N)* Qae(A) Spi (V) Pr(N))

meENy

Furthermore, we have:

Pos(N) (Qae(N) = Spn(N)* Que(N) Sy (V) Pra(N)

= ¢""(m) (¢ (A = mw) = Pru(A) Spn(N)" Que(A) Spr (1)) Pr(N)
= " (m)g" (A —mw) = 3= ¢ (n) SN ¢/ (A — nw) ST, ().
neNy
for A € R where S2" (\)* := P,(A) Spn (\)Pn()), A € R. Notice that 3,,cy, is a sum with a

finite number of summands. Hence:

tr (Pac(V) (QaelN) = (V) Que(N) Sy (V) = 3= 2 (m) 3 ¢ (n)

meNp n€Ng

tr (771 (\ = mew) (g(A = mew)dmn = SELO) 0 (A = ) SN ))

We are going to show that

> ptm) 3l )] [ fer (500 = muw) x

meNg neNg

(4 (N = 1) G — SERN)" ¢ (A = mw) S22 () ) )| A < o0
Clearly, one has the following estimate:
o (2 = mew) (¢ (N = mw)dm = ST 4 (0 = nw) ST (V) ) )| <
2/[ 7 (A = m) o (187 = 1) 60,000 O + 0% = 10) w2 ) -
Furthermore, we get:

o 17O = ) et 8 = 102 ety <

/ 157 O) Nemon 14 ) e, 0 A
AER

and

L7 = ) st 00 8 (A = 1) 9 <
gzt hswey [ 17O = (m = 1)) sty pdd

If the conditions (4.4) and (4.5) are satisfied, then

S o m)lg™ m)] [ 17O oo 47 ) 6,000 < 0.

meENy
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Furthermore, we obtain:

> pMm) Yl (n) ARnfﬂu—<m—n>w>||s<hm,nu>>dm

meNp n€Ng

(Vmax — Um1n+4)”P H): het) Z pph Z |qph(n)’ < 00,

meNy |m7n|§dmax
where d,,. 1s introduced by Lemma 2.12. To prove the following:
o pMm) Y e (n)] < oo
meENg ‘m_n‘gdmax
we again use (4.4) and (4.5). The last step allows us to interchange the integral and the sums,
which immediately proves (4.12). 0

Corollary 4.4. Let S = {H, Hy} be the JC L-model. We assume that p and @ are given by (4.1),
where p® and ¢° are density and charge operators for hi and p*" and ¢P" for h¥", respectively. If

pl is an equilibrium state, i.e. p = f°(hS'), then:

To=Y ¢"n / (07 () £ (A — nw) — P (m) f (A — muw)) x

m,n€Ng

tr (SEh, (A)gih(A — nw) SPE(A)) d. (4.14)

Proof. From (4.12), we obtain the following:

Ty =3 ) X M m)o- [dA FU ) x

neNy me&Ny
1 (b (N = nw)bmn — SEh (A)"geh(A — nw) SEE (V).

Hence,

h h
T = S g 27T/dA S m) £\ — mw) x

neNp me&Ny

o1 (N = nw)bmn — SER (A)*geh(A — nw) SEE (V).

This gives the following:

JpQ —TL%O qph(n);w/Rd)\ (pph(n)fel()\ — nw)tr (qzlc(/\ — nw)) — (4.15)
S M) N — mw)tr (S (A gih(A — nw) SEE (V).
meENy
Since
> 7 (m) f N — mw)tr (8B (V) g (A — nw) SEE (V) =
meENy
> () £ = mw) = P () £ N = nw) ) tr (S, (V) gh (A — nw) SR (A)) +
meENy
P) N = nw) St (S (A) gl (A — nw) S (V)

meNy

then inserting this into (4.15) we obtain (4.14). I
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5. Electron and photon currents
5.1. Electron current

To calculate the electron current induced by contacts and photon contact, we make the following
choice throughout this section. We set

QY =@ @ ¢, ¢ =—ep? and ¢" =TI, a€{lr}, (5.1)

where p?! denotes the orthogonal projection from h* onto h%. By ¢ > 0, we denote the magnitude
of the elementary charge. Since p% commutes with h¢, one can easily verify that Q¢ commutes
with Hy, which shows that Q¢ is a charge. Following [1], the flux related to Q¢ gives us the
electron current JiQ?f entering the lead o from the sample. Notice Q¢ = —eP, where P, is
the orthogonal projection from $) onto §, = h< ® h?". Since ¢"" = I,n, condition (4.5) is
immediately satisfied for any p > 0.

Let f(-) : R — R be a non-negative bounded measurable function. We set:

pr=p @5 @7, Pl = f(hG — ) ae{lr}, (5.2)
and p = p® ® p”". By u, the chemical potential of the lead « is denoted. In applications, one sets
f(A) == frp(A), A € R, where frp()) is the so-called Fermi-Dirac distribution given by (3.21).
If B = oo, then frp()\) := xr_()\), A € R. Notice that [p?, p¢] = 0. For pP", we choose the Gibbs

state: ] ]
h._ ~ _—Bh?h _ —BhPhy
PP = 7€ . Z =tr(e )= =i (5.3)
Hence, p"" = (1 — e~ P<)e=#M"™" If B = oo, then pP' := (-, To)Yo. Clearly, tr(p?") = 1. We note
that p”"(n) = (1 — e #)e ", n € Ny, satisfies the condition (4.4) for any p > 0. Accordingly,
po = p? @ pP" is the density operator for H,.

Definition 5.1. Let 5 = {H, Hy} be the JCL-model. If Q := Q¢, where Q¢ is given by (5.1),

and p := po := p” @ p™, where p* and p*" are given by (5.2) and (5.3), then J%! o1 = J5 oo

is called the electron current entering the lead . The currents J;O 0cl and J;’ : Qe are called the
contact-induced and photon-induced electron currents.

5.1.1. Contact induced electron current. The following proposition immediately follows from
Proposition 4.2.

Proposition 5.2. Let S = {H, Hy} be the JC L-model. Then the contact induced electron current

Joy e @ € {l,r}, is given by bo.Qel = J;Ce,,qgl. In particular, one has:

Al /R(f()\ ) = fO =)o NN, a,xe (1), a#x, (54

C
el — —
p0,Q% o

where {o.(\)}aer is the channel cross-section from left to the right of the scattering system s. =
{het, he'Y, of. Example 3.3.

Proof. Since tr(pph) = 1 it follows from Proposition 4.2 that J;o,Qel = J;‘;l 4ol From (3.26), cf.
Example 3.3, we find (5.4). O

If 4y > p, and f(-) is decreasing, then J;O ot < 0. Hence, the electron contact current
7

is going from the left lead to the right which is in accordance with the physical expectations. In
particular, this is valid for the Fermi-Dirac distribution.

Proposition 5.3. Let S = {H, Hy} be the JC L-model. Further, let p° and p" be given by (5.2)
and (5.3), respectively. If the charge Q% is given by (5.1), then the following holds:
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(E) If iy = iy, then ;07%[ =0, ae{lrh
(S) If v; > v, + 4, then J[fO,le =0, a €{l,r}, evenif i # .
(C) If e = 05 and e} = 07, then Qs = 0, a € {l,r}, even if uy # .

Proof. (E)If yy = pir, then f(A —u) = f(A — ). Applying formula (5.4) we obtain J5 . = 0.

(S) If v; > v, + 4, then A" has simple spectrum. Hence the scattering matrix {s,(\)}rer
of the scattering system s, = {h°, h&'} is a scalar function which immediately yields o.(\) = 0,

A € R, which yields ;07%1 =0.

(C) In this case, the Hamiltonian /¢! decomposes into the direct sum of two non-interacting
Hamiltonians. Hence, the scattering matrix of {s.(\)}cr of the scattering system s. = {h¢, h&'}
is diagonal, which immediately yields Jpco ga = 0. 0

5.1.2.  Photon induced electron current. It is hopeless to analyze the properties of (4.12) if we
make no assumptions concerning p° and the scattering operator s.. The simplest assumptions is
that p and s, commute. In this case, we get p% (\) = p%()\), X € R.

Lemma 5.4. Let S = {H, Hy} be the JC L-model. Furthermore, let p° be given by (5.2). If one
of the cases (E), (S) or (C) of Proposition 5.3 is realized, then the p® and s. commute.

Proof. If (E) holds, then p = f(h&) which yields [p®, s.] = 0. If (S) is valid, then the scattering
matrix {s.(\)}er is a scalar function which shows [p?, s.] = 0. Finally, if (C) is realized, then
the scattering matrix {s.(\)},cr diagonal. Since the p is given by (5.2) we get [p%,s.] =0. O

We will now calculate the current Jﬁ’:Qel, see (4.12). Clearly, we have P,(\) =

Sonen, PN — nw) and Iy, = P(A) + P.()\), A € R. We then set:
Pry(A) 1= Pa(N) Pa(X) = Pu(N) Pa(N) = pi (A —1w), o € {17},

n € Ny, A € R. In the following we use the notation T, (\) = S, (\) — Iy, A € R, where
{ T,n(\) }acr is called the transition matrix and { S,,()\) Yacr is given by (3.28). We set:

" (A) = Pee(N) T WP, (V), ANER, a,xe{l,r}, kmeN,
and:
oy () =te(T, (N TP (N), ANER, (5.5)

which is the cross-section between the channels &, and m,,.

Proposition 5.5. Let S = {H, Hy} be the JC L-model.
() If p® commutes with the scattering operator s. and ¢, then:

S == 2 i /R (") F N = o — 1) = P (m) F(N = e — muw)) G20, (A) d.

m,nENp
we{l,r}

(5.6)
(i) If in addition S = {H, Hy} is time reversible symmetric, then
e .
T == 2 o /R (7" () F(N = o = nw) = p™" (M) F(A = par — mw)) G2, (A) d,

m,nENp
(5.7)
a, e {l,r}, a # d.
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Proof. (1) Let us assume that:

Z g%(hil)7

we{l,r}
Notice that
GV = > gV, XeR. (5.8)

we{l,r}

Inserting (5.8) into (4.12) and using qph = Iypn, we obtain the following:

To= > PMm /d)\ Pa (X — mw) g (A — nw) x
meNg TLEN
ae{l,r} el r}

tr (I (A = mw) (LA = nw) Gy — SH (V) PL = nw) S22 (1))
where, for simplicity, we have set:
a(N) = fA—pa), AR, neNy, ae{lr}. (5.9)
Accordingly, we get:
1
Plo= % )5 [ dr e —nw)g. (= nw)tr (p(3 — nw)) -

neNp
we{l,r}

> pph(m);ﬂ/Rd)\ Do A —mw)g,. (A — nw) x (5.10)

neNg meNy
we{l,r} ae{l,r}

tr (pE (A — mw) S, (A" Dl (A — nw) S, (A)pl (A — mw)) .

Since the scattering matrix { SP" (A ( )} rer is unitary, we have:

0 = > pd(\—nw) ) SR (A PN — mw) SP (A\)peh(A — nw), (5.11)
meNg
ae{l,r}

forn € Ny and » € {[,r}. Inserting (5.11) into (5.10), we find that:

poQ_ Z Z P (n) 7T/Rd)\qﬁ,f()\—nw)g%()\—mu)x

neNg meNy
we{l,r} ac{l,r}

tr (pS (N — nw) SER (A)'pE (A — mw) SEE (Vp(\ — nw)) —
> pph(m);ﬂ/Rd)\ Ga(A —mw)g,. (A — nw) x

neNg meNy
we{l,r} ac{l,r}

tr (pf (A — mew) S, (A" Dl (A — nw) S, (A)pld (A — mw))

Using the notation (5.5), we find the following:

To= X P [ N6 - mw)gh - mo) ot () -

neNg meNy
we{l,r} ae{l,r}

1
S ) [ AN da(h = mw)g (A — ) G, (V).
neNg meNy 27T R
we{l,r} ae{l,r}
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By (3.16), we find that:
oot (A= > 6. (A AeR

meNg me&Ng
ae{l,r} ac{l,r}
Using that, we obtain the following:
1
h
Twa= 2 5= /]R X (5.12)

m,nENp
a,xe{l,r}

(77" (n)$ (X = nw) = p" (M) $a(X = mw)) g — nw) 522, (A) dA.
Setting g,(\) = —e and g,,(A\) = 0, 3 # «, we obtain (5.6).
(11) Straightforward computation shows that:

S [ (PO = o =) = P m) FO = o = o)) G, (V) dA =

n,mENp

S [ (MmO = o = me) = ) (3 = pa = 1)) I, (A) dA

n,meNg

Since o?! (X)) = oP" (), A € R, we obtain the following:

> (PO = o =) = " (m)F8 = o = ) G (V) dA =

n,meNg
= [P0 o) = ) SO o =) L, ()
n,meNy
which yields:
ZEN /R (9" (n) F(N = o — nw) = PP (M) FN = o — mw) ) G52, (A)dA =0
n,meENy
Using that, we immediately obtain the representation (5.7) from (5.6). 0

Corollary 5.6. Let S = {H, Hy} be theJC L-model.

(i) If the cases cases (E), (S) or (C) of Proposition 5.3 are realized, then the representation (5.6)
holds.

(ii) If the case (E) of Proposition 5.3 is realized and the system S = {H, Hy} is time reversible
symmetric, then

Plas== 3 oo L@ )0 = nw) = " (m) (A = = mw)) 53k, (VA (5.13)
0 e m,n€Np 2m Jr e
n € No, a € {l,r} where i :== py = p, and a # /.
(iii) If the case (E) of Proposition 5.3 is realized and the system S = {H, Hy} is time reversible

. . h
and mirror symmetric, then Jf: 008l = 0.
b «

Proof. (i) The statement follows from Proposition 5.5(i) and Lemma 5.4.
(i1) Setting 1o, = o formula (5.13) follows (5.7).
(iii) If S = {H, Hp} is time reversible and mirror symmetric, we obtain from Lemma
2.14 (ii) that 62" (X\) = o£" (A, A€ R,n,m € No, o, o’ € {l,r}, o # . Using that, we
obtain from (5.13) the following;
¢

T == 2 o /R(Pph(n)f@ — = nw) = p(m) fA = p—mw)) 38", (A)dA.
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Interchanging m and n, we obtain:

Pgn == % 5 [0 == me) = g0 FO = =) T2, (N,

Pl == % o [P m)fO = = mw) = () FO = o= ) 528, (A,

m,n€ENp 2
which shows that Jthd = —Jthel Hence Jthe, =0. O
We note that by Proposition 5.3, the contact induced current is zero, i.e. J ¢ QL = = (. Hence,
if the § is time reversible and mirror symmetric, then the total current is zero, i.e. J ° . =0.

0,0
Remark 5.7. Let the case (E) of Proposition 5.3 be realized, that is, y; = p,.. Moreover, we
assume for simplicity that 0 =: v, < v := v;.
(i) If 8 = oo, then pP"(n) = Son, n € Ny. From (5.6), we immediately obtain that JPh el el = 0.
That means, if the temperature is zero, then the photon-induced electron current 18 zero.
(i) The photon-induced electron current might be zero even if § < oo. Indeed, let § =
{H, Hy} be time reversible symmetric and let the case (E) be realized. If w > v + 4 and
hel(N) == b4(N) = heL(\ — nw) n € Ny. Hence, one always has n = m in formula (5.13),
which immediately yields Jp 0.Qel = 0.

(iii) The photon-induced electron current might be different than zero. Indeed, let S = {H, Hy}
be time reversible symmetric and let v = 2 and w = 4, then one sees that to calculate the

Jp h 0,051 one has to consider m = n + 1 in formula (5.13). Therefore, we find that:

ph B
J/’OaQ?l - Z 27T><
LA (M FO = g =) = 0+ DFO = o= (4 1)) 52y, (V).

If pPh is given by (5.3) and f(A\) = frp(N), cf. (3.21), then one easily verifies that

0
%Pph(x)fm()\ —p—aw) <0, z,m\ER.

Hence, p"(n)frp(A — p — nw) is decreasing in n € Ny for A\, u € R which yields
(P () f(A = 1= nw) = p""(n+ 1) f(X = = (n+ 1)w)) > 0. Therefore, J*" Mo <O
which means that the photon-induced current leaves the left-hand side and enters the right-
hand side. In fact, Jph o = = 0 implies that &7 (n+1)7' (A\) =0forn € Ny and A € R, which

means that there is no scattermg from the left-hand side to the right one and vice versa
which can be excluded generically.

5.2. Photon current
The photon current is related to the charge by equation:
Q:=Q" =—La®n,

where n = dI'(1) = b*b is the photon number operator on h*" = F, (C), which is self-adjoint
and commutes with 2", It follows that QP" is also self-adjoint and commutes with H. It is not
bounded, but since dom(n) = dom(h?"), it is immediately obvious that Q" ( Hy+6)~! is bounded,
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when 91 is a tempered charge. Its charge matrix with respect to the spectral representation [1( H§°)
of Lemma 2.12 is given by:

Qee (V) = — B nP.(N).

n€Ny

We recall that P, ()\) is the orthogonal projection from h(\) onto b,,(A) = h(A —nw), A € R. We
will now calculate the photon current or, as it is also known, the photon production rate.

5.2.1.  Contact induced photon current. The following proposition is, in fact, in accordance with
the physical intuition.

Proposition 5.8. Let S = {H, Hy} be the JC L-model. Then J¢ =0.

p0,QPh

Proof. We note that ¢%.()\) = Iyer(n), A € R. Inserting this into (3.25), we obtain J;‘;l ol = 0.

Applying Proposition 4.2 we prove J7 ., = 0. 0J

The result reflects the fact that the lead contact does not contribute to the photon current,
which is plausible from the physical point of view.

5.2.2.  Photon current. From Proposition 5.8, we see that only the photon-induced photon current

ph : S : S __ gph ph :
Jponph contributes to the photon current meQph. Since meQph = meQPh, we call JpO’Qph simply

the photon current.
Using the notation TP () := P,(\) T,n (\) | b\ — mw), X € R, m,n € Ny. We set:

TPR(A) = TP (N)se(A—mw), AeR, m,n e N, (5.14)
and

T2 (N) = P TRV THE (A —mw),  AER, (5.15)
m,n € Ny, a, 5 € {I,r}, as wellas 2" () := tr(T2h(A)*TP"(N), A € R.
Proposition 5.9. Let S = {H, Hy} be the JC L-model.
(1) Then:

1 ~
T = 22 (n—=m)p"(m)_— /Rf(A — fto — mw)F" (M)A, (5.16)

m,neNp
a,xe{l,r}

(i) If p°* commutes with s., then:

1
Tgm =22 (n=m)p"(m)— /R FON= po — mw) 32 (A)dA. (5.17)

m,nENp
o, ze{l,r}

(iii) If p® commutes with s. and S = {H, Hy} is time reversible symmetric, then:

1
- — / A\ X 5.18
po,Qph m n€§n>m 27T R ( )
;f,ae{’l,r}

(n = m) (P (M) A = o = mw) = " (0) F (A = pr, = nw)) G20, (N),

where o/ € {l,r} and o/ # «.
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Proof. (i) From (4.12) we get
J 00, Qph - — Z npph(m)x

m,n€ENg
[ o (DO = me) (PaN)dmn — 5 (a0 — ) 2, ()
Hence:
T = —m%O g (m) - /R tr (LA — mw) (Pr(A) — 52 (A Pul(X) 528, () )) dA+
S ) [ e (O me) SO PSP ) dA
m,nENp 2
m#n

Using the relation P, (A) = Iy(x) — Xnengmzn Pn(A), A € R, we obtain the following:

== mp () [ (O me) (SO0 PO S () ) At
T’r’;li’no
S () [t (PO = mw) Sk () Pa() Sk, (3) ) dA
m;éno

Since Ty (A) = Spn (A) — Iyay» A € R, we find

Than =3 (m =) [ e (GO~ mew) IO TIA) ) d

m,nENy

Using (4.13) and definition (5.14) one readily sees that:

== 3 (n=myp"(m)s— [ tr (g% — meo) TEAO) T2 () dA.

m,nENp

Since p2, = pf' @ p¢ where p¢ is given by (5.2), we find the following:

Prgn == X m=mpm)o- [ FO= o~ me)tr (T2, )T, (1) X

m,neNp
a,xe{l,r}

where we have used (5.15). Using 52" . (\) = tr(T%" (A\)*T¢". ()\)), we prove (5.16).

(ii) If p¢. commutes with s, then p% (\) = pcl (M), A € R, which yields that one can
replace 62" (X) by 2" (\), A € R. Therefore, (5.17) holds.

NseMe

(iii) Clearly, we have:

T = (5.19)

S e m )y [ O o= me) 32, (A +

m,neNg,n>m
a,xe{l,r}

S e mm) g [ O o= me) 68, (A,

m,nENg,n<m
a,xe{l,r}
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Moreover, a straightforward computation shows the following:

S - [ O o= ) 62, (A =

m,n€ENg,n<m
o, xe{l,r}

S (m—n)p(n) / FON— 1 — nw) 37 (A)dA.

m,neNg,n>m
a,xe{l,r}

Since S = {H, Hy} is time reversible symmetric, we find the following:

S (- m)pph(m);7T /R FON— o — mw) 37 (A)dA = (5.20)

m,nENg,n<m
a,xe{l,r}

S (m—n)p(n) /f (A — i — ) 8" (\)d.

m,nENg,n>m
a,xe{l,r}

Inserting (5.20) into (5.19), we obtain (5.18). O

Corollary 5.10. Let S = {H, Hy} be the JC L-model and let | = frp. If case (E) of Proposition
5.3 is realized and S = {H, Hy} is time reversible symmetric, then J;’:Qph > 0.

Proof. We set 1 := p; = pi,-. One has:

P m)fN = = mw) — p" () f(A — i — nw) =
e (1 — e TR frop (A — = mw) fep(A — g — nw) > 0,

for n > m. From (5.18), we see that Jp > 0. O

0.Q7"

Remark 5.11. We will now comment the results. If Jf)’:Qph > 0, then system S is called light
emitting. Similarly, if Jp oorh S0, then we call it light absorbing. Of course if § is light emitting
and absorbing, then J;’O orn = 0.

(i) If B = oo, then p”"(m) = &y, m € Ny. Inserting this into (5.16), we get:

Phon= 3 no= [ FO— n)ote, ()dA > 0

n€Ng
a,xe{l,r}
Hence, the system S is light emitting.

(ii) Let us show S might be light emitting even if § < oo. We consider the case (F) of
Proposition 5.3. If § is time reversible symmetric, then it follows from Corollary 5.10 that
the system is light emitting.

If the system § is time reversible and mirror symmetric, then Jp h 0.Qcl = =0,a € {l,r},
by Corollary 5.6(iii) . Since meQel = 0 by Proposition 5.3, we get that ng%l = 0 but

the photon current is larger than zero. So our JC'L-model is light emitting by a zero total

electron current J° ;.
p0,Q8

Let v, = 0, v; = 2 and w = 4. Hence S is not mirror symmetric. Then, we get from

Remark 5.7(iii) that Jp h Qs = J;’ h Q¢! < 0. Hence, there is an electron current from the
<0.

left to the right lead. Notlce that by Proposition 5.3 J ¢ Qe = = 0. Hence, J5 0t S
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(iii) To realize a light absorbing situation, we consider the case (S) of Proposition 5.3 and
assume that § is time reversible symmetric. Notice that by Lemma 5.4, s, commutes with
p°. We make the following choices:

v, =0, w24 w=v, w=0, p =w=u1.

It follows out that with respect to the representation (5.18) one has only to m = n — 1,
» = rand o« = [. Hence,

T = %Qlﬂx
Lax (o (n = DO = (0= D) = () fA = (0 + 1)) 520y, (V)
Since, f(A) = frp(X), we find:

P =1 fA = (n=1w) = " () f(A = (n+ 1w) =
#n = D FO = (n— 1) (A — (n+ 1)) X
(1 + 65(/\_(”""1)“’) _ 6‘5‘*’(1 + 63()\—“(”_1)))) ,

or

PP — 1) f(A = (n — Dw) — p"(n) fA = (n + Dw) =
P =1 f(A = (n— Dw)f(A = (n+ Dw)(1 — e ?)(1 — /Oem),

Since A —nw > 0 we find p”"(n — 1) f(A — (n — 1)w) — p?"(n) f (A — (n+ 1)w) < 0 which
yields Jthph < 0.
To calculate J/f f «» we use formula (5.7). Setting o = [, we obtain o = r, which yields
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Jthel =— > ix
L an (0 () O = e = ) = P m) f 8 = g = ) G20, (V).
One verifies that 66’% (A) =0and 2" (X\) =0form # n+1,n € N. Hence,
Jthel =-> 7%

LA (M ) FO = e = ) = (0 = DFO = = (04 1)) 3, ().

Since p, = w and y; = 0, we find:

ph N &
JPO:QZEZ o Z 27‘( X

/f J)g(n — 1)(1 — )G (A)dA < 0.

Hence, there is electron current flowing from the left to right induced by photons. We recall
that J7 oo = 0.
]
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