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In the present paper, we consider the Hamiltonian H(K), K ∈ T3 := (−π;π]3 of a system of three arbitrary
quantum mechanical particles moving on the three-dimensional lattice and interacting via zero range poten-
tials. We find a finite set Λ ⊂ T3 such that for all values of the total quasi-momentum K ∈ Λ the operator
H(K) has infinitely many negative eigenvalues accumulating at zero. It is found that for every K ∈ Λ,

the number N(K; z) of eigenvalues of H(K) lying on the left of z, z < 0, satisfies the asymptotic relation
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1. Introduction

We are going to discuss the following remarkable phenomenon of the spectral theory
of the three-particle Schrödinger operators, known as the Efimov effect: if a system of three
particles interacting through pair short-range potentials is such that none of the three two-
particle subsystems has bound states with negative energy, but at least two of them have
a zero energy resonance, then this three-particle system has an infinite number of three-
particle bound states with negative energy accumulating at zero.

The Efimov effect was discussed in [1] for the first time. Since then, this problem
has been studied on a physical level of rigor in [2, 3]. A rigorous mathematical proof for
the existence of Efimov’s effect was originally carried out in [4], and subsequently, many
works have been devoted to this subject, see for example [5–9]. The main result obtained
by Sobolev [7] (see also [9]) is an asymptotics of the form U0| log |z|| for the number N(z)
of eigenvalues on the left of z, z < 0, where the coefficient U0 does not depend on the
two-particle potentials vα and is a positive function of the ratios m1/m2 and m2/m3 of the
masses of the three particles.

In models of solid state physics [10–12] and also in lattice quantum field theory [13],
one considers discrete Schrödinger operators, which are lattice analogs of the three-particle
Schrödinger operator in continuous space. The presence of Efimov’s effect for these oper-
ators was demonstrated at the physical level of rigor without a mathematical proof for a
system of three identical quantum particles in [10,11].

In the continuous case [14] (see also [12,15]), the energy of the center-of-mass mo-
tion can be separated out from the total Hamiltonian, that is, the energy operator can be
split into the sum of the center-of-mass motion and the relative kinetic energy so that the



Universality of the discrete spectrum asymptotics 281

three-particle bound states are eigenvectors of the relative kinetic energy operator. There-
fore, Efimov’s effect either exists or does not exist for all values of the total momentum
simultaneously.

In lattice terms, the center-of-mass corresponds to a realization of the Hamiltonians
as fibered operators, that is, as the direct integral of a family of operators H(K) depending
on the values of the total quasi-momentum K ∈ T3 := (−π; π]3 (see [12]). In this case,
a bound state is an eigenvector of the operator H(K) for some K ∈ T3. Typically, this
eigenvector depends continuously on K. Therefore, Efimov’s effect may exist only for some
values of K ∈ T3.

The presence of the Efimov effect for three-particle discrete Schrödinger operators
was proved in [16–18] and asymptotic formulas for the number of eigenvalues were obtained
in [16,17], which are analogous to the results of [7,9].

In the present paper, we consider a system of three arbitrary quantum particles
on the three-dimensional lattice interacting via zero-range potentials with the dispersion

function of the form ε(p) =
3∑
i=1

(1− cos(np(i))) with n > 1. We denote by Λ the set of points

of T3 where the function ε(·) takes its (global) minimum. If at least two of the two-particle
operators have a zero energy resonance and third one is non-negative, then we prove that
for all K ∈ Λ, the three-particle discrete Schrödinger operator H(K) has infinitely many
negative eigenvalues accumulating at zero. Moreover, for any K ∈ Λ, we establish the
asymptotic formula

lim
z→−0

N(K; z)| log |z||−1 = U0 (0 < U0 <∞),

where N(K; z) is the number of eigenvalues of H(K) lying on the left of z, z < 0.
It is surprising that the asymptotics for N(K; z) is the same for all K ∈ Λ and is

stable with respect to the number n. Recall that in all papers devoted to Efimov’s effect
for lattice systems, the existence of this effect has been proved only for the zero value of
the quasi-momentum (K = 0) and for the case n = 1. In [19], for all non-trivial values
of total quasi-momentum (K 6= 0), the finiteness of the discrete spectrum of a system of
three bosons on a lattice was proven when the corresponding two-particle operator has a
zero energy resonance.

The plan of this paper is as follows: Section 1 is an introduction to the whole work.
In Section 2, the Hamiltonians of two- and three-particle systems are described as bounded
self-adjoint operators in the corresponding Hilbert spaces and the main result of the paper
is formulated. In Section 3, we discuss some results concerning threshold analysis of the
two-particle operator hα(k). In Section 4, we give a modification of the Birman-Schwinger
principle for H(K), K ∈ T3. In Section 5, we obtain an asymptotic formula for the number
of negative eigenvalues of H(K), K ∈ Λ.

Throughout the present paper, we adopt the following conventions: For each δ > 0,
the notation Uδ(p0) := {p ∈ T3 : |p − p0| < δ} stands for a δ-neighborhood of the point
p0 ∈ T3. The subscripts α, β, γ are pair-wisely different and takes values from {1, 2, 3}.

2. Description of the three-particle operator

Let Z3 be the three-dimensional lattice and l2((Z3)m) be the Hilbert space of square-
summable functions on (Z3)m, m = 2, 3. The free Hamiltonian Ĥ0 of a system of three
arbitrary quantum mechanical particles on Z3 in the coordinate representation is usually
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associated with the following bounded self-adjoint operator on the Hilbert space l2((Z3)3) :

(Ĥ0ψ̂)(x1, x2, x3) =
∑
s∈Z3

[ε̂1(s)ψ̂(x1 +s, x2, x3)+ ε̂2(s)ψ̂(x1, x2 +s, x3)+ ε̂3(s)ψ̂(x1, x2, x3 +s)],

where ε̂α(·), α = 1, 2, 3 are dispersion functions describing the particle transition from a
site to a neighboring site defined by:

ε̂α(s) :=


3

mα

as s = 0;

− 1

2mα

as s = ±nei, i = 1, 2, 3;

0 otherwise.

Here, mα > 0 are different numbers, having the meaning of a mass of the particle α,
α = 1, 2, 3, the elements ei, i = 1, 2, 3 are unit orts on Z3 and n is a fixed positive integer
with n > 1.

It is easily seen that the function ε̂α(·) is even on Z3.
The three-particle Hamiltonian Ĥ of the quantum-mechanical three particle sys-

tems with two-particle interactions v̂βγ, β, γ = 1, 2, 3 in the coordinate representation is a
bounded perturbation of the free Hamiltonian Ĥ0:

Ĥ = Ĥ0 − V̂1 − V̂2 − V̂3,

where V̂α, α = 1, 2, 3 are multiplication operators on the Hilbert space l2((Z3)3)

(V̂αψ̂)(x1, x2, x3) = v̂βγ(xβ − xγ)ψ̂(x1, x2, x3) = µαδxβxγ ψ̂(x1, x2, x3), ψ̂ ∈ l2
(
(Z3)3

)
.

Here, µα > 0 is the interaction energy of the particles β and γ, δxβxγ is the Kronecker delta.

It is clear that the three-particle Hamiltonian Ĥ is a bounded self-adjoint operator
on the Hilbert space l2((Z3)3).

Similarly, as we introduced Ĥ, we introduce the corresponding two-particle Hamil-
tonians ĥα, α = 1, 2, 3 as bounded self-adjoint operators on the Hilbert space l2 ((Z3)2):

ĥα = ĥ0
α − v̂α,

where (
ĥ0
αϕ̂
)

(xβ, xγ) =
∑
s∈Z3

[ε̂β(s)ϕ̂(xβ + s, xγ) + ε̂γ(s)ϕ̂(xβ, xγ + s)] ,

(v̂αϕ̂) (xβ, xγ) = µαδxβxγ ϕ̂(xβ, xγ), ϕ̂ ∈ l2((Z3)2).

Let us rewrite our operators in the momentum representation. We denote by T3 the
three-dimensional torus, the cube (−π, π]3 with appropriately identified sides and L2 ((T3)m)
be the Hilbert space of square integrable (complex) functions defined on (T3)m, m = 1, 2, 3.

Let Fm : L2 ((T3)m) → l2((Z3)m), m = 2, 3 be the discrete Fourier transform. The
three-particle Hamiltonian in the momentum representation is given by the bounded self-
adjoint operator on the Hilbert space L2 ((T3)3) as follows H̃ = F−1

3 ĤF3. Introducing the
total quasi-momentum K ∈ T3 the operator H̃ can be decomposed into von Neumann
direct integrals of the family of bounded self-adjoint operators H̃(K), K ∈ T3. The operator
H̃(K), K ∈ T3 is called the three-particle discrete Schrödinger operator, which is unitarily
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equivalent (see [16–18]) to the family of bounded self-adjoint operators H(K), K ∈ T3,
acting on the Hilbert space L2 ((T3)2) according to the formula:

H(K) = H0(K)− V1 − V2 − V3,

where H0(K) is the multiplication operator by the function:

EK(p, q) := ε1(p) + ε2(q) + ε3(K − p− q),
where

εα(p) :=
1

mα

ε(p), ε(p) :=
3∑
i=1

(
1− cos(np(i))

)
,

and

(V1f)(p, q) =
µ1

(2π)3

∫
T3

f(p, s)ds, (V2f)(p, q) =
µ2

(2π)3

∫
T3

f(s, q)ds,

(V3f)(p, q) =
µ3

(2π)3

∫
T3

f(s, p+ q − s)ds.

Similarly, the study of the spectral properties of the h̃α = F−1
2 ĥαF2 can be reduced

to the study of the spectral properties of the family of bounded self-adjoint operators hα(k),
k ∈ T3, corresponding to the two-particle lattice Hamiltonians on the Hilbert space L2(T3):

hα(k) = h0
α(k)− vα.

The non-perturbed operator h0
α(k) is the multiplication operator on L2(T3) by the function:

E
(α)
k (p) := εβ(p) + εγ(k − p), β < γ, α, β, γ = 1, 2, 3.

The perturbation vα is an integral operator of rank one on L2(T3):

(vαf)(p) =
µα

(2π)3

∫
T3

f(s)ds.

Therefore, by the Weyl theorem, the continuous spectrum σcont(hα(k)) of the oper-
ator hα(k) coincides with the spectrum of σ(h0

α(k)) of h0
α(k). More specifically:

σcont(hα(k)) =
[
E

(α)
min(k);E(α)

max(k)
]
,

where
E

(α)
min(k) := min

p∈T3
E

(α)
k (p) and E(α)

max(k) := max
p∈T3

E
(α)
k (p).

3. Formulation of the main results

We denote by σess(·) and σdisc(·) the essential spectrum and the discrete spectrum of
a bounded self-adjoint operator, respectively.

The following theorem, [17, 18], describes the location of the essential spectrum of
the operator H(K).

Theorem 3.1. For the essential spectrum of H(K), the following equality holds:

σess(H(K)) =
3⋃

α=1

⋃
p∈T3

{σdisc(hα(K − p)) + εα(p)} ∪ [Emin(K); Emax(K)] , (3.1)
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where
Emin(K) := min

p,q∈T3
EK(p, q) and Emax(K) := max

p,q∈T3
EK(p, q).

Let us consider the following subset of T3 :

Λ :=

{
(p(1), p(2), p(3)) : p(i) ∈

{
0,± 2

n
π;± 4

n
π; . . . ;±n

′

n
π

}
∪ Πn, i = 1, 2, 3

}
,

where

n′ :=

{
n− 2, if n is even;
n− 1, if n is odd, and Πn :=

{
{π}, if n is even;
∅, if n is odd.

Direct calculation shows that the cardinality of Λ is equal to n3. It is easy to verify
that for any K ∈ Λ, the function EK(·, ·) has non-degenerate zero minima at the points of
Λ× Λ, that is, Emin(K) = 0 for K ∈ Λ.

Since 0 = (0, 0, 0) ∈ Λ, the definition of the functions E(α)
k (·) and EK(·, ·) imply the

identities hα(0) ≡ hα(k) and H(0) ≡ H(K) for all k,K ∈ Λ.
Let C(T3) and L1(T3) be the Banach spaces of continuous and integrable functions

on T3, respectively. Let Gα be the integral operator on C(T3) with the kernel:

Gα(p, s) =
µα

(2π)3

mβmγ

mβ +mγ

1

ε(s)
.

Definition 3.2. The operator hα(0) is said to have a zero energy resonance if the number
1 is an eigenvalue of the operator Gα. If the number 1 isn’t an eigenvalue of the operator
Gα, then we say that z = 0 is a regular-type point for the operator hα(0).

We note that in Definition 3.2 the requirement of the existence of the eigenfunction
ϕα ∈ C(T3) corresponding to the eigenvalue 1 of Gα corresponds to the existence of a
solution of hα(0)fα = 0, and this solution does not belong to L2(T3). More precisely, if the
operator hα(0) has a zero energy resonance, then the function:

fα(p) = ϕα(p)(ε(p))−1,

is a solution (up to a constant factor) of the Schrödinger equation hα(0)fα = 0 and fα ∈
L1(T3) \ L2(T3) (see Lemma 4.4).

We set:

µ0
α := 8π3mβ +mγ

mβmγ

 ∫
T3

ds

ε(s)

−1

, α = 1, 2, 3.

Simple calculation shows that the operator hα(0) has a zero energy resonance if and
only if µα = µ0

α (see Lemma 4.2).
For K ∈ T3, let us denote by τess(K) the bottom of the essential spectrum of H(K)

and by N(K; z) the number of eigenvalues of H(K) lying on the left of z, z < τess(K). It is
clear that N(0; z) = N(K; z) for any K ∈ Λ.

Since the operator hα(0) has no negative eigenvalues for all µα ≤ µ0
α (see Lemma 4.3),

the operator hα(0) is non-negative for all µα ≤ µ0
α. Then, by Theorem 1 of [21], the oper-

ator hα(k) is non-negative for all µα ≤ µ0
α and k ∈ T3. Hence, the assertion Emin(K) = 0,

K ∈ Λ implies τess(K) = 0 for K ∈ Λ and µα ≤ µ0
α.

The main result of the present paper is given in the following theorem.
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Theorem 3.3. Assume µα = µ0
α, µβ = µ0

β and µγ ≤ µ0
γ. Then the operator H(0) has

infinitely many negative eigenvalues accumulating at zero and the function N(0; ·) obeys
the relation:

lim
z→−0

N(0; z)

| log |z||
= U0, 0 < U0 <∞. (3.2)

Remark 3.4. The constant U0 does not depend on the interaction energies µα, α = 1, 2, 3;
it is positive and depends only on the ratios mβ/mα, α 6= β, α, β = 1, 2, 3 between the
masses.

Remark 3.5. Clearly, by equality (3.2), the infinite cardinality of the negative discrete
spectrum of H(0) follows automatically from the positivity of U0.

Remark 3.6. It is surprising that the asymptotics (3.2) don’t depend on the cardinality
of Λ, that is, these asymptotics are the same for all n ∈ N. Since Λ|n=1 = {0} in fact,
Theorem 3.3 was proved in [17] for n = 1.

4. Threshold analysis of the two-particle operator hα(k)

In this section, we study the spectral properties of the two-particle discrete Schrödinger
operator hα(k).

For any µα > 0, k ∈ T3 and z ∈ C\σcont(hα(k)) we define the function (the Fredholm
determinant associated with the operator hα(k)):

∆α(k ; z) := 1− µα
(2π)3

∫
T3

ds

E
(α)
k (s)− z

.

Note that the function ∆α(· ; ·) is analytic in T3 × (C \ σcont(hα(k))).
The following lemma is a simple consequence of the Birman-Schwinger principle

and the Fredholm theorem.

Lemma 4.1. The number z ∈ C \ σcont(hα(k)) is an eigenvalue of the operator hα(k),
k ∈ T3 if and only if ∆α(k ; z) = 0.

We remark that from the definition of E(α)
k (·), it follows that ∆α(0 ; 0) = ∆α(k ; 0)

for k ∈ Λ.

Lemma 4.2. The following statements are equivalent:
(i) the operator hα(0) has a zero energy resonance;
(ii) ∆α(0 ; 0) = 0;
(iii) µα = µ0

α.

For the proof of Lemma 4.2, see Lemma 5.3 of [17].

Lemma 4.3. The operator hα(0) has no negative eigenvalues for all µα ≤ µ0
α.

Proof. Since the function ∆α(0 ; ·) is decreasing on (−∞; 0), we have

∆α(0 ; z) > ∆α(0 ; 0) (4.1)

for all z < 0. Definition of µ0
α implies ∆α(0 ; 0) ≥ 0 for all µα ≤ µ0

α. Hence by inequality
(4.1) we have ∆α(0 ; z) > 0 for any µα ≤ µ0

α and z < 0. By Lemma 4.1, it means that the
operator hα(0) has no negative eigenvalues for all µα ≤ µ0

α. �
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In the sequel, we denote by C1, C2, C3 different positive numbers and for δ > 0 we
set:

Tδ := T3 \
⋃
p′∈Λ

Uδ(p
′).

Lemma 4.4. If hα(0) has a zero energy resonance, then the function fα(p) = ϕα(p)(ε(p))−1

obeys the equation hα(0)fα = 0 and fα ∈ L1(T3) \ L2(T3), where the function ϕα ∈ C(T3)
is a unique (up to a constant factor) solution of Gαϕα = ϕα satisfying the condition
ϕα(0) 6= 0.

Proof. Let the operator hα(0) have a zero energy resonance. One can see that the function
fα defined in Lemma 4.4 satisfies hα(0)fα = 0. Let us show that fα ∈ L1(T3)\L2(T3). First
we recall that the solution of Gαϕα = ϕα is equal to ϕα(p) ≡ 1 (up to constant factor). The
definition of the function ε(·) implies the existence of positive constants C1, C2, C3 and δ
such that:

C1|q − p′|2 ≤ ε(q) ≤ C2|q − p′|2, q ∈ Uδ(p′), p′ ∈ Λ; (4.2)

ε(q) ≥ C3, q ∈ Tδ. (4.3)

Using the estimates (4.2) and (4.3) we have:∫
T3

|fα(s)|2ds ≥
∫

Uδ(0)

ds

ε2(s)
≥ C2

∫
Uδ(0)

ds

|s|4
=∞;

∫
T3

|fα(s)|ds =
∑
p′∈Λ

∫
Uδ(p′)

ds

ε(s)
+

∫
Tδ

ds

ε(s)
≤ C1

∑
p′∈Λ

∫
Uδ(p′)

ds

|s− p′|2
+ C3 <∞.

Therefore, fα ∈ L1(T3) \ L2(T3). �

We denote:

mβγ :=
mβ +mγ

mβmγ

, nα :=
m1 +m2 +m3

mα(mβ +mγ)
.

Now, we formulate a lemma (zero energy expansion for the Fredholm determinant,
leading to behaviors of the zero energy resonance), which is important in the proof of
Theorem 3.3, that is, the asymptotics (3.2).

Lemma 4.5. Let µα = µ0
α and K, p′ ∈ Λ. Then, the following decomposition:

∆α(K − p ; z − εα(p)) =
nµ0

αm
3/2
βγ

2π

√
nα|p− p′|2 −

2z

n2
+O(|p− p′|2) +O(|z|)

holds for |p− p′| → 0 and z → −0.

Proof. Let us sketch the main idea of the proof. Take a sufficiently small δ > 0 such that
Uδ(p

′) ∩ Uδ(q′) = ∅ for all q′ ∈ Λ with q′ 6= p′. Let µα = µ0
α and K, p′ ∈ Λ. Using the

additivity of the integral, we rewrite the function ∆α(K − p ; z − εα(p)) as:

∆α(K − p ; z − εα(p)) =

1− µ0
α

(2π)3

∑
q′∈Λ

∫
Uδ(q′)

ds

E
(α)
p (s) + εα(p)− z

+

∫
Tδ

ds

E
(α)
p (s) + εα(p)− z

 . (4.4)
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Since the function EK(·, ·) has non-degenerate zero minima at the points (p′, q′),
p′, q′ ∈ Λ, analysis similar to [17] shows that:∫

Uδ(q′)

ds

E
(α)
p (−s) + εα(p)− z

=

∫
Uδ(q′)

ds

E
(α)
p′ (−s) + εα(p′)

−

4π2m
3/2
βγ

n2

√
nα|p− p′|2 −

2z

n2
+O(|p− p′|2) +O(|z|);∫

Tδ

ds

E
(α)
p (s) + εα(p)− z

=

∫
Tδ

ds

E
(α)
p′ (s) + εα(p′)

+O(|p− p′|2) +O(|z|)

as |p− p′| → 0 and z → −0. Substituting the last two expressions into (4.4), we obtain:

∆α(K − p ; z − εα(p)) = ∆α(K − p′ ; 0) +
nµ0

αm
3/2
βγ

2π

√
nα|p− p′|2 −

2z

n2
+O(|p− p′|2) +O(|z|)

as |p−p′| → 0 and z → −0. Now, the equality µα = µ0
α, that is, ∆α(K−p′ ; 0) = 0 completes

the proof of Lemma 4.5. �

Corollary 4.6. Let µα = µ0
α and K ∈ Λ. For some C1, C2, C3 > 0 and δ > 0 the following

inequalities hold:
(i) C1|p− p′| ≤ ∆α(K − p ;−εα(p)) ≤ C2|p− p′|, p ∈ Uδ(p′), p′ ∈ Λ;
(ii) ∆α(K − p ;−εα(p)) ≥ C3, p ∈ Tδ.

Proof. Lemma 4.5 yields the assertion (i) for some positive numbers C1, C2. The positivity
and continuity of the function ∆α(· ;−εα(·)) on the compact set Tδ imply the assertion (ii).

�

5. The Birman-Schwinger principle

For a bounded self-adjoint operator A acting in the Hilbert space R, we define the
number n(γ,A) as follows:

n(γ,A) = sup{dimF : (Au, u) > γ, u ∈ F ⊂ R, ||u|| = 1}.

The number n(γ,A) is equal to infinity if γ < maxσess(A); if n(γ,A) is finite, then
it is equal to the number of the eigenvalues of A larger than γ.

By the definition of N(K; z), we have:

N(K; z) = n(−z,−H(K)), −z > −τess(K).

Let µα > 0 and K ∈ T3. Then we have ∆α(K − p ; z− εα(p)) > 0 for any p ∈ T3 and
z < τess(K).

In what follows, we deal with the operators in various spaces of vector-valued
functions. They will be denoted by bold letters and will be written in matrix form.

Let Ω ⊂ R3 be the measurable set and L(m)
2 (Ω) be the Hilbert space of m-component

vector functions w = (w1, . . . , wm), wi ∈ L2(Ω), i = 1, . . . ,m.
In our analysis of the discrete spectrum of H(K), the crucial role is played by the

3 × 3 self-adjoint block operator matrix T̂(K; z), z < τess(K) acting on L
(3)
2 (T3) with the
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entries T̂αβ(K; z), where T̂αβ(K; z), α ≤ β is the integral operator on L2(T3) with kernel
T̂αα(K; z; ·, ·) :

T̂αα(K; z; p, q) = 0;

T̂12(K; z; p, q) =

√
µ1µ2√

∆1(K − p ; z − ε1(p))

(EK(p, q)− z)−1√
∆2(K − q ; z − ε2(q))

,

T̂13(K; z; p, q) =

√
µ1µ3√

∆1(K − p ; z − ε1(p))

(EK(p, q − p)− z)−1√
∆3(q ; z − ε3(K − q))

,

T̂23(K; z; p, q) =

√
µ2µ3√

∆2(K − p ; z − ε2(p))

(EK(q − p, p)− z)−1√
∆3(q ; z − ε3(K − q))

,

and for α > β the operator T̂αβ(K; z) is the adjoint operator to T̂βα(K; z).

The following lemma is a realization of the well-known Birman-Schwinger principle
for three-particle Schrödinger operators on a lattice (see [7,16,17]).

Lemma 5.1. For z < τess(K) the operator T̂(K; z) is compact and continuous in z and

N(K; z) = n(1, T̂(K; z)).

For the proof of the lemma, we refer to [17].

6. Asymptotics for the number of negative eigenvalues of H(0)

In this section, we derive the asymptotic relation (3.2) for the number of negative
eigenvalues of H(0).

First, we recall that T̂(0; z) ≡ T̂(K; z) for all K ∈ Λ. Let S2 be the unit sphere in R3

and σ = L2(S2). As we shall see, the discrete spectrum asymptotics of the operator T̂(0; z)
as z → −0 is determined by the integral operator Sr, r = 1/2| log |z|| in L2((0, r), σ(3)) with
the kernel Sαβ(y, t), y = x− x′, x, x′ ∈ (0, r), t = 〈ξ, η〉, ξ, η ∈ S2, where:

Sαα(y, t) = 0; Sαβ(y, t) =
1

4π2

uαβ
cosh(y + rαβ) + sαβt

;

uαβ = kαβ

(
m−1
βγm

−1
αγ

nαnβ

)1/4

, rαβ =
1

2
log

mβγ

mαγ

, sαβ =
(mαγmβγ)

1/2

mγ

,

kαβ being such that kαβ = 1 if both subsystems α and β have zero energy resonances,
otherwise, kαβ = 0. The eigenvalue asymptotics for the operator Sr have been studied in
detail by Sobolev [7], by employing an argument used in the calculation of the canonical
distribution of Toeplitz operators.

Let us recall some results of [7] which are important in our work.
The coefficient in asymptotics (3.2) of N(0; z) will be expressed by means of the

self-adjoint integral operator Ŝ(θ), θ ∈ R, in the space σ(3), whose kernel is of the form:

Ŝαα(θ, t) = 0; Ŝαβ(θ, t) =
1

4π2
uαβe

irαβθ
sinh[θ arccos sαβt]√

1− s2
αβt sinh(πθ)

,
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and depends on the inner product t = 〈ξ, η〉 of the arguments ξ, η ∈ S2. For γ > 0, we
define:

U(γ) :=
1

4π

+∞∫
−∞

n(γ, Ŝ(θ))dθ.

This function was studied in detail in [7]; it is used in the existence proof for the Efimov
effect. In particular, the function U(·) is continuous in γ > 0, and the limit:

lim
r→0

1

2
r−1n(γ,Sr) = U(γ), (6.1)

exists such that U(1) > 0.
Theorem 3.3 can be derived by using a perturbation argument based on the following

lemma.

Lemma 6.1. Let A(z) = A0(z) + A1(z), where A0(z) (A1(z)) is compact and continuous
for z < 0 (for z ≤ 0). Assume that the limit lim

z→−0
f(z)n(γ,A0(z)) = l(γ) exists and l(·)

is continuous in (0; +∞) for some function f(·), where f(z) → 0 as z → −0. Then, the
same limit exists for A(z) and lim

z→−0
f(z)n(γ,A(z)) = l(γ).

For the proof of Lemma 6.1, see Lemma 4.9 in [7].

Remark 6.2. Since the function U(·) is continuous with respect to γ, it follows from
Lemma 6.1 that any perturbation of A0(z) treated in Lemma 6.1 (which is compact and
continuous up to z = 0) does not contribute to the asymptotic relation (3.2).

Now, we are going to reduce the study of the asymptotics for the operator T̂(0; z)
to that of the asymptotics Sr.

Let T(δ; |z|) be the 3× 3 block operator matrix in L(3)
2 (T3) whose entries Tαβ(δ; |z|)

are integral operators with the kernel Tαβ(δ; |z|; ·, ·) :

Tαα(δ; |z|; p, q) = 0;

Tαβ(δ; |z|; p, q) =

Dαβ

∑
p′,q′∈Λ

χδ(p− p′)χδ(q − q′) (nα|p− p′|2 + 2|z|/(n2))
− 1

4 (nβ|q − q′|2 + 2|z|/(n2))
− 1

4

m−1
αγ |p− p′|2 + 2m−1

γ (p− p′, q − q′) +m−1
βγ |q − q′|2 + 2|z|/(n2)

,

where

Dαβ =
m
−3/4
αγ m

−3/4
βγ

2n3π2
, α, β, γ = 1, 2, 3, α 6= β 6= γ,

and χδ(·) is the characteristic function of the domain Uδ(0).

Lemma 6.3. Let µα = µ0
α, µβ = µ0

β, µγ ≤ µ0
γ. For any z ≤ 0 and sufficiently small δ > 0,

the difference T̂(0; z)−T(δ; |z|) belongs to the Hilbert-Schmidt class, and is continuous
with respect to z ≤ 0.

Proof. We prove the lemma in the case µα = µ0
α, α = 1, 2, 3. The case µα = µ0

α, µβ = µ0
β,

µγ < µ0
γ can be proven similarly.
By the definition of εα(·), we have:

εα(p) =
n2

2mα

|p− p′|2 +O(|p− p′|4),
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as |p− pi| → 0 for p′ ∈ Λ, which implies the expansion:

E
(α)
K−p(q) + εα(p) = n2

[
|p− p′|2

2mαγ

+
(p− p′, q − q′)

mγ

+
|q − q′|2

2mβγ

]
+O(|p− p′|4) +O(|q − q′|4),

as |p− p′|, |q − q′| → 0 for K, p′, q′ ∈ Λ. Then, there exist C1, C2 > 0 and δ > 0 such that:

C1(|p− p′|2 + |q − q′|2) ≤ E
(α)
K−p(q) + εα(p) ≤ C2(|p− p′|2 + |q − q′|2),

(p, q) ∈ Uδ(p′)× Uδ(q′) for K, p′, q′ ∈ Λ;

E
(α)
K−p(q) + εα(p) ≥ C1, (p, q) ∈ T2

δ , K ∈ T3.

Applying last estimates and Corollary 4.6, we obtain that there exists C1 > 0 such
that the kernel of the operator T̂αβ(0; z) − Tαβ(δ; |z|) can be estimated by the square-
integrable function:

C1

∑
p′,q′∈Λ

[
1

|p− p′|2 + |q − q′|2
+

|p− p′|−1/2

|p− p′|2 + |q − q′|2
+

|q − q′|−1/2

|p− p′|2 + |q − q′|2
+ 1

]
.

Hence, the operator T̂αβ(0; z) − Tαβ(δ; |z|) belongs to the Hilbert-Schmidt class for all
z ≤ 0. In combination with the continuity of the kernel of the operator with respect to
z < 0, this implies the continuity of T̂αβ(0; z) − Tαβ(δ; |z|) with respect to z ≤ 0. The
lemma is proved. �

The following theorem is fundamental for the proof of the asymptotic relation (3.2).

Theorem 6.4. The following relation holds

lim
|z|→0

n(γ,T(δ; |z|))
| log |z||

= U(γ), γ > 0. (6.2)

Proof. First we prove Theorem 6.4 under the condition that all two-particle operators have
zero energy resonances, that is, in the case where µα = µ0

α, α = 1, 2, 3. The case where
only two operators hα(0) and hβ(0) have zero energy resonance can be proven similarly.

The subspace of vector functions w = (w1, w2, w3) with components having support
in
⋃
p′∈Λ

Uδ(p
′) is an invariant subspace for the operator T(δ; |z|).

Let T0(δ; |z|) be the restriction of the operator T(δ; |z|) to the subspace L(3)
2 (

⋃
p′∈Λ

Uδ(p
′)),

that is, a 3 × 3 block operator matrix in L
(3)
2 (

⋃
p′∈Λ

Uδ(p
′)) whose entries T (0)

αβ (δ; |z|) are the

integral operators with the kernel T (0)
αβ (δ; |z|; ·, ·), where T (0)

αα (δ; |z|; p, q) = 0 and the function

T
(0)
αβ (δ; |z|; ·, ·) is defined on

⋃
p′∈Λ

Uδ(p
′)×

⋃
q′∈Λ

Uδ(q
′) as:

T
(0)
αβ (δ; |z|; p, q) = Dαβ

(nα|p− p′|2 + 2|z|/(n2))
− 1

4 (nβ|q − q′|2 + 2|z|/(n2))
− 1

4

m−1
αγ |p− p′|2 + 2m−1

γ (p− p′, q − q′) +m−1
βγ |q − q′|2 + 2|z|/(n2)

,

(p, q) ∈ Uδ(p′)× Uδ(q′) for p′, q′ ∈ Λ.

In the remainder of the proof, for convenience, we numerate the points of Λ as
p1, . . . , pn3 and set 1, n = 1, . . . , n.
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Since L2(
n3⋃
i=1

Uδ(pi)) ∼=
n3⊕
i=1

L2(Uδ(pi)), we can express the integral operator T (0)
αβ (δ; |z|)

as the following n3 × n3 block operator matrix T
(0)
αβ(δ; |z|) acting on

n3⊕
i=1

L2(Uδ(pi)) as:

T
(0)
αβ(δ; |z|) =

 T
(1,1)
αβ (δ; |z|) . . . T

(1,n3)
αβ (δ; |z|)

...
. . .

...
T

(n3,1)
αβ (δ; |z|) . . . T

(n3,n3)
αβ (δ; |z|)

 ,

where T
(i,j)
αβ (δ; |z|) : L2(Uδ(pj)) → L2(Uδ(pi)) is an integral operator with the kernel

T
(0)
αβ (δ; |z|; p, q), (p, q) ∈ Uδ(pi)× Uδ(pj) for i, j = 1, n3.

It is easy to show that T0(δ; |z|) is unitarily equivalent to the 3 × 3 block operator
matrix T(r), r = |z|− 1

2 , acting on L(n3)
2 (Ur(0))⊕L(n3)

2 (Ur(0))⊕L(n3)
2 (Ur(0)) with the entries

Tαβ(r) : L
(n3)
2 (Ur(0))→ L

(n3)
2 (Ur(0)) :

Tαα(r) = 0; Tαβ(r) =

 Tαβ(r) . . . Tαβ(r)
...

. . .
...

Tαβ(r) . . . Tαβ(r)

 ,

where Tαβ(r) is the integral operator on L2(Ur(0)) with the kernel:

Dαβ
(nα|p|2 + 2/(n2))

− 1
4 (nβ|q|2 + 2/(n2))

− 1
4

m−1
αγ |p|2 + 2m−1

γ (p, q) +m−1
βγ |q|2 + 2/(n2)

.

The equivalence is realized by the unitary dilation (3n3 × 3n3 diagonal matrix):

Br :
3n3⊕
i=1

L2(Uδ(pi))→ L
(3n3)
2 (Ur(0)),

Br = diag{B(1)
r , . . . , B(n3)

r , B(1)
r , . . . , B(n3)

r , B(1)
r , . . . , B(n3)

r }.

Here, the operator B(i)
r : L2(Uδ(pi))→ L2(Ur(0)), i = 1, n3 acts as:

(B(i)
r f)(p) =

(r
δ

)− 3
2
f

(
δ

r
p+ pi

)
.

Let us introduce the 3n3 × 1 and 1× 3n3 block operator matrices:

E : L
(3n3)
2 (Ur(0))→ L

(3)
2 (Ur(0)), Ar : L

(3)
2 (Ur(0))→ L

(3n3)
2 (Ur(0))

of the form

Ar =

 0 A12(r) A13(r)
A21(r) 0 A23(r)
A31(r) A32(r) 0

 , E = diag{I, I, I},

where Aαβ(r) and I are the n3 × 1 and 1× n3 matrices of the form:

Aαβ(r) =

 T
(1)
αβ (r)

...
T

(1)
αβ (r)

 , I = (I . . . I),

respectively, here I is the identity operator on L2(Ur(0)).
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It is well known that if B1, B2 are bounded operators and γ 6= 0 is an eigenvalue
of B1B2, then γ is an eigenvalue for B2B1 as well of the same algebraic and geometric
multiplicities (see e.g. [20]). Therefore, n(γ,ArE) = n(γ,EAr), γ > 0. Note that Tαβ(r) =
Aαβ(r)I and: n3Tαβ(r) = IAαβ(r). Hence, direct calculation shows that T(r) = ArE and

EAr : L
(3)
2 (Ur(0))→ L

(3)
2 (Ur(0)), EAr = n3

 0 T
(1)
12 (r) T

(1)
13 (r)

T
(1)
21 (r) 0 T

(1)
13 (r)

T
(1)
31 (r) T

(1)
32 (r) 0

 .

So, n(γ,T1(r)) = n(γ,EAr), γ > 0.
Furthermore, we can replace:(

nα|p|2 +
2

n2

) 1
4

,

(
nβ|q|2 +

2

n2

) 1
4

and
|p|2

mαγ

+
2(p, q)

mγ

+
|q|2

mβγ

+
2

n2

by the expressions:(
nα|p|2

) 1
4 (1− χ1(p))−1,

(
nβ|q|2

) 1
4 (1− χ1(q))−1 and

|p|2

mαγ

+
2(p, q)

mγ

+
|q|2

mβγ

,

respectively, because the corresponding difference is a Hilbert-Schmidt operator and con-
tinuous up to z = 0. In this case, we obtain the block operator matrix S(r) on L(3)

2 (Ur(0) \
U1(0)) whose entries Sαβ(r) are the integral operators with the kernel Sαβ(r; ·, ·) :

Sαα(r; p, q) = 0; Sαβ(r; p, q) =
n3Dαβ

(n1n2)1/4

|p|−1/2|q|−1/2

m−1
αγ |p|2 + 2m−1

γ (p, q) +mβγ|q|2
.

Using the dilation:

M = diag{M,M,M} : L
(3)
2 (Ur(0) \ U1(0))→ L2((0, r), σ(3)), (Mf)(x,w) = e3x/2f(exw),

where r = 1
2
| log |z||, x ∈ (0, r), w ∈ S2, one can see that the operator S(r) is unitarily

equivalent to the integral operator Sr.
Since the difference of the operators Sr and T(δ; |z|) is compact (up to unitary

equivalence) and r = 1/2| log |z||, we obtain the equality:

lim
|z|→0

n(γ,T(δ; |z|))
| log |z||

= lim
r→0

1

2
r−1n(γ,Sr), γ > 0.

Now Lemma 6.1 and the equality (6.1) completes the proof of Theorem 6.4. �

Proof of Theorem 3.3. Let µα = µ0
α, α = 1, 2, 3. Using Lemmas 6.1, 6.3 and Theorem 6.4

we have:

lim
|z|→0

n(1, T̂(z))

| log |z||
= U(1).

Taking into account the last equality and Lemma 5.1, and setting U0 = U(1), we complete
the proof of Theorem 3.3. �
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