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Particle dynamics in corrugated rectangular billiard
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The particle dynamics in one side corrugated rectangular billiard system is investigated with the help of numerical

analysis. The dependence of chaotic behavior in particle dynamics on the corrugation height h is shown. The

focusing mechanism of the corrugated billiard is investigated by analyzing the dependence of the total path on

particle incident angle.
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1. Introduction

Particle dynamics in waveguides has attracted much attention during past few decades.
Such interest is caused by the potential application of waveguides in different topics of contem-
porary physics, such as optics, cold atom physics and different systems of nanoscale physics.
In most of the cases, particle and wave dynamics in waveguides can be modeled by billiards.
The latter are the domains confined by hard or soft walls. Dynamics of waves and particles in
such a domain strongly depend on the geometry of its walls. In particular, classical equations of
motion can be integrable or non-integrable, depending on the geometrical shape of the billiard
boundary. Earlier, billiards were the topic of extensive study in the context of nonlinear dynam-
ics and quantum chaos theory [1–5]. It was found that, depending on the shape of the billiard
walls, particle dynamics can be chaotic, regular or mixed. A pioneering study of classical parti-
cle dynamics in billiards dates back to Birkhoff, who presented a strict formulation for classical
mechanics in confined domains [1]. Later, more strict mathematical analysis of Hamiltonian
systems in billiards was provided be Sinai [2]. Currently, billiards has become one of the main
paradigms in the theory of deterministic chaos. One of the most convenient realistic systems
where billiards can be experimentally realized is microwave resonators [4].

Recently, billiards were successfully applied to describe charge transport in nanoscale
quantum dots [6]. Besides static billiards, so-called time-dependent billiards has become subject
for extensive research during the past decade [7–10]. Such billiards can be realized in atom
optics and provide powerful testing ground for classical and Fermi acceleration [11].

Comprehensive and systematic studies of time-dependent billiards were done by several
authors in the Refs. [11–15]. Unlimited growth of the particle velocity was not found to
be possible for regular (integrable) billiards, while for some types of chaotic billiards, one can
observe such an acceleration [16]. The answer for the question whether the energy of the particle
can grow to infinity is far from trivial. It depends on the perturbation type on the boundary and
the boundary geometry. It was shown by Loskutov, Ryabov and Akinshin in [17] that Fermi
acceleration (FA) will be observed in time-dependent billiards if these billiards possess chaotic
properties in the autonomous case. Later, this assumption was confirmed for stadium [18] and
annular [15] billiards by the same authors. An elliptical billiard was shown to have regular
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dynamics in the case when the billiard has static boundaries, exhibits FA in case when the
billiard has time-dependence boundaries. More strict analysis of particle dynamics in time-
dependent billiards was provided recently by Robnik and co-authors [16], who derived criteria
for the shape and time-dependence of the walls from the viewpoint of Fermi acceleration.

Besides Fermi acceleration, time-dependent billiards have generated a certain interest in
fiber optics and waveguides. An important and interesting characteristic of the radiation pulses
propagating in the optical fiber is the propagation time of rays through the waveguide. Ray
dynamics in the corrugated waveguides are becoming more interesting because of the nature
of media where the wave can be propagated are more curved by the external fluctuations.
This properties help such systems to create some kind of channel for the waves propagating
in it, where the signals can be transmitted effectively with minimal loss of information. A
similar problem was also considered and the different fractal properties of ray propagation were
shown using an underwater acoustic model. They have shown the mechanism of signal cooling
when the width of spatial spectra dispersion is significantly reduced. The open stadium billiard
model was investigated in [10] using phase space methods. There, they derived the expression
for the long time survival probability function for the stadium billiard with a hole [10]. One
of example of time-dependent focusing billiards – a stadium-like billiard with periodically
perturbed boundary was studied, explained the origin of the increase and decrease of the particle
velocity [11].

In this paper, we study particle dynamics in rectangular billiard with a corrugated wall.
The phase space portraits for the two dimensional billiard system are obtained for both flat and
corrugated billiards. In the next section, we will present the analytical and numerical analyses
in detail. The dependence of the particle trajectory and path on the initial incident angle will
also be analyzed.

2. Corrugated rectangular billiard

The system we want to study is the rectangular billiard (side lengths are a and b) with
a corrugated wall presented in Fig. 1. The main characteristic to be studied is the coordinate
of the particle after N collisions with the billiard walls. We analyze phase space trajectory
corresponding to such coordinates.

FIG. 1. Billiard model in the form of rectangle with the sides a and b (a) and
the same model with corrugated at one side (b)

First, we consider the simple case, a rectangular billiard without corrugation i.e. flat at
sides (Fig. 1a), with the sides sizes a and b.
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In this case, the boundaries of the billiard will be expressed in XOY plane as follows:

y(x) =

{
a,

0,
if 0 ≤ x ≤ b;

x(y) =

{
b,

0,
if 0 ≤ y ≤ a.

(1)

Here a and b are lengths of the billiard sides.
Let the particle starts its motion at the point of (x0,y0) ∈ XOY with the initial veloc-

ity v0:

vx = v0 · cosα,

vy = v0 · sinα,

where α is the angle between v0 and vx vectors.
Then, one can define the coordinate of the particle after n collision as follows:

τ1 =


(a− yn)

vy
, if vy ≥ 0;

yn
vy
, if vy < 0;

τ2 =


(b− xn)

vx
, if vx ≥ 0;

xn
vx
, if vx < 0;

tn = min (τ1, τ2) ,

xn+1 = xn + vx · tn,
yn+1 = yn + vy · tn.

(2)

Phase space portraits are given on the plane of the momentum of particle in the direction
of billiard walls, p = v0 · sin β and the path of particle, S.

Using this map (2), phase-space trajectories can be plotted as in Fig. 2 and 3.
Now, we proceed to the case of corrugated billiard presented in Fig. 1b. The corrugation

function is given as follows:

f(ξ) = 4 · h · ξ · (1− ξ), (3)

where ξ = x/b, a, b are the rectangular billiard sides and h is the corrugation height.
The boundaries of such a billiard system can be written:

y(x) =

{
a+ f(ξ),

0,
if 0 ≤ x ≤ b;

x(y) =

{
b,

0,
if 0 ≤ y ≤ a+ f(ξ).

(4)

Trajectories of the particle in such billiard can be given in terms of the following map:
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FIG. 2. Trajectory (a) and phase portrait (b) of a particle motion in rectangular
billiard for the following billiard parameter values: a = 1; b = 3; and initial
values for the particle: x0 = 0; y0 = 0; α = 60◦

FIG. 3. Particle trajectory (a) and its corresponding phase space portrait (b) for
the corrugated rectangular billiard parameters: a = 1; b = 3; h = 0.1

xn+1 = xn + vx · tn,
yn+1 = yn + vy · tn,

tn =
1

2A

(
−B +

√
B2 − 4AC

)
.

(5)

Where the values for the parameters are given as:

A = v2x,

B =
vyb

2

4h
+ vx(2xn − b),

C = xn(xn − b) +
yn − a

4h
b2.

Using this map given in (2), also taking into account the expression (5), we obtain the
particle trajectory (Fig. 3a) and its corresponding phase space portrait (Fig. 3b).
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One can observe from the Fig. 3 that particle motion is chaotic in this regime, and
‘more chaos’ can be seen by increasing of h.

If we consider the path of particles after N collision, with the initial values of particle
coordinate as x0 = 0, y0 = 0, and for the incident angles range, 0 < α < π/2, we obtain an
interesting result for the particle total path, depending on the particle incident angles (Fig. 4).

FIG. 4. The dependence of the total path on the incident angle for the param-
eters b/a = 3 and ∆θ0 = 0.01 of different values of height of corrugation:
h/a = 0.03 (a); h/a = 0.05 (b). Scaled region is calculated with the resolution
of ∆θ0 = 0.001

As can be seen from Fig. 4, ‘horizontal lines’ in the distributions means that particles
will have equal paths after N collisions for different particle incident angles. This gives us the
potential to focus the particles in needed directions, thus minimizing signal modes in an optical
fiber. Moreover, this allows us to say that chaotic behavior will be increased, according to the
increase of the corrugation height relative to the billiard side, h/a.

3. Conclusions

Thus, we derived two dimensional map presented by Eq. (5) for the rectangular billiard
system with a corrugated wall. Using the numerical calculations, we showed the possibility of
focusing particle transport by tuning the corrugation paramaters.

The obtained results can be helpful for the problem of transport and chaos control in
different waveguides and acoustic systems.
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