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This paper summarizes the main results of [1] for the spectral asymptotics of the damped wave equation.

We define the notion of a high frequency abscissa, a sequence of eigenvalues with imaginary parts going to

plus or minus infinity and real parts going to some real number. We give theorems on the number of such

high frequency abscissas for particular conditions on the graph. We illustrate this behavior in two particular

examples.
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1. Introduction

The current text is a brief introduction to the spectral asymptotics of the damped
wave equation on metric graphs. Our paper summarizes the main results of the paper [1]
and gives ideas of their proofs. If the reader wants a detailed study of this problem or proofs
of certain theorems, we refer to this paper. Its main results were obtained in collaboration
with prof. Pedro Freitas during my stay in Lisbon.

Our aim is to study the damped wave equation

∂ttu(t, x) + 2a(x)∂tu(t, x) = ∂xxu(t, x) + b(x)u(t, x) (1)

on a metric graph. The problem of damped wave equation was studied in detail for a
segment with Dirichlet conditions on both ends [2]. Paper [1], to the author’s knowledge, is
the first attempt to treat the problem for the graph. In the case of a segment, there exists a
sequence of eigenvalues with imaginary parts going to plus and minus infinity and real part
approaching the negative average of the damping function on the segment. In paper [2], an
asymptotic expansion of the eigenvalues was obtained.

We show that in the case of a metric graph, there are several sequences of eigenvalues
which we call high frequency abscissas. Our main results are three theorems on the number
of these high frequency abscissas. This paper is structured as follows: in the second section
we describe the model, next we give theorems on the asymptotics of eigenvalues and eigen-
functions and locations of eigenvalues and high frequency abscissas; next, we introduce the
method of pseudo orbit expansion; in section 5, we give three main theorems on the number
of high frequency abscissas; and finally, we show two particular examples to illustrate their
behavior.
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2. Description of the model

Let us consider a metric graph Γ with N <∞ finite edges {ej}Nj=1 of lengths {lj}Nj=1.
On each edge we consider a damped wave equation:

∂ttwj(t, x) + 2aj(x)∂twj(t, x) = ∂xxwj(t, x) + b(x)wj(t, x), (2)

with damping functions aj(x) and potentials bj(x) real and bounded. The functions at the
j-th vertex are connected by coupling conditions similar to the case of quantum graphs

(Uj − I)Ψj + i(Uj + I)Ψ′
j = 0 ,

where Uj is a unitary square matrix, I is a unit matrix, Ψj is the vector of limits of functional
values in the vertex from all neighboring edges and, similarly, Ψ′

j is the vector of outgoing
derivatives. The coupling on the whole graph can be described by a large 2N × 2N unitary
matrix U (for more details see [3, 4]), which describes not only the coupling, but also the
topology of the graph. Then, the coupling conditions are:

(U − I)Ψ + i(U + I)Ψ′ = 0 . (3)

The ansatz wj(t, x) = eλtuj(x) leads to the differential equation:

∂xxuj(x)− (λ2 + 2λaj(x)− bj(x))uj(x) = 0 . (4)

Our aim is to solve this equation and find complex numbers λ. Its real parts give the time
decay for the solutions to the damped wave equation.

There exists a second approach to the problem, which is equivalent to the previous
approach. One finds the eigenvalues of a non-self-adjoint operator:

H =

(
0 I

I d2

dx2 +B −2A

)
,

where A and B are N × N diagonal matrices with aj(x) and bj(x) on the diagonal. The
domain of this operator consists of functions (ψ1(x), ψ2(x))

T with components of both ψ1

and ψ2 in W 2,2(ej) for the corresponding edge and satisfying coupling conditions (3) at the
vertices.

In the following text, we will sometimes use the term standard conditions. These
conditions (sometimes referred to in the literature as Kirchhoff, Neumann or free coupling)
imply that the function is continuous at the vertex and the sum of outgoing derivatives is
equal to zero. The corresponding vertex coupling matrix is U = 2/dJ − I, where d is the
degree of a given vertex and J has all entries equal to one.

3. Eigenfunction and eigenvalue asymptotic properties and the locations of
high frequency abscissas

First, we present a theorem from [2] on the asymptotic behavior of eigenfunctions on
a segment.

Theorem 3.1. Let a ∈ Cm+1[0, 1] and b ∈ Cm[0, 1]. Then there exist two linearly independent
solutions u±(x, λ) of equation (4) satisfying the initial condition u±(0, λ) = 1 having the
asymptotics:

u±(x, λ) = e±λx±∫ x
0
φ±(t,λ) dt, (5)
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in the C2[0, 1] norm as Im λ→ ∞ with:

φ±(x, λ) =
m∑
i=0

φ±
i (x)

λi
+O(λ−m−1), (6)

and

φ
(±)
0 (x) = a(x) , φ

(±)
1 (x) = −1

2
(±a′(x) + a2(x) + b(x)) ,

φ
(±)
i (x) = −1

2

(
±φ′(±)

i−1 +
i−1∑
s=0

φ(±)
s φ

(±)
i−s−1

)
.

Now, we can formulate the theorem on the asymptotics of eigenvalues for a graph
with all the edges of lengths equal to one.

Theorem 3.2. Let us assume a graph with N finite edges of lengths 1 with the coupling
between vertices given by matrix U . Let on each edge be damping aj ∈ CN+1([0, 1]) and
potential bj ∈ CN([0, 1]). Then, there exists such a K0 ∈ R+ that for K > K0, if λ = r+ iK
is an eigenvalue, then λ + 2πi +O(1/K) is also an eigenvalue. Similarly, if λ = r − iK is
an eigenvalue, then λ − 2πi + O(1/K) is also an eigenvalue. This means that there exist
sequences of eigenvalues with the asymptotics λns = 2πin + cs0 +O(1/n).

Idea of the proof: Since two linearly independent solutions exist, according to the previous
theorem, one can write the general solution as their linear combination. Substituting for the
coupling conditions, one finds the secular equation in the form:

P0e
λ+〈a1〉+λ+〈a2〉+···+λ+〈aN 〉+O(1/λ) + P11e

−λ−〈a1〉+λ+〈a2〉+···+λ+〈aN 〉+O(1/λ)+

P12e
λ+〈a1〉−λ−〈a2〉+···+λ+〈aN 〉+O(1/λ) + · · ·+ P21e

−λ−〈a1〉−λ−〈a2〉+···+λ+〈aN 〉+O(1/λ)+

· · ·+ PN1e
−λ−〈a1〉−λ−〈a2〉−···−λ−〈aN 〉+O(1/λ) = 0 ,

where Pmn is a polynomial in λ of degree 2N with m minuses before λ; n only distinguishes
different polynomials. Since 1/λ = O(1/K), one finds that the first term of the asymptotics
is equal to zero for λ0+2πi if λ0 is an eigenvalue. Hence, such λ = λ0+2πi+O(1/λ0) exists
for which the secular equation is equal to zero. �

Now, we define the notion of a high frequency abscissa, which will be very important
in subsequent sections.

Definition 3.3. We say that c0 is a high frequency abscissa of the operator H if there exists
a sequence of eigenvalues of H , say {λn}∞n=1, such that:

lim
n→∞

Imλn = ±∞ and lim
n→∞

Reλn = c0.

The next theorem says that only the average of the damping function on each edge
is important for the location of high frequency abscissas.

Theorem 3.4. Let Γ be a graph with N commensurate edges of lengths lj = mjl0, mj ∈ N,
j = 1, . . . , N , with the coupling conditions (3). Let the damping functions aj(x) and bj(x)
be bounded and continuous on each edge. Let λn be eigenvalues of the corresponding problem
(4) and μn eigenvalues for aj and bj replaced by their averages. Then, the constant terms
c0 in the asymptotic expansion of λn coincide with the corresponding constant terms in the
asymptotic expansion of μn.
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Now, we write a theorem on the location of nonreal eigenvalues, which has a nice
corollary. It shows that the high frequency abscissas are located between the negative max-
imum of the averages of the damping functions on each edge and the negative minimum of
these damping functions.

Theorem 3.5. Let us consider a damped wave equation on a graph with N edges of lengths
lj, bounded damping coefficients aj(x) and potentials bj(x), and the coupling conditions given
by (3). If λ is an eigenvalue of H with nontrivial imaginary part �(λ) �= 0, then its real part
satisfies:

�(λ) = −
∑N

j=1

∫ lj
0
aj(x)|uj(x)|2 dx∑N

j=1 ‖uj(x)‖22
,

where uj(x) denotes the corresponding wavefunction components.

Idea of the proof: The main idea of the proof is to take the equation (4), multiply it on the
left by ūj(x), integrate over each edge and sum over all the edges. The imaginary part of
the result is:

0 = 2i�(λ)
N∑
j=1

∫
ej

(aj(x) + �(λ)) |uj(x)|2 dx,

from which the conclusion follows. �
Corollary 3.6. Let us consider a damped wave equation on graph Γ with damping functions
on the edges aj(x) and potentials bj(x). We denote the average of the damping function on
each edge by āj. Then, the real part of nonreal eigenvalues of H (and therefore also all high
frequency abscissas) lie in the interval [−maxj āj,−minj āj ].

4. Pseudo orbit expansion

There is a different approach to the secular equation than the one shown in the
previous sections. The secular equation can be constructed by the method of pseudo orbit
expansion, which has been developed for quantum graphs [5–7]. This theory was adapted
for the damped wave equation in [1], and now, we summarize its main ideas.

First, the metric graph Γ is replaced by a directed graph Γ2, each edge is replaced by
two edges ej and êj in both directions. The functional values on both corresponding directed
edges must be the same, hence if we use the ansatz:

fej(x) = αin
ej
eλ̃jx + αout

ej
e−λ̃jx ,

fêj (x) = αin
êj
eλ̃jx + αout

êj
e−λ̃jx ,

we have from fej (x) = fêj (lj − x) the relation between the coefficients of this ansatz:

αout
êj

= eλ̃j ljαin
ej
, αout

ej
= eλ̃j ljαin

êj
, (7)

where λ̃j =
√
λ2 + 2λaj − bj . Furthermore, we will now define several variables. The

vertex scattering matrix maps the vector �αin
v into �αout

v by the relation �αout
v = σv(λ)�α

in
v .

Here, �αin,out
v = (αin,out

ev1
, . . . , αin,out

evd
)T and v denotes the vertex. The matrix Σ(λ) is block-

diagonalizable and it is written in the basis corresponding to:

�α = (αe1 , . . . , αeN , αê1, . . . , αêN )
T .

This is block diagonal with blocks σv(λ) if written in the following basis:

(αin
ev11

, . . . , αin
ev1d1

, αin
ev21

, . . . , αin
ev2d2

, . . . , )T.
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Furthermore, we define

J =

(
0 I

I 0

)
and L = exp

(
diag (−λ̃1l1, . . . ,−λ̃N lN ,−λ̃1l1, . . . ,−λ̃N lN )

)
,

which then allows us to write:(
�αin
e

�αin
ê

)
= L

(
�αout
ê

�αout
e

)
= LJ

(
�αout
e

�αout
ê

)
= LJΣ(λ)

(
�αin
e

�αin
ê

)
,

where we have used the definition of the matrix L and relations (7), then the definition of
the matrix J and finally the definition of the matrix Σ. Since the vectors on the left and the
right side are the same, we obtain the secular equation:

det (LJΣ(λ)− I2N×2N) = 0 . (8)

Next, following the terminology of [7], we define the following notions.

Definition 4.1. A periodic orbit is a closed trajectory on the graph Γ2. An irreducible
pseudo orbit γ̄ is a collection of periodic orbits where none of the directed bonds is contained
more than once. Let mγ̄ denote the number of periodic orbits in γ̄, Lγ̄ =

∑
e∈γ̄ λ̃ele where the

sum is over all directed bonds in γ̄ and λ̃e =
√
λ2 + 2aeλ− be. The coefficients Aγ̄ = Πγj∈γ̄Aγj

with Aγj given as multiplication of entries of S(λ) = JΣ(λ) along the trajectory γj.

We give without the proof a theorem which gives the secular equation (8) in the terms
of pseudo orbit expansion.

Theorem 4.2. The secular equation for the damped wave equation on a metric graph is
given by: ∑

γ̄

(−1)mγ̄ Aγ̄(λ) exp(−Lγ̄(λ)) = 0

with Lγ̄ being the sum of the lengths of all directed edges along a particular irreducible pseudo
orbit γ̄.

5. Number of distinct high frequency abscissas

In this section, we state the three main theorems of this paper. These theorems give
upper and lower bounds on the number of distinct high frequency abscissas for a graph which
has all edges of lengths 1. The first theorem gives an upper bound for a graph with general
coupling conditions.

Theorem 5.1. Let Γ be an equilateral graph with N edges of the length 1. Let us assume a
damped wave equation on Γ with damping and constant potential functions constant on each
edge aj(x) ≡ aj, bj(x) ≡ bj and with general coupling given by (3) for a given unitary matrix
U . Then there are at most 2N high frequency abscissas.

Idea of the proof: We perform an expansion according to the theorem 3.2. In the first term
of the n-asymptotics of the secular equation (written by the pseudo orbit expansion) is
a polynomial equation in y = ec0 of order 2N . This polynomial equation has 2N complex
solutions, therefore, there are at most 2N different numbers c0 and 2N distinct high frequency
abscissas. �

For a special type of graphs, the bound can be improved. In the second theorem,
we consider a bipartite graph, the graph which can be colored by only two colors, with the
neighboring vertices having different colors. Another definition is that there is not a loop of
edges of odd length. In this case, there are at most N distinct high frequency abscissas.
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Theorem 5.2. Let Γ be a graph with N edges all of which have lengths equal to 1, (general)
Robin coupling at the boundary and standard coupling otherwise. Let us suppose that the
graph is bipartite. Then, for any damping functions bounded and C2 at each edge, there are
at most N high frequency abscissas.

Idea of the proof: Similarly to the previous theorem, we can construct the leading term of
the n asymptotics of the secular equation. In the pseudo orbit expansion, we obtain only
pseudo orbits, which have even length. Due to this fact there are only terms with e2c0 in the
secular equation. The first term of the n-expansion is a polynomial equation in e2c0 of order
N . Hence, there are at most N high frequency abscissas. �

The third theorem gives a lower bound on the number of high frequency abscissas.
A tree graph with vertices of odd degree is considered.

Theorem 5.3. Let Γ be a tree graph with N edges all with unit length, Robin coupling at the
boundary and standard coupling otherwise. Let us suppose that all vertices have odd degree.
Then, there always exists such a damping, for which the number of high frequency abscissas
is greater than or equal to N .

Idea of the proof: The main idea is that the contribution of the pseudo orbits to the coefficient
in the secular equation cancels if and only if there is a vertex of Γ with a degree 2v and the
pseudo orbit contains exactly v edges which emanate from this vertex. This can be proven
using rather technical lemma 6.3 from the paper [1]. Hence, if a tree graph has all vertices of
odd degree, then there is no cancellation and all the coefficients in the secular equation are
nonzero. Now, we construct the damping function. We choose constant damping on each
edge with 0 � aN � aN−1 � · · · � a1. Now we can rewrite the first term of the secular
equation as:

CNe
2a1+2a2+···+2aN yN + CN−1e

2a1+2a2+···+2aN−1
[
1 +O (e−2(aN−1−aN )

)]
yN−1+

+ · · ·+ C2e
2a1+2a2

[
1 +O (e−2(a2−a3)

)]
y2 + C1e

2a1
[
1 +O (e−2(a1−a2)

)]
y + C0 = 0 ,

with y = e2c0 . We recall that none of the coefficients Ci are equal to zero. Now, if y is close
to e−2a1 , the last two terms are dominant, for y close to e−2a2 the terms with C2 and C1 are
dominant, etc. Hence we have

yj = −Cj−1

Cj
e−2aj

[
1 +O (e−2(aj−aj+1)

)]
.

We obtain N distinct numbers yj and hence N distinct numbers c0 and N distinct high
frequency abscissas. �

6. Examples

Now, we present two particular examples, which illustrate the behavior of the eigen-
values.

6.1. Two loops with different damping coefficients

The first example of a graph consists of two loops, each loop having three edges of
lengths 1 (see figure 1). Let us assume that there is constant damping a1 on the first loop

and a2 on the second loop. Therefore, one can use the ansatz fj(x) = αj sinh (λ̃j(λ)x) +
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a1a2

a1

a1a2

a2

Fig. 1. Graph with two loops

βj cosh (λ̃j(λ)x), where j distinguishes the loop. We choose x = 0 at the middle of each loop.
From the continuity at the central vertex, we have:

αj sinh

(
3

2
λ̃j(λ)

)
+ βj cosh

(
3

2
λ̃j(λ)

)
= −αj sinh

(
3

2
λ̃j(λ)

)
+ βj cosh

(
3

2
λ̃j(λ)

)
.

Therefore, we either have α1 = α2 = 0 or sinh
(

3
2
λ̃1(λ)

)
= 0 or sinh

(
3
2
λ̃2(λ)

)
= 0.

First, we will assume α1 = α2 = 0. From the standard conditions at the central
vertex we have:

β1 cosh
3λ̃1(λ)

2
= β2 cosh

3λ̃2(λ)

2
,

β1λ̃1(λ) sinh
3λ̃1(λ)

2
+ β2λ̃2(λ) sinh

3λ̃2(λ)

2
= 0 .

where
λ̃j ≡ λ̃j(λ) =

√
λ2 + 2ajλ− bj .

This set of equations is solvable under the condition:

λ̃2 sinh
3λ̃2
2

cosh
3λ̃1
2

+ λ̃1 sinh
3λ̃1
2

cosh
3λ̃2
2

= 0 .

or, equivalently by:

(λ̃1 + λ̃2) sinh
3(λ̃1 + λ̃2)

2
+ (λ̃1 − λ̃2) sinh

3(λ̃1 − λ̃2)

2
= 0 .

Using the asymptotic expansion λn = 2πin+ c0 +O ( 1
n

)
one obtains

4πin
(
e6πin+

3
2
(a1+a2+2c0) − e−6πin− 3

2
(a1+a2+2c0)

)
+O(1) = 0,

and therefore:

3(a1 + a2 + 2c0) + 2πin = 0 , (9)

c
(s)
0 = −a1 + a2

2
+
sπi

6
, s ∈ {0, . . . , 5}

Now, let us return to the condition sinh
(

3
2
λ̃j(λn)

)
= 0. This leads to:

3aj + 3c
(s)
0 +O

(
1

n

)
= 2πis ⇒ cs0 = −aj + 2πis

3
, s ∈ {0, 1, 2}
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�1.8 �1.6 �1.4 �1.2 �1.0
Re Λ

�40

�20

20

40
Im Λ

Fig. 2. Spectrum of a graph in figure 1, a1 = 2, a2 = 1, b1 = 0, b2 = 0

Hence, we have three high frequency abscissas at −a1, −a2 and −a1+a2
2

. The eigen-
functions for the first two abscissas are supported on the first loop or the second loop,
respectively. The third one has eigenfunction supported on both loops. Eigenvalues for
particular choice a1 = 2 and a2 = 1 are shown in figure 2.

6.2. Star graph with different lengths of the edges

The second example illustrates eigenvalue behavior in the case when the lengths of
the edges are not equal to one. Let us consider a star graph consisting of three edges of
lengths l1, l2 and l3. We assume Dirichlet coupling at the free ends and standard coupling
in the central vertex.

If we use the ansatz fj(x) = αj sinh λ̃jx on each edge with x = 0 at the free end, we
obtain the secular equation:

3∑
j=1

λ̃j cosh λ̃jlj

3∏
i=1
i �=j

sinh λ̃ili = 0 .

In figure 3, we show the eigenvalues for particular choice of the damping a1 = 3, a2 = 4,
a3 = 5 and the lengths of the edges l1 = 1, l2 = 1, l3 = 1.03. If we wanted to apply the
theorems from the previous sections, we would have 303 edges of lengths 0.01, which means
that the bound on the number of the high frequency abscissas would be 606. In figures 4
and 5, the behavior is shown for other combinations of edge lengths.

7. Conclusion

We have summarized the main results of a paper [1]. The main results are three
theorems in section 5 on graphs with edges of unit lengths. If we have a graph with general
coupling, the number of high frequency abscissas is bounded from above by 2N . For a
bipartite graph with standard coupling, the bound can be improved to N . And finally, for
a tree graph with vertices of odd degree, one can find such a damping for which there is at
least N high frequency abscissas.
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1000

1050

1100

Im Λ

Fig. 3. Spectrum of a star graph with different edges lengths, l1 = 1, l2 = 1,
l3 = 1.03

�5.0 �4.5 �4.0 �3.5 �3.0
Re Λ

900

950

1000

1050

1100

Im Λ

Fig. 4. Spectrum of a star graph with different edges lengths, l1 = 1, l2 = 1,
l3 = 1.41

�5.0 �4.5 �4.0 �3.5 �3.0
Re Λ1040

1045

1050

1055

1060

1065

1070
Im Λ

Fig. 5. Spectrum of a star graph with different edges lengths, l1 = 1.5, l2 =
2.1, l3 = 3.1
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