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We consider the control and inverse problems for serially connected and tree-like networks of strings with point masses loaded at the internal

vertices. We prove boundary controllability of the systems and the identifiability of varying coefficients of the string equations along with the

complete information on the graph, i.e. the loaded masses, the lengths of the edges and the topology (connectivity) of the graph. The results

are achieved using the Titchmarch-Weyl function for the spectral problem and the Steklov-Poincaré operator for the dynamic wave equation on

the tree. The general result is obtained by the leaf peeling method which reduces the inverse problem layer-by-layer from the leaves to the

fixed root of the tree.
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1. Introduction

This paper concerns the control and inverse problems for differential equations on quantum graphs. By
quantum graphs, we understand differential operators on geometric graphs coupled by certain vertex matching
conditions. B. S. Pavlov and his former student N. I. Gerasimenko were among the first researchers to develop a
mathematically rigorous approach to differential operators on metric graphs in the 1980’s [1, 2].

Network-like structures play a fundamental role in many scientific and engineering problems. The classical
problem here that aries from applications is the problem of oscillations of the flexible structures made of strings,
beams, cables, and struts. These models describe bridges, space-structures, antennas, transmission-line posts, steel-
grid reinforcements and other typical objects of civil engineering. More recently, the applications on a much
smaller scale have come into focus. In particular, hierarchical materials like ceramic or metallic foams, percolation
networks and carbon and graphene nano-tubes, and graphene ribbons have attracted much attention.

Papers discussing differential and difference equations on graphs have been appearing in various areas of
science and mathematics since the 1930’s, but in the last two decades, their numbers have grown enormously.
Quantum graphs arise as natural models of various phenomena in chemistry (free-electron theory of conjugated
molecules), biology (genetic networks, dendritic trees), geophysics, environmental science, disease control, and
even in the internet (internet or network tomography). In physics, interest in quantum graphs arose, in particular,
from applications to nano-electronics and quantum waveguides. On the other hand, quantum graph theory gives rise
to numerous challenging problems related to many areas of mathematics from combinatorics to PDEs and spectral
theory. Work on quantum graph theory and its applications have truly interdisciplinary character, and a series of
meetings on this topic has stimulated collaboration of researchers from different areas of science, engineering and
mathematics. A number of surveys and collections of papers on quantum graphs have appeared recently, and the
first book on this topic by Berkolaiko and Kuchment [3] contains an excellent list of references.

Control and inverse theories constitute important parts of this rapidly developing area of applied mathematics
— analysis on graphs. It is tremendously important for all aforementioned applications. However, these theories
have not been sufficiently developed. Control and inverse problems for DEs on graphs appear to be much more
complicated than similar problems on an interval (see, e.g. [4, 5] and references therein).

A new effective leaf-peeling method for solving inverse problems for differential equations on graphs without
cycles has been proposed in [5] and developed further in [6, 7]. The main goal of the present paper is to extend
this method to DEs on graphs with attached point masses.

Let Γ = E ∪ V be a finite compact metric graph without cycles, where E = {ej}Nj=1 is a set of edges and

V = {νj}N+1
j=1 is a set of vertices. We recall that a graph is called a metric graph if every edge ej ∈ E is identified

with an interval (a2j−1, a2j) of the real line with a positive length lj = |a2j−1 − a2j |, and a graph is a tree if it
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has no cycles. The edges are connected at the vertices vj which can be considered as equivalence classes of the
edge end points {aj}.

Let {γ1, . . . , γm} = ∂Γ ⊂ V be the boundary vertices, i.e. if the index (or multiplicity) of a vertex, id(ν), is
the number of edges incident to it, then ∂Γ = {ν ∈ V |id(ν) = 1}. A nonnegative mass Mν is attached to each
vertex ν ∈ V \ ∂Γ.

In Fig. 1 we give an example of a star graph (a graph with one internal vertex). Such graphs play an important
role in the leaf peeling method described below in Sec. 3. A tree with m = 9 and N = 12 is presented in Fig. 2.

FIG. 1. A star graph FIG. 2. A metric tree

Let q be a continuous function on Γ. Our initial boundary value problem is:

utt − uxx + q(x)u = 0 in {Γ \ V } × (0, T ) (1.1)∑
ej∼ν ∂uj(ν, t) = Mνutt(ν, t) at each vertex ν ∈ V \ ∂Γ, and t ∈ [0, T ]

u(·, t) is continuous at each vertex, for t ∈ [0, T ]
(1.2)

u = f on ∂Γ× [0, T ] (1.3)

u|t=0 = 0 in Γ. (1.4)

In (1.2) (and below), ∂uj(ν) denotes the derivative of u at the vertex ν taken along the edge ej in the direction
outwards from the vertex. Also, ej ∼ ν means edge ej is incident to the vertex ν, and the sum is taken over all
edges incident to ν. Since ∂Γ consists of m vertices, f can be naturally identified with a function acting from
[0, T ] to Rm.

The metric graph Γ determines naturally the Hilbert space of square integrable functions H = L2(Γ). We
define the space H1 of continuous functions v on Γ such that v|e ∈ H1(e) for every e ∈ E.

The f appearing in (1.3) is the (boundary) control for the problem (1.1)-(1.4), and a solution to (1.1)-(1.4) will
be denoted uf . One can prove that for f ∈ FT := L2([0, T ];Rm), the generalized solution vf of (1.1)-(1.4) belongs
to C([0, T ];H) (see Theorem 1 below), and the control operator WT : FT → H, given by WT f := uf (·, T ) is
bounded.

The response operator (Steklov-Poincaré operator) for the system, RT = {RTij}mi,j=1, defined on FT is defined
by:

(RT f)(t) = ∂uf (·, t)|∂Γ , 0 < t < T . (1.5)

Our dynamic inverse problem is to recover the unknown coefficient q(x) on each edge of the graph from the
response operator RT . We can also recover the graph topology, all Mν , ν ∈ V \ ∂Γ, and the lengths of all the
edges. We can actually do this with the reduced operator {RTij}

m−1
i,j=1. That is, the method has the flexibility of not

needing the control and observation at one of the boundary vertices. We prove the dynamic inverse problem has a
unique solution for sufficiently large T (see Theorem 2 below) and give a constructive method for finding it.

Applying formally the Fourier–Laplace transform

g 7→
∞∫

0

g(t)eiωtdt
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to equations (1.1)–(1.3), we obtain the following boundary value problem depending on a complex parameter
λ = ω2 :

−φxx(x, λ) + q(x)φ(x, λ) = λφ(x, λ) on {Γ \ V }, (1.6)∑
ej∼ν ∂φj(ν, λ) = −λMνφ(ν, λ) at each vertex ν ∈ V \ ∂Γ,

φ(·, λ) is continuous at each vertex,
(1.7)

The system of differential equations (1.6), (1.7) with zero Dirichlet boundary condition has only a trivial solution
for λ /∈ R. Therefore, for any α ∈ Cm, this system of equations has a unique solution, φα(x, λ), satisfying
non-zero boundary conditions:

φα(γj , λ) = αj , j = 1, 2, ...,m, α = col {α1, . . . , αm}, (1.8)

The m ×m matrix M(λ) defined by M(λ)α = ∂φα|∂Γ is called the Titchmarsh–Weyl matrix function, or the
TW-function. The TW-function is also known as the (spectral) Dirichlet-to-Neumann map. The TW-functionM(λ)
known for =λ > 0 will play the role of the spectral data for solving boundary inverse problems on graphs.

2. Main results

In the case of a string with loaded masses it was noticed [8, 9] that the wave transmitted through a mass is
more regular than the incoming wave. A similar effect also occurs for networks of strings. To formulate the result,
we need the following definition. Among all paths from edge ei to the boundary vertex γj , let the degree, di, of
the edge ei be the minimal (with respect to j) number of nonzero loaded masses on the path. For the following
theorem we assume that q|ej ∈ Cdj (ej).

Theorem 1. Assume Mν > 0 for all ν. If f ∈ FT , then for any t ∈ [0, T ], uf (·, t) ∈ H and uf ∈ C([0, T ];H).
Furthermore, for each ej ∈ E, uf |ej ∈ C([0, T ];Hdj (ej)).

The proof of the theorem is based on the analysis of the waves incoming to, transmitted through and reflected
from an inner vertex, taking into account the conditions (1.2). For the simplest graph of serially connected strings
with attached masses such a result was obtained in [8].

The next theorem describes the solution of the dynamic inverse problem.

Theorem 2. Let T∗ = 2 maxj 6=m dist{γj , γm}. The operator {RTij}
m−1
i,j=1 known for T > T∗ uniquely determines

q on Γ, {Mν : ν ∈ V \ ∂Γ}, {lj : j = 1, . . . , N} and the graph topology. If the topology is known, all other
parameters can be found from the main diagonal {RTii}

m−1
i=1 of the reduced response operator.

We also extend to our networks the leaf peeling method proposed in [5] (and generalized for strings with
attached masses in [10]) and develop a constructive algorithm solving the inverse problem.

A spectral analog of Theorem 2 reads as follows.

Theorem 3. The reduced TW matrix function {Mij(λ)}m−1
i,j=1 known for =λ > 0 uniquely determines q on Γ,

{Mν : ν ∈ V \ ∂Γ}, {lj : j = 1, . . . , N} and the graph topology. If the topology is known, all other parameters
can be found from the main diagonal {Mii(λ)}m−1

i=1 of the reduced TW matrix function.

3. Proof of Theorem 3

The response operator RT and TW-function M(λ) are connected with each other by the Fourier–Laplace
transform (see, e.g. [5]). Therefore, knowledge of M(λ) allows one to find RT for all T > 0, and knowledge of
RT for all T > 0 allows one to find M(λ).

In this section, we prove Theorem 3. We will give a brief description of an algorithm which allows us to
recalculate the TW matrix function from the original graph to a smaller graph by “pruning” boundary edges.
Ultimately, doing so allows us to reduce the original inverse problem on the graph to the inverse problem on a
single interval.

Our reduction algorithm combines both spectral and dynamical approaches, i.e. uses M(λ) and RT . As we
mentioned above, the TW matrix function determines the response operator for the system (1.1)-(1.4). Therefore,
under the conditions of Theorem 3 the entries RTij , i, j = 1, . . . ,m− 1 are known for T > 0.

Step 1. Knowledge of RTjj for sufficiently large T allows one to recover the length of the edge e ∈ E incident
to γj , the potential q on e and the mass Mν , where ν ∈ V \ ∂Γ is an inner vertex to which e is incident. We can
also recover id(ν), the total number of edges incident to ν. The proof of these statements is based on the analysis
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of the waves incoming to, transmitted through and reflected from vertex ν. Similar analysis was presented in [5]
without the loaded masses; this was based on the boundary control method in inverse theory.

Step 2. We determine the boundary edges which have a common end point using the non-diagonal entries RTij
of the response operator. Since the speed of wave propagation in the system (1.1)-(1.4) equals one, two boundary
edges, say, ei and ej , incident to the boundary edges γi and γj with the lengths li and lj have a common end
point if and only if:

RTij =

{
0 for T < li + lj
6= 0, for T > li + lj .

(3.1)

Definition of a sheaf. We consider a subgraph of Γ which is a star graph consisting of all edges incident to an
internal vertex v. This star graph is called a sheaf if all but one its edges are the boundary edges of Γ. It is known
that any tree has at least two sheaves.

Step 3. Leaf peeling. We consider now a sheaf consisting, say, of several boundary edges e1, . . . , ep, p < m,
incident to boundary vertices γ1, . . . , γp are connected at the vertex νs (see, e.g. vertices γ1, γ2, γ3, ν1 on Fig. 2).
From Step 1, we know the potential on these edges, their lengths and the index of the vertex νs.

The index of the vertex νs is p+ 1 and there is exactly one internal edge incident to νs. We denote by M̃(λ)

the TW matrix function associated with the reduced graph Γ̃, i.e. the original graph Γ without the boundary edges
e1, . . . , ep and vertices γ1, . . . , γp.

We denote by M̃0i(λ), M̃i0(λ) and M̃00(λ) the entries of M̃(λ) related to the “new” boundary point νs0 of
the graph Γ̃. The other entries of M̃(λ) are denoted by M̃ij , i, j = p + 1, . . . ,m. We demonstrate now how to
find the entries of M̃(λ).

First, we recalculate the entries M̃00(λ) and M̃0i(λ), i = p+ 1, . . . ,m− 1. we choose a boundary point, say
γ1, of the star-subgraph. Let φ(x, λ) be the solution to the problem (1.6), (1.7) subject to the boundary conditions:

φ(γ1, λ) = 1, φ(γj , λ) = 0, j = 2, . . . ,m− 1,m. (3.2)

We notice that on the boundary edge e1 the function φ solves the Cauchy problem:

−φ′′ + q(x)φ = λφ, x ∈ e1, (3.3)

φ(γ1, λ) = 1, φ′(γ1, λ) =M11(λ). (3.4)

On the other edges of the star subgraph it solves

−φ′′ + q(x)φ = λφ, x ∈ ei, i = 2, . . . , p, (3.5)

φ(γi, λ) = 0, φ′(γi, λ) =M1i(λ), i = 2, . . . , p. (3.6)

Since the potential on the edges e1, . . . , ep is known, we can solve the Cauchy problems (3.3), (3.4) and (3.5),
(3.6) and use the matching conditions (1.7) at the internal vertex νs to recover the values φ(νs, λ) and φ′(νs, λ)
on the “new” boundary edge at the “new” boundary point νs. Thus we obtain:

M̃00(λ) = φ′(νs,λ)
φ(νs,λ) ,

M̃0i(λ) = M1i(λ)
φ(νs,λ) , i = p+ 1, . . . ,m.

(3.7)

We recall that here =λ 6= 0, and so, φ(νs, λ) 6= 0. Otherwise, λ would be an eigenvalue of a selfadjoint operator.
To find M̃i0(λ) and M̃ij(λ) , i = p + 1, . . . ,m − 1 we fix γi (i > p) and consider the solution ψ(x, λ) to

(1.6), (1.7) with boundary conditions

ψ(γi, λ) = 1, ψ(γj , λ) = 0, j 6= i. (3.8)

The function ψ then solves the following Cauchy problems on the edges e1, . . . , ep:

−ψ′′ + q(x)ψ = λψ, x ∈ ej , j = 1, . . . , p, (3.9)

ψ(γj , λ) = 0, ψ′(γj , λ) =Mij(λ). (3.10)

Since we know the potential on the edges e1, . . . , ep, we can solve the Cauchy problems (3.9), (3.10) and use the
conditions at the internal vertex νs to recover the values ψ(νs, λ) and ψ′(νs, λ) at the “new” boundary edge with
the “new” boundary point νs.

Now, we consider the following linear combination of the solutions φ and ψ:

ϕ(x, λ) = ψ(x, λ)− ψ(νs, λ)

φ(νs, λ)
φ(x, λ) . (3.11)
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It is easy to verify that on the subgraph Γ̃ the function ϕ satisfies the boundary conditions:

ϕ(γi, λ) = 1, ϕ(γj , λ) = 0, j 6= i . (3.12)

Thus, from (3.11), we obtain that:

M̃i0(λ) = ψ′(νs, λ)− ψ(νs, λ)M̃00(λ),

M̃ij(λ) =Mij(λ)− ψ(νs, λ)M̃0j(λ).
(3.13)

To recover all elements of the reduced TW matrix function, we need to use this procedure for all i, j = p +
1, . . . ,m− 1.

We conclude that the (reduced) TW-function for the graph Γ determines the (reduced) TW-function for the
graph Γ̃. The inverse problem is reduced to the inverse problem for a smaller graph. Since the graph Γ̃ is finite,
this procedure may be continued, but it ends after a finite number of steps.

The proofs of Theorems 1 and 2 for arbitrary tree will be presented in a forthcoming paper. The quantum
graph with the simplest topology — a network of serially connected strings — is considered in the next section.

4. Network of serially connected strings

We consider the wave equation on the interval [0, `] with N masses Mj > 0 attached at the points aj , j =
1, . . . , N, where 0 = a0 < a1 < ... < aN < aN+1 = `. This is modeled by:

ρ(x)
∂2u

∂t2
− ∂2u

∂x2
= 0, t ∈ (0, T ), x ∈ Ω := (0, a1) ∪ (a1, a2) ∪ . . . ∪ (aN , `),

u(a−j , t) = u(a+
j , t), Mj utt(aj , t) = ux(a+

j , t)− ux(a−j , t),

u(x, 0) = ut(x, 0) = 0,

u(0, t) = f(t), f ∈ FT := L2(0, T ), u(`, t) = 0.

Here ρ is a positive function on [0, `] and ρ|[aj ,aj+1] ∈ Cj+2[aj , aj+1], j = 0, . . . , N .
We show that the wave transmitted through a mass is more regular than the incoming wave. We define the

spaces W, WT :

W =
{
φ ∈ L2(0, a1)×H1(a1, a2)× ...HN (aN , `) :

φ(a−j ) = φ(a+
j ), φ′(a−j ) = φ′(a+

j )−Mj φ
′′(a+

j )/ρ(a+
j ), φ(`) = 0

}
,

WT = {φ ∈W : φ(x) = 0 for x ≥ X(T )} ,
where

T =

X(T )∫
0

√
ρ(x) dx , L =

l∫
0

√
ρ(x) dx .

The following result on the regularity of the solution of the initial boundary value problem stated above and
on the controllability of this dynamical system has been proved in [8].

Theorem 4. Suppose T ≤ L :=
l∫

0

√
ρ(x) dx. For any f ∈ FT , uf ∈ C(0, T ;WT ) and for any φ ∈ WT , there

exists a unique f ∈WT such that uf (x, T ) = φ(x). Furthermore,

‖uf (·, T )‖W � ‖f‖FT .

For T > L,

{uf (·, T ) : f ∈ L2(0, T )} = W.

Our dynamical inverse problem is to recover unknown parameters of the system from the response operator

RT : FT 7→ FT , Dom(RT ) = {f ∈ H1(0, T ), f(0) = 0},

(RT f)(t) = ufx(0, t), t ∈ (0, T ).

The main result is this section is:

Theorem 5. Let T > 2L. Given RT , one can find ρ(x), l, aj , and Mj , j = 1, . . . , N.
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We prove this theorem in several steps. First, we consider the spectral boundary value problem corresponding
our dynamical system:

−ϕ′′(x, λ) = λ2ρ(x)ϕ(x, λ), x ∈ Ω,

ϕ(0, λ) = ϕ(`, λ) = 0, ϕ(a−j , λ) = ϕ(a+
j , λ),

−Mj λ
2ϕ(aj , λ) = ϕ′(a+

j , λ)− ϕ′(a−j , λ) ∀j.
The eigenvalues λ2

n of this problem are simple and the eigenfunctions ϕn form the orthonormal basis in the space
H := L2

ρ(0, l)⊕RN with the inner product:

〈φ, ψ〉H =

l∫
0

φ(x)ψ(x)ρ(x)dx+

N∑
j=1

Mjφ(aj)ψ(aj) .

We set
HT = {φ ∈ H : φ(x) = 0 for x ≥ X(T )} .

The connecting operator is defined as:

CT : FT 7→ FT , (CT f, g)FT :=
〈
uf (·, T ), ug(·, T )

〉
H .

The connecting operator can be written in the form CT = (UT )∗(UT ) where

UT : FT 7→WT , UT f = uf (·, T ).

The exact controllability (see Theorem 4) implies that CT is bounded and boundedly invertible.
Our second step is:

Theorem 6. Operator CT can be explicitly expressed through the response operator on the double interval:
CT = − 1

2 (ST )∗I2TR2TST , where:

(ST f)(t) =

{
f(t) if t ∈ [0, T ],

−f(2T − t) if t ∈ (T, 2T ],
(I2T f)(t) =

t∫
0

f(s)ds.

Sketch of the proof of Theorem 6. Set w(s, t) :=
〈
uf (·, s), ug(·, t)

〉
H .

We notice that (CT f, g)FT = w(T, T and

wtt(s, t)− wss(s, t) =

l∫
0

[uf (x, s)ugtt(x, t)− ufss(x, s)ug(x, t)]ρ(x)dx

+
∑
j

Mj [u
f (aj , s)u

g
tt(aj , t)− ufss(aj , s)ug(aj , t)] = (using ρutt = uxx)

=
[
uf (x, s)ugx(x, t)− ufx(x, s)ug(x, t)

]l
x=0

= (Rf)(s)g(t)− f(s)(Rg)(t).

We use w(s, 0) = wt(s, 0) = w(0, t) = 0 to find w(T, T ) by D’Alembert’s formula.
The next step is the construction of special bases in spaces FT and HT . Let T ≤ L and {fn}, n ∈ N , be

a basis in FT such that:

f ∈ C2[0, T ], f(0) = f ′(0) = 0,
(
CT fk, fn

)
FT = δkn.

Due to controllability, {ufn(·, T )} is an orthonormal basis in HT .

Next, we introduce two functions: φ0(x) = 1, φ1(x) = x, x ∈ [0, l] and let φ0
T and φ1

T be their restrictions
to the interval [0, X(t)].

Theorem 7. The coefficients in the series representations of the functions φ0
T , φ

1
T with respect to the basis

{ufj (·, T )} have the form

c0n := 〈φ0, ufn(·, T )〉H = −
T∫

0

(T − t)(RT fn)(t) dt ,

c1n := 〈φ1, ufn(·, T )〉H =

T∫
0

(T − t) fn(t) dt .



Control and inverse problems for networks of vibrating strings with attached masses 841

Sketch of the proof of Theorem 7. By the definition of the connection operator, we have:

〈φ0, ufn(·, T )〉H =

l∫
0

ufn(x, T )ρ(x)dx+
∑
j

Mj u
fn(aj , T )

=

T∫
0

(T − t)

 X(T )∫
0

ufntt (x, t)ρ(x)dx+
∑
j

Mj u
fn
tt (aj , t)

 dt
=

T∫
0

(T − t)

 X(T )∫
0

ufnxx(x, t)dx+
∑
j

Mj u
fn
tt (aj , t)

 dt
= −

T∫
0

(T − t)ufnx (0, t) dt = −
T∫

0

(T − t)(RT fn)(t) dt.

This proves the first statement of Theorem 7. The second one can be proved in a similar way.
Now, we are ready to complete the solution of the dynamical inverse problem. We introduce two functions:

µ(T ) =

X(T )∫
0

ρ(x)dx+
∑

j: aj<X(T )

Mj ,

ν(T ) =

X(T )∫
0

xρ(x)dx+
∑

j: aj<X(T )

Mj aj .

They can be found using the theorem:

µ(T ) = 〈φ0
T , φ

0
T 〉H =

∑
n

|c0n|2, ν(T ) = 〈φ0
T , φ

1
T 〉H =

∑
n

c0n c
1
n .

Separating the singular and regular (integral) parts, we find Mj and aj from the singular parts. From the regular
parts, we have:

µ̇r(T ) = ρ(X(T )) Ẋ(T ), ν̇r(T ) = X(T )ρ(X(T )) Ẋ(T ) .

From these relations, we find X(T ) and, finally, ρ(x).
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