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The phenomenological parameters of the Hamiltonian for the photons produced in earlier studies [4] are associated

with the parameters of the deformed optical fiber (OF). This Hamiltonian is necessary for the correct description

of the propagation of photons through the quantum channel in a quantum communication protocols. Models

of a compressing strain of the OF profile and a twisting deformation are considered. As a consequence, the

phenomenological parameters of the Hamiltonian expressed in terms of such strains characteristics, as a relative

compression of the profile, OF radius, the orientation angle of the deformed profile, rotation angle per unit length,

elasto-optical tensor, and refraction coefficient.
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1. Introduction

For an electromagnetic wave, an optical fiber (OF) represents a non-uniform stochastic
anisotropic environment. The principles of radiation quantization in the non-uniform anisotropic
environment are stated, for example, in works [1–3]. The Hamiltonian for the photons in a
single mode OF was obtained in [4], taking into account the small, isotropic, inhomogeneous,
smoothly varying (along the OF) addition to the tensor of the dielectric permittivity. Photons
are defined on the basis of the normal modes of an ideal single-mode OF. In [4], the problem of
mode interactions in an OF was resolved using a properly chosen gauge. The transversality of
the electric displacement vector is provided. The Hamiltonian conserves the number of photons.
We used the approach of smooth perturbations (by analogy with the classical method of coupled
waves). In this approach, researchers neglect the interaction of oppositely directed waves. The
permittivity tensor was parameterized by three phenomenological parameters that determine the
interaction of orthogonally polarized modes of the OF.

The classical theory of information transmission in an OF is well developed. Of partic-
ular interest is the single mode OF, in which two perpendicular polarized waves can propagate,
phase front which is close to the plane (HE11 mode, [5, 6]). Currently, a single mode OF with
low absorption (in windows of transparency) has been developed. They find broad application
in optical communication systems over long distances with high speed information transfer [7].
The distortion features have been studied in detail for classical information in a single mode
OF. In [8], the effect of optical activity in a twisted single mode OF was considered. The
relationship of the single-mode OF curvature with the effect of the birefringence is discussed
in [9]. The effect of tension on the occurrence of anisotropy in the one mode OF was studied
in [10].
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The new direction of modern informatics (the science of methods of communica-
tion, storage and processing of information) involve optical quantum information technologies.
Quantum communication protocols – quantum cryptography, quantum teleportation, dense cod-
ing [11, 12] operate on the principles of quantum optics. The coding of information on a
photon’s polarization and degrees of freedom were used in [13]. A scheme using phase encod-
ing was presented in [14], while in-phase light modulation was utilized in [15]. Additionally,
a quantum key distribution protocol, using entangled photon polarization states, was proposed
in [16]. In [17] the generation of entangled biphoton states with orbital-angular-momentum in
triangular quadratic waveguide arrays with twisted geometry was considered.

In the following works, the phenomenological parameters of the photon Hamiltonian ob-
tained in [4], are associated with parameters of the OF strain. The phenomenological parameters
of the Hamiltonian were determined by the inverse permittivity tensor averaged over the volume
of the OF segment. The dielectric permittivity of a deformed OF depends on the deformation
parameters. Models for a compressing strain of the OF profile and a twisting deformation are
considered. As a consequence, the phenomenological parameters of the Hamiltonian are ex-
pressed in terms of such characteristics, as a relative compression of the profile, OF radius, the
orientation angle of the deformed profile, rotation angle per unit length, elasto-optical tensor,
and refraction coefficient.

2. The Hamiltonian of photons in a single mode OF

The Hamiltonians of photons in a single mode OF, expressed in terms of the operators
b̂†βµ, b̂βµ, according to [4], has the form:

Ĥ =
∑
β

ω (β)

( ∑
µ=H,V

(
b̂†βµb̂βµ +

1

2

)
+

1

2

∑
µ,µ′=H,V

b̂†βµ ·∆Ξ
(β)
µ,µ′ · b̂βµ′

)
. (1)

The formula is written in the approximation of a smooth dependence of the tensor ε (r) =

ε0 (r) + ∆ε (r) on the longitudinal coordinate z. In this approximation, the Hamiltonian Ĥ
becomes single-mode, modes with different wave vectors do not interact. The matrix ∆Ξ(β) has
the form:

∆Ξ
(β)
µ,µ′ = −

∫
dz

∫∫
dxdy

(
∆ε (r)αβ,µ (x, y) ,α∗β,µ′ (x, y)

)
, (2)

where ∆ε (r) – a random correction to the dielectric permittivity ε0 (r) of the ideal OF. The
emission quantized on the basis of modes for an ideal OF satisfy the following equation,
boundary conditions and transversality conditions:{

ω (β)2 ε0 (r)Aβ,µ (r)− c2∇×∇×Aβ,µ (r) = 0,

∇· (ε0 (r)Aβ,µ (r)) = 0,
(3)

where ω (β) – eigenvalues, β – longitudinal wave vector, ∇· – the divergence operation, ∇× –
the rotor operation, Aβ,µ (r) = αβ,µ (x, y) · exp (−iβz) – basis of spatial modes, µ = H, V –
polarization index. The property of the basis orthogonality is as follows:∫

ε0 (r)
(
Aβ,µ (r) ,A∗β,µ′ (r)

)
dV = δµ,µ′ .

We use a phenomenological description and parameterized of Hermitian matrix ∆Ξ(β) (2):
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∆Ξ(β) =

(
ε Γ · exp (−iδ)

Γ · exp (iδ) −ε

)
, (4)

by the real parameters ε, Γ, δ. The anisotropy and gyrotropy of the OF which arises from
the random correction ∆ε (r) are thought to be small. That is, the parameters ε, Γ satisfy the
following relation:

Ω =
√
ε2 + Γ2 � 1. (5)

In a typical OF, the parameter Ω ≈ 10−5 ÷ 10−7. Parameter Γ sin δ is typically referred
to as the component optical activity vector (along the OF axis) [18]. If the axis of the laboratory
coordinate system does not coincide with the axes of the OF, the photons in the laboratory frame
of reference, determined by the operators b̂†βµ, b̂βµ, µ = H, V interact.

3. Guided modes of weakly guiding fiber

We consider the case of the so-called weakly guiding cylindrical OF. Fiber parameters
satisfy the inequality:

n2
c − n2

cl

2n2
c

� 1, (6)

where nc, ncl – the refractive indices of the core and cladding of OF. We will choose the axis z of
the laboratory coordinate system along the axis of the OF segment. In an ideal OF, the dielectric
permittivity ε0 (r) depends on the transverse coordinates – x, y. Analysis of the solutions for
equation (3) shows [19] that there are OF waveguide (guided) modes with a discrete spectrum of
frequencies and not guided modes having a continuous spectrum. Under the condition (6), often
implemented in practice, the structure of the guided modes is simplified. Of special interest for
this practice is the so-called single-mode OF, in which one doubly-degenerate mode HE11 can
be propagated. The refraction coefficient of the OF has the form of a step depicted in Fig. 1.
We obtain the solution (3) for the mode HE11. The first vector AH is horizontal q = H:

AH = αH (x, y) · exp (−iβz) ,

αH (x, y) = αH (x, y)y j +αH (x, y)z k.

The solution in the two regions (region 1: r ≤ a, region 2: r > a) has the form:
α

(1)
H (r ,φ)x = 0,

α
(1)
H (r, φ)y = A · J0 (ur/a)

J0 (u)
,

α
(1)
H (r, φ)z = A · iu

aβ

J1 (ur/a)

J0 (u)
sinφ,

r ≤ a


α

(2)
H (r, φ)x = 0,

α
(2)
H (r, φ)y = A · K0 (wr/a)

K0 (w)
,

α
(2)
H (r, φ)z = A · iw

aβ

K1 (wr/a)

K0 (w)
sinφ.

r > a

(7)

The second vector AV is vertical q = V :
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AV = αV (x, y) · exp (−iβz) ,

αV (x, y) = αV (x, y)x i +αV (x, y)z k.

The solution in the two regions (region 1: r ≤ a, region 2: r > a) has the form:
αV

(1) (r, φ)x = A · J0 (ur/a)

J0 (u)
,

α
(1)
V (rφ)y = 0,

α
(1)
V (rφ)z = A · iu

aβ

J1 (ur/a)

J0 (u)
cosφ,

r ≤ a


α

(2)
V (r, φ)x = A · K0 (wr/a)

K0 (w)
,

α
(2)
V (r, φ)y = 0,

α
(2)
V (r, φ)z = A · iw

aβ

K1 (wr/a)

K0 (w)
cosφ.

r > a

(8)

The dispersion relation ω = ω (β) for the mode HE11, from the transversality condi-
tions (3) has the form:

u
J1 (u)

J0 (u)
= w

K1 (w)

K0 (w)
,

u = a · χ, w = a · γ,

χ2 =
(ω
c
nc

)2
− β2,

γ2 = β2 −
(ω
c
ncl

)2
.

Here A is the the normalization factor. The normalization A has the form:

A =
w2

√
πLa (ncw2 + nclu2)

(
J0 (u)

J1 (u)

)2

.

FIG. 1. The dependence of the refractive index n(r) on the radial coordinate r
in the cylindrical OF. nc, ncl – the refractive indices of the core and cladding of
OF. 1, 2 – the core and cladding regions. a – the core radius
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The dependence of frequency (for HE11 mode) on a dimensionless longitudinal wave
vector β · a is shown in Fig. 2.

FIG. 2. The dispersion relation ω = ω (β) for the mode HE11, Plot 3.
Plot 1 – the dispersion relation of the core ω = βa/nc. Plot 2 – the dis-
persion relation of the cladding ω = βa/ncl. Plot 4 – limit value of frequency

ωa/c = 2.405/
√
n2
c − n2

cl. The wave vector multiplied by the radius of the core –

βa – delayed along the horizontal axis. Value ωa/c is plotted along the vertical
axis

4. Nonideal optical fiber

In the previous section, we obtained the basis of modes and dispersion relation for
an ideal OF. In order to completely define a Hamiltonian for photons (1), it is necessary to
connect phenomenological parameters ε, Γ, δ with the parameters of the OF. For this purpose
we consider two models describing the dependence of the dielectric permittivity of the OF on a
profile distortion and twisting of the OF [8–10]. The perturbation of the dielectric permittivity
due to the deformation form of the OF is a scalar, and according to [8–10], has the form:

∆ε (r, ϕ) = −η · r · ε0 (r) cos 2 (ϕ− ϕB) . (9)
This perturbation connects z components (longitudinal components) of the two wave

modes AH and AV . The graph of the OF cross section distorted by compression is submitted
in Fig. 3. The oval cross section has the main axes turned in relation to laboratory system of
coordinates on a angle ϕB. Calculation of a matrix ∆Ξ(β) with use formulas (2), (7), (8), (9)
yields the following result:

∆Ξ(β) =
∆ (β) ηa

2

(
− cos (2ϕB) sin (2ϕB)

sin (2ϕB) cos (2ϕB)

)
.

Let’s compare this matrix to matrix (4). We get a connection the phenomenological
parameters ε, Γ, δ with the deformation parameters of the OF:
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FIG. 3. Distortion of a OF core profile. η – relative compression of a profile
ε0 (r) at an angle ϕB

δ = 0,

ε = −∆ (β) ηa

2
cos (2ϕB) ,

Γ =
∆ (β) ηa

2
sin (2ϕB) .

There, ∆ (β) is the normalization function:

∆ (β) =
1

4πa2β2

ncu
2J−20 (u)

1∫
0

r2drJ2
1 (ur) + nclw

2K−20 (w)
∞∫
1

r2drK2
1 (wr)

ncJ
−2
0 (u)

1∫
0

rdrJ2
0 (ur) + nclK

−2
0 (w)

∞∫
1

rdrK2
0 (wr)

. (10)

The graph of normalized function (10) is shown in Fig. 4. Distortion of the OF’s
permeability tensor with twist deformation is described by formulas [8–10]:

∆ε (r, ϕ)yz = ∆ε (r, ϕ)zy = −p44n4
0τ · x,

∆ε (r, ϕ)xz = ∆ε (r, ϕ)zx = p44n
4
0τ · y.

(11)

where, x, y – transverse coordinates in the laboratory frame, τ – the angle of twist per unit
length, n0 – the average refractive index of the OF material, pn,m – elasto optical tensor. The
scheme for twist deformation is shown in Fig. 5. Calculation of a matrix ∆Ξ(β) with use
formulas (2), (7), (8), (9) yields the following result:

∆Ξ(β) = aτp44n
4
0S (β)

(
0 −i
i 0

)
.

Let’s compare this matrix to matrix (4). We obtain a connection between the phe-
nomenological parameters ε, Γ, δ with the deformation parameters of the OF:

δ =
π

2
,

ε = 0,

Γ = aτp44n
4
0S (β) .
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FIG. 4. The normalization function ∆ (β), calculation by formula (10) for
nc = 2, ncl = 1.5

FIG. 5. The twist deformation of OF. There τ – angle of twist per unit length z.
n0 = 1.46 – the average refractive index of the OF material. p44 = −0.075 –
elasto optical tensor, uniform along the fiber. The remaining coefficients of the
permittivity tensor are zero. x, y – transverse coordinates of OF (laboratory
frame), x′, y′ – transverse coordinates of OF (local frame), ϕB = τz

Here, the normalizing function S (β) is defined in the following manner:

S (β) =
1

aβ

ncuJ
−2
0 (u)

1∫
0

r2drJ1 (ur) J0 (ur) + nclwK
−2
0 (w)

∞∫
1

r2drK1 (wr)K0 (wr)

ncJ
−2
0 (u)

1∫
0

rdrJ2
0 (ur) + nclK

−2
0 (w)

∞∫
1

rdrK2
0 (wr)

. (12)

The graph of normalization function is shown in Fig. 6.
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FIG. 6. The normalization function S (β), calculation by formula (12) for nc = 2,
ncl = 1.5

5. Conclusion

Quantum information, distributed by the OF, is encoded in the quantum states of photons.
The transformation of information during the propagation of the photons through the OF is
described by the Liouville equation for the density matrix of the photons. The Hamiltonian for
the OF-based photons is required to write a quantum Liouville equation. The Hamiltonian of
photons in the OF (1) contains phenomenological parameters ε, Γ, δ. These parameters depend
on the longitudinal coordinate of the wave vector, β , and thus, determine the polarization mode
for the dispersion of photons in the OF. To obtain the relationship between the phenomenological
parameters ε, Γ, δ and β, we must use the distortion model for the optical and geometric
characteristics of the OF against external influences. For this purpose, the model transverse
compression and twist of the OF [8–10] were used in this work and the relationship between
parameters ε, Γ, δ and β were determined in this work.
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