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1. Introduction

The theory of dynamical inverse problems is a wide area of modern mathematics, by now for all or almost
all linear nonstationary equations of mathematical physics there exist an inverse theory more or less developed.
Theories mostly covers the case of continuous problems, at the same time just a few attention is paid to discrete
ones. The primary goal of the paper is to improve this situation.

Let N be the set of positive natural numbers, N0 = N ∪ {0}. We fix the infinite sequence of real num-
bers (b1, b2, . . .), which we call the potential and consider the dynamical system with discrete time which is a
natural analog of dynamical systems governed by the wave equation with potential on a semi-axis:

un,t+1 + un,t−1 − un+1,t − un−1,t + bnun,t = 0, n, t ∈ N0,

un,−1 = un,0 = 0, n ∈ N,
u0,t = ft, t ∈ N0.

(1.1)

By analogy with continuous problems [1], we treat the real sequence f = (f0, f1, . . .) as a boundary control. The
solution to (1.1) we denote by ufn,t.

Having fixed τ ∈ N, with (1.1) we associate the response operators, which maps the control f = (f0, . . . fτ−1)

to uf1,t:

(Rτf)t := uf1,t, t = 1, . . . , τ. (1.2)

The inverse problem we will be dealing with is to recover from Rτ (part of the) potential (b1, b2, . . . , bn) for some
n. This problems is a natural discrete analog of the inverse problem for the wave equation where the inverse data
is the dynamical Dirichlet-to-Neumann map, see [1].

We will be using the Boundary Control method [1] which was initially developed to treat multidimensional
dynamical inverse problems, but since then was applied to multi- and one- dimensional inverse dynamical, spectral
and scattering problems, problems of signal processing and identification problems [2, 3].

In the second section, we study the forward problem: for (1.1) we prove the analog of d’Alembert integral
representation formula. Prescribing the Dirichlet condition at n = N+1, we consider the second dynamical system
with boundary control at n = 0 (which will be an analog of the problem on the finite interval) and develop the
solution of this system in Fourier series. We analyze the dependence of two solutions on the potential, which lead
us to the natural set up of the inverse problem. In the third section, we introduce and prove the representation
formulae for the main operators of the BC method: response operator, control and connecting operators. In the
fourth section, we derive two types of equations for the inverse problem and give a characterization of the inverse
data. In the last section, we highlight the connections between the different types of inverse data.

The case of the Jacobi matrices of general type as well as the studying of the inverse spectral problem, i.e.
recovering the semi-infinite matrix from the spectral measure, will be the subject of forthcoming publications.
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2. Forward problems

We fix some positive integer T . By FT we denote the space of controls: FT := RT , f ∈ FT , f = (f0, . . . , fT−1).
First, we derive the representation formulas for the solution to (1.1) which could be considered as analogs of

known formulas for the wave equation [4].

Lemma 1. The solution to (1.1) admits the representation:

un,t = ft−n +

t−1∑
s=n

wn,sft−s−1, n, t ∈ N0. (2.1)

where wn,s satisfies the Goursat problem:
wn,t+1 + wn,t−1 − wn+1,t − wn−1,t + bnwn,t = 0, n, s ∈ N0, s > n,

wn,n = −
n∑
k=1

bk, n ∈ N,

w0,t = 0, t ∈ N0.

(2.2)

Proof. We assume that ufn,t has a form (2.1) with unknown wn,s and plug it to equation in (1.1):

0 = bnft−n +
t−1∑
s=n

bnwn,sft−s−1 +

t∑
s=n

wn,sft−s +

t−2∑
s=n

wn,sft−s−2 −
t−1∑

s=n+1

wn,sft−s−1 −
t−1∑

s=n−1
wn−1,sft−s−1.

Changing the order of summation, we get:

0 = bnft−n + wn+1,nft−n−1 − wn−1,n−1ft−n +

t−1∑
s=n

ft−s−1 (bnwn,s − wn+1,s − wn−1,s)

+

t−1∑
s=n−1

wn,s+1ft−s−1 +

t−1∑
s=n+1

wn,s−1ft−s−1 = ft−n−1(wn+1,n − wn,n−1) + bnft−n

+

t−1∑
s=n

ft−s−1 (wn,s+1 + wn.s−1 − wn+1,s − wn−1,s + bnwn,s) + ft−n(wn,n − wn−1,n−1).

Counting that wn,s = 0 when n > s and arbitrariness of f ∈ FT , we arrive at (2.1). �

We fix N ∈ N. Along with (1.1) we consider the analog of the wave equation with the potential on the
interval: we assume that (bn) is finite: n = 1, . . . , N and impose the Dirichlet condition at n = N + 1. Then for
a control f = (f0, f1, . . .) we consider:

vn,t+1 + vn,t−1 − vn+1,t − vn−1,t + bnvn,t = 0, t ∈ N0, n ∈ 0, . . . , N + 1

vn,−1 = vn,0 = 0, n = 1, 2, . . . , N + 1

v0,t = ft, vN+1,t = 0, t ∈ N0.

(2.3)

We denote the solution to (2.3) by vf .
Let φn(λ) be the solution to: {

φi+1 + φi−1 − bnφi = λφi,

φ0 = 0, φ1 = 1.
(2.4)

We introduce the Hamiltonian:

HN :=


−b1 1 0 . . . 0

1 −b2 1 . . . 0

· · · · ·
0 . . . 0 1 −bN


Let {ϕk, λk}Nk=1 be eigenvectors chosen such that ϕk1 = 1 and eigenvalues of HN . Introduce the numbers ρk by:

(ϕk, ϕl) = δklρk, (2.5)

where (·, ·)– is a scalar product in RN .
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Definition 1. The set
{λk, ρk}Nk=1 (2.6)

is called the spectral data.

On introducing vectors φn ∈ RN by the rule φni := φi(λn), n, i = 1, . . . , N, we have

Proposition 1. The solutions of φN+1(λ) = 0 are λn, n = 1, . . . , N ; and φni = ϕni , n, i = 1, . . . , N.

Proof. Take eigenvector ϕn corresponding to eigenvalue λn and compare it with φn. By the definition of ϕn and
condition in (2.4): ϕn1 = φn1 = 1. On the other hand, comparing the first line in the equation on eigenvalues
HNϕ

n = λnϕn and (2.4) for i = 1 we have:

−ϕn1 b1 + ϕn2 = λnϕ
n
1 ,

φn2 − b1φn1 = λnφ
n
1 ,

which implies ϕn2 = φn2 , for k < N comparing k−th line in HNϕ
n = λnϕn and (2.4) for i = k, we arrive at

ϕnk+1 = φnk+1. And for k = N :

−ϕnNbN + ϕnN−1 = λnϕ
n
N ,

φnN+1 + φnN−1 − bNφnN = λnφ
n
N ,

which holds if and only if φnN+1(λn) = 0. �

We take y ∈ RN , y = (y1, . . . , yN ), for each n we multiply the equation in (2.3) by yn, sum up and evaluate
the following expression, changing the order of summation:

0 =

N∑
n=1

(vn,t+1yn + vn,t−1yn − vn+1,tyn − vn−1,tyn + bnvn,tyn) =

N∑
n=1

(vn,t+1yn + vn,t−1yn − vn,t(yn−1 + yn+1) + bnvn,tyn)− vN+1,tyN − v0,ty1 + v1,ty0 + vN,tyN+1. (2.7)

Now, we choose y = ϕl, l = 1 . . . , N . On counting that ϕl0 = ϕlN+1 = 0, ϕl1 = 1, v0,t = ft, vN+1,t = 0 we
evaluate (2.7) arriving at:

0 =

N∑
n=1

(
vn,t+1ϕ

l
n + vn,t−1ϕ

l
n − vn,t

(
ϕln−1 + ϕln+1 − bnϕln

))
− ft = 0. (2.8)

Definition 2. For a, b ∈ l∞, we define the convolution c = a ∗ b ∈ l∞ by the formula:

ct =

t∑
s=0

asbt−s, t ∈ N.

We assume that the solution to (2.3) has the form:

vfn,t =


N∑
k=1

cktϕ
k
n, n = 1, . . . , N

ft, n = 0.

(2.9)

Proposition 2. The coefficients ck admits the representation:

ck =
1

ρk
T (λk) ∗ f, (2.10)

where T (2λ) = (T1(2λ), T2(2λ), T3(2λ), . . .) are Chebyshev polynomials of the second kind.

Proof. We plug (2.9) into (2.8) and evaluate, counting that ϕln−1 + ϕln+1 − bnϕln = λlϕ
l
n:

N∑
n=1

(vn,t+1 + vn,t−1 − λlvn,t)ϕln = ft,

N∑
n=1

N∑
k=1

(
ckt+1ϕ

k
n + ckt−1ϕ

k
n − λlcktϕkn

)
ϕln = ft.
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Changing the order of summation and using (2.5), we finally arrive at the following equation on ckt , k = 1, . . . , N : ckt+1 + ckt−1 − λkckt =
1

ρk
ft,

ck−1 = ck0 = 0.
(2.11)

We assume that the solution to (2.11) has the form: ck =
1

ρk
T ∗ f, or

ckt =
1

ρk

t∑
l=0

Tlft−l. (2.12)

Plugging it into (2.11), we get:

1

ρk

(
t+1∑
l=0

flTt+1−l +

t−1∑
l=0

flTt−1−l − λk
t∑
l=0

flTt−l

)
=

1

ρk
ft,

t∑
l=0

fl (Tt+1−l + Tt−1−l − λkTt−l) + ftT1 − ft−1T0 = ft.

We see that (2.12) holds if T solves: {
Tt+1 + Tt−1 − λkTt = 0,

T0 = 0, T1 = 1.

Thus Tk(2λ) are Chebyshev polynomials of the second kind.
�

3. Operators of the the BC method

As inverse data for (1.1), we use the analog of the dynamical response operator (dynamical Dirichlet-to-
Neumann map) [1].

Definition 3. For (1.1), the response operator RT : FT 7→ RT is defined by the rule(
RT f

)
t
= uf1,t, t = 1, . . . , T.

Introduce the notation: the response vector is the convolution kernel of the response operator, r = (r0, r1, . . . , rT−1) =
(1, w1,1, w1,2, . . . w1,T−1). Then, in accordance with (2.1):(

RT f
)
t
= uf1,t = ft−1 +

t−1∑
s=1

w1,sft−1−s, t = 1, . . . , T ; (3.1)(
RT f

)
= r ∗ f·−1, where r0 = 1.

For system (2.3), we introduce the response operator by:

Definition 4. For the system in (2.3) the response operator RTi : FT 7→ RT is defined by the rule:(
RTi f

)
t
= vf1,t, t = 1, . . . , T. (3.2)

The corresponding response vector we denote by (ri1, r
i
2, . . .). More information on this operator and on the

inverse spectral problem one can find in the last section.
We introduce the inner space of dynamical system (1.1) HT := RT , h ∈ HT , h = (h1, . . . , hT ). For (1.1)

The control operator WT : FT 7→ HT is defined by the rule:

WT f := ufn,T , n = 1, . . . , T.

Directly from (2.1), we deduce that:(
WT f

)
n
= ufn,T = fT−n +

T−1∑
s=n

wn,sfT−s−1, n = 1, . . . , T. (3.3)

The following statement imply the controllability of the dynamical system (1.1).
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Theorem 1. The operator WT is an isomorphism between FT and HT .

Proof. We fix some a ∈ HT and look for a control f ∈ FT such that WT f = a. To this aim we write down the
operator as:

WT f =



u1,T
u2,T
·

uk,T
·

uT,T


=



1 w1,1 w1,2 . . . . . . w1,T−1

0 1 w2,2 . . . . . . w2,T−1

· · · · · ·
0 . . . 1 wk,k . . . wk,T−1
· · · · · ·
0 0 0 0 . . . 1





fT−1
fT−2
·

fT−k−1
·
f0


(3.4)

We introduce the notations:

JT : FT 7→ FT , (JT f)n = fT−1−n, n = 0, . . . , T − 1,

K ∈ RT×T , kij = 0, i > j, kii = 1, kij = wij−1, i < j.

Then, WT = (I +K) JT . Obviously, this operator is invertible, which proves the statement of the theorem. �

For the system (2.3) the control operator WT
i : FT 7→ HN is defined by the rule:

WT
i f := vfn,T , n = 1, . . . , N.

The representation for this operator immediately follows from (2.9), (2.10).
For the system (1.1) we introduce the connecting operator CT : FT 7→ FT by the quadratic form: for arbitrary

f, g ∈ FT we define (
CT f, g

)
FT =

(
uf·,T , u

g
·,T

)
HT

=
(
WT f,WT g

)
HT . (3.5)

We observe that CT =
(
WT

)∗
WT , so CT is an isomorphism in FT . The fact that CT can be expressed in terms

of response R2T is crucial in BC-method.

Theorem 2. Connecting operator admits the representation in terms of inverse data:

CT = CTij , CTij =

T−max i,j∑
k=0

r|i−j|+2k, r0 = 1. (3.6)

CT =



1 + r2 + . . .+ r2T−2 r1 + r3 + . . .+ r2T−3 . . . rT + rT−2 rT−1
r1 + r3 + . . .+ r2T−3 1 + r2 + . . .+ r2T−4 . . . . . . rT−2

· · · · ·
rT−3 + rT−1 + rT+1 . . . 1 + r2 + r4 r1 + r3 r2

rT + rT−2 . . . r1 + r3 1 + r2 r1
rT−1 rT−2 . . . r1 1


Proof. For fixed f, g ∈ FT , we introduce the Blagoveshchensky function by:

ψn,t :=
(
uf·,n, u

g
·,t
)
HT =

T∑
k=1

ufk,nu
g
k,t.

Then, we show that ψn,t satisfies some difference equation. Indeed, we can evaluate:

ψn,t+1 + ψn,t−1 − ψn+1,t − ψn−1,t =
T∑
k=1

ufk,n

(
ugk,t+1 + ugk,t−1

)
−

T∑
k=1

(
ufk,n+1 + ufk,n−1

)
ugk,t =

T∑
k=1

ufk,n

(
ugk+1,t + ugk−1,t

)
−

T∑
k=1

(
ufk+1,n + ufk−1,n

)
ugk,t =

T∑
k=1

ugk,t

(
ufk+1,n + ufk−1,n

)
+ ug0,tu

f
1,n − u

f
0,nu

g
1,t + ugT+1,tu

f
T,n − u

f
T+1,nu

g
T,t −

T∑
k=1

ugk,t

(
ufk+1,n + ufk−1,n

)
=

gt(Rf)n − fn(Rg)t.
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So, we arrive at the following boundary problem for ψn,t:{
ψn,t+1 + ψn,t−1 − ψn+1,t − ψn−1,t = hn,t, n, t ∈ N0,

ψ0,t = 0, ψn,0 = 0,
(3.7)

hn,t = gt(Rf)n − fn(Rg)t.
We introduce the set:

K(n, t) :=
{
(n, t) ∪ {(n− 1, t− 1), (n+ 1, t− 1)} ∪ {(n− 2, t− 2), (n, t− 2), (n+ 2, t− 2)} ∪ . . .

∪{(n− t, 0), (n− t+ 2, 0), . . . , (n+ t− 2, 0), (n+ t, 0)}
}
=

t⋃
τ=0

τ⋃
k=0

(n− τ + 2k, t− τ) .

The solution to (3.7) is given by:

ψn,t =
∑

k,τ∈K(n,t−1)

h(k, τ).

We observe that ψT,T =
(
CT f, g

)
, so: (

CT f, g
)
=

∑
k,τ∈K(T,T−1)

h(k, τ). (3.8)

Notice that in the r.h.s. of (3.8) the argument k runs from 1 to 2T − 1. We extend f ∈ FT , f = (f0, . . . , fT−1) to
f ∈ F2T by:

fT = 0, fT+k = −fT−k, k = 1, 2, . . . , T − 1.

Due to this odd extension,
∑

k,τ∈K(T,T−1)

fk(R
T g)τ = 0, so (3.8) gives:

(
CT f, g

)
=

∑
k,τ∈K(T,T−1)

gτ
(
R2T f

)
k
= g0

[(
R2T f

)
1
+
(
R2T f

)
3
+ . . .+

(
R2T f

)
2T−1

]
+ g1

[(
R2T f

)
2
+
(
R2T f

)
4
+ . . .+

(
R2T f

)
2T−2

]
+ . . .+ gT−1

(
R2T f

)
T
.

Finally, we infer that:

CT f =
((
R2T f

)
1
+ . . .+

(
R2T f

)
2T−1 ,

(
R2T f

)
2
+ . . .+

(
R2T f

)
2T−2 , . . . ,

(
R2T f

)
T

)
from where the statement of the theorem follows. �

One can observe that CTij satisfies the difference boundary problem.

Corollary 1. The kernel of CT satisfy:{
CTi,j+1 + CTi,j−1 − CTi+1,j − CTi−1,j = 0,

CTi,T = rT−i, C
T
T,j = rT−j , r0 = 1.

For the system (2.3) the connecting operator CTi : FT 7→ FT is introduced in the similar way: for arbitrary
f, g ∈ FT we define: (

CTi f, g
)
FT =

(
vf·,T , v

g
·,T

)
HN

=
(
WT
i f,W

T
i g
)
HN . (3.9)

More information on CTi one can find in the final section.

4. Inverse problem

The dependence of the solution (1.1) uf on the potential (b1, b2, . . .) resembles one of the wave equation with
the potential: take some M ∈ N. From the very equation, one can see that the term ufn,t with smallest {n, t},
which depends on bM is ufM,M+1. Thus, uf1,t becomes dependent upon bM starting from t = 2M . This is an
analog of the finite wave propagation speed effect in the wave equation. Consider (2.3) with N =M . We see that
the solution to (2.3) vf1,t does not ‘feel’ the boundary condition at n = M + 1: uf1,t = vf1,t for t = 1, . . . , 2M . Or

in other words, that means that R2M = R2M
i . This leads to the following natural set up of the inverse problem:

By the given operator R2M to recover the (part) of the potential (b1, . . . , bM ). In what follows, we will be dealing
with the IP for the system (1.1), only in the last section we comment on the system (2.3).
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4.1. Krein equations

Let α, β ∈ R and y be solution to: {
yk+1 + yk−1 − bkyk = 0,

y0 = α, y1 = β.
(4.1)

We set up the following control problem: to find a control fT ∈ FT such that:(
WT fT

)
k
= yk, k = 1, . . . , T. (4.2)

Due to Theorem 1, this problem has unique solution. Let κT be a solution to{
κTt+1 + κTt−1 = 0, t = 0, . . . , T,

κTT = 0, κTT−1 = 1.
(4.3)

We show that the control fT satisfies the Krein equation:

Theorem 3. The control fT , defined by (4.2) satisfies the following equation in FT :

CT fT = βκT − α
(
RT
)∗ κT . (4.4)

Proof. Let us take fT solving (4.2). We observe that for any fixed g ∈ FT :

ugk,T =

T−1∑
t=1

(
ugk,t+1 + ugk,t−1

)
κTt . (4.5)

Indeed, changing the order of summation in the r.h.s. of (4.5), we get:

T−1∑
t=1

(
ugk,t+1 + ugk,t−1

)
κTt =

T−1∑
t=1

(
κTt+1 + κTt−1

)
ugk,t + ugk,0κ

T
1 − u

g
k,Tκ

T
T−1.

which gives (4.5) due to (4.3). Using this observation, we can evaluate:

(
CT fT , g

)
=

T∑
k=1

yku
g
k,T =

T∑
k=1

T−1∑
t=0

(
ugk,t+1 + ugk,t−1

)
κTt yk

=

T−1∑
t=0

κTt

(
T∑
k=1

(
ugk+1,tyk + ugk−1,tyk − bku

g
k,tyk

))

=

T−1∑
t=0

κTt

(
T∑
k=1

(
ugk,t(yk+1 + yk−1 − bkyk

)
+ ug0,ty1 + ugT+1,tyT − u

g
1,ty0 − u

g
T,tyT+1

)

=

T−1∑
t=0

κTt
(
βgt − α

(
RT g

)
t

)
=
(
κT , βg − α

(
RT g

))
=
(
βκT − α

((
RT
)∗ κT) , g) .

From where (4.4) follows. �

Having found fτ for τ = 1, . . . , T , we can recover the potential bn, n = 1, . . . , T − 1. Indeed: by the
constructions of fτ we have (W τfτ )τ = yτ , on the other hand, from (3.3) we can infer that (W τfτ )τ = fτ0 , thus
y (4.1) can be recovered by:

yτ = fτ0 , τ = 1, . . . , T. (4.6)

And the potential can be found by:

bn =
yn+1 + yn−1

yn
, n = 1, . . . , T − 1. (4.7)
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4.2. Factorization method

We make use the fact that matrix CT has a special structure – it is a product of triangular matrix and its

conjugate. We rewrite the operator WT =W
T
J as:

WT f =



1 w1,1 w1,2 . . . w1,T−1

0 1 w2,2 . . . w2,T−1

· · · · ·
0 . . . 1 . . . wk,T−1
· · · · ·
0 0 0 . . . 1





0 0 0 . . . 1

0 0 0 . . . 0

· · · · ·
0 . . . 1 0 0

· · · · ·
1 0 0 0 0





f0
f2
·

fT−k−1
·

fT−1


.

Using the definition (3.5) and the invertibility of WT (cf. Theorem 1), we have:

CT =
(
WT

)∗
WT , or

((
WT

)−1)∗
CT
(
WT

)−1
= I.

We can rewrite the latter equation as:((
W

T
)−1)∗

C
T
(
W

T
)−1

= I, C
T
= JCTJ. (4.8)

Here the matrix C
T

has the entries:

Cij = CT+1−j,T+1−i, C
T
=


1 r1 r2 . . . rT−1
r1 1 + r2 r1 + r3 . . . ..

r3 r1 + r3 1 + r2 + r4 . . . ..

· · · · ·

 , (4.9)

and operator
(
W

T
)−1

has the form:

(
W

T
)−1

=


1 k̃11 k̃12 . . . k̃1,T−1

0 1 k̃22 . . . ..

· · · · k̃T−1,T−1
0 . . . . . . 0 1

 , (4.10)

where k̃α,α = −wα,α, α = 1, . . . , T − 1. So we can rewrite (4.8) as:
1 0 . 0

k11 1 0 .

· · · ·
kT−1,1 . . 1



c11 .. .. c1T
.. .. .. ..

· · · ·
cT1 .. cTT



1 k11 k21 ..

0 1 k22 ..

· · · ·
0 . . . . . . 1

 =


1 0 .. 0

0 1 .. 0

· · · ·
0 0 . 1

 .

In the above equation Cij are given (see (4.9)), the entries kij of

((
W

T
)−1)∗

are unknown. We denote by

Ki := (ki1, ki2, . . . , kii, 1, 0, . . . , 0) the (i+ 1)−th row (i = 0, . . . , T − 1) in

((
W

T
)−1)∗

, then we have

KiC
T
K∗j = δi,j .

We use this equality in the form:

KiC
T
K∗j = 0, i < j. (4.11)

Notice that K0 = (1, 0, . . . , 0). The second row K1 can be recovered from K0C
T
K∗1 = 0, which is equivalent to:

c11k11 + c21 = 0, or k11 = −c21
c11

= −c21. (4.12)

The third row K2 we recover from the pair of equations K0C
T
K∗2 = 0, K1C

T
K∗2 = 0, which are equivalent to:(

1 0

k11 1

)(
c11 c12 c13
c21 c22 c23

)k21k22
1

 =

(
0

0

)
.
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Due to the invertibility of

(
1 0

k1,1 1

)
, we can rewrite the latter equation as:

(
c11 c12
c21 c22

)(
k21
k22

)
= −

(
c13
c23

)
. (4.13)

We introduce the notation, by cki we denote the i-th column in the matrix C
T

truncated by first k elements:

cki :=
(
c1i c2i . . . cki

)∗
.

Since CT is invertible, (4.13) has a unique solution, moreover, we can infer that:

k22 = −
det

(
c11 c13
c21 c23

)

det

(
c11 c12
c21 c22

) = −det(c21, c
2
3).

Assume that we have already recovered K0,K1, . . . ,Kl, to recover Kl+1 we need to consider the equations

K0C
T
K∗l+1 = 0, K1C

T
K∗l+1 = 0, . . . , KlC

T
K∗l+1 = 0, which are equivalent to:

1 0 .. 0

k11 1 0 ..

. . . .

kl1 kl2 . 1




c11 .. .. c1,l+2

.. .. .. ..

.. .. .. ..

cl+1,1 .. .. cl+1,l+2



kl+1,1

kl+1,2

..

1

 =


0

..

..

0

 .

We can rewrite the latter equation as:
c1,1 .. .. c1,l+1

.. .. .. ..

.. .. .. ..

cl+1,1 .. .. cl+1,l+1




kl+1,1

kl+1,2

..

kl+1,l+1

+


c1,l+2

c2,l+2

..

cl+1,l+2

 = 0. (4.14)

Due to the invertibility of CT the latter equation has unique solution, moreover

kl+1,l+1 = −det(cl+1
1 , cl+1

2 , . . . cl+1
l , cl+1

l+2), l = 0, . . . , T − 2. (4.15)

Having recovered kα,α = −wα,α, we recover the potential by (see (2.2)):

bn = wn−1,n−1 − wn,n = kn,n − kn−1,n−1, n = 1, . . . , T − 1. (4.16)

4.3. Gelfand–Levitan equations

If we introduce C̃T by

C
T
= I + C̃T , (4.17)

(see (3.6),(4.9)), then we can rewrite (4.14) for l = T − 2 as:

(
I + C̃T

)
KT + C̃T = 0, where KT =


kT−1,1
kT−1,2
.

kT−1,T−1

 , C̃T =


C̃T1,T
C̃T2,T
.

C̃TT−1,T


or as a system:

kT−1,β +

T−1∑
j=1

C̃Tβ,jkT−1,j + C̃Tβ,T = 0, β = 1, . . . , T − 1. (4.18)

If we pass to (more standard) entries of
(
W

T
)−1

k̃α,β = kβ,α, (4.19)
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then (4.18) can be rewritten as:

k̃β,T−1 +

T−1∑
j=1

C̃Tβ,j k̃j,T−1 + C̃Tβ,T = 0, β = 1, . . . , T − 1. (4.20)

The last equation is an analog of Gelfand-Levatan equation for continuous problem [4,5]. We conclude this section
with

Theorem 4. The kernel of the operator
(
W

T
)−1

(see (4.10)) satisfies equation (4.20), where the entries C̃Ti,j are

defined in (4.17), (3.6).

The equation in (4.18) has a unique solution due to the invertibility of CT . The potential can be recovered by
(4.16).

Now, we make some remarks on the dependence of the connecting operator CT and the solution of the inverse
problem equations (i.e. the potential) on the inverse data. As a direct consequence of (3.6) we can formulate the
following:

Remark 1. The operator CT depends on R2T−2, i.e. it depends on the potential (b1, . . . , bT−1), so the results
obtained from CT via Krein-type equations (4.4), (4.6),(4.7), factorization method (4.15), (4.16) and Gelfand-
Levitan type equations (4.20), (4.16) are the best possible.

In the subsection on the factorization method, we used the fact that detCτ = 1, τ = 2, . . . , T . More precisely,
we used it in the form det(cτ1 , c

τ
2 , . . . c

τ
τ ) = 1. That fact actually says that not all elements in the response vector

are independent. Indeed: the element k11 we recovered (see (4.12)) from c21, i.e. from r1. The element k22
we recovered from c11, c13, c21, c23, that is from r1, r2, r3. But since det(c21, c

2
2) = 1, we have that r2 = r21 ,

so in fact k22 was recovered from r1 and r3. Arguing in the same fashion, we see that r2k depends on r2l+1,
l = 0, . . . , k−1. So we recovered (k11, . . . , kT−1,T−1) from the response vector (r0, r1, . . . , r2t−2), r0 = 1, whose
components with even numbers depend in explicit form on the components with odd numbers. That observation
plays an important role in the next subsection.

4.4. Characterization of the inverse data

In the second section, we considered the forward problem (1.1), for the potential (b1, . . . , bT−1) we constructed
the matrix WT (2.1), (2.2), the response vector (1, r1, . . . , r2T−2) (see (3.1)) and the connecting operator CT by

formula (3.6). It will be more convenient for us to deal with the rotated matrix C
T

defined in (4.9). From the

representation C
T
= (W

T
)∗W

T
and triangularity of W

T
we know that

detC
l
= 1 ∀l = 1, . . . , T.

Also, we have proven that if coefficients r1, . . . , r2T−2 correspond to some potential (b1, . . . , bT−1), then we can
recover the potential using (4.15)–(4.16).

Now, we set up a question: can one determine whether a vector (1, r1, r2, . . . , r2T−2) is a response vector for
the dynamical system (1.1) with a potential (b1, . . . , bT−1) or not? The answer is the following theorem.

Theorem 5. The vector (1, r1, r2, . . . , r2T−2) is a response vector for the dynamical system (1.1) if and only if
the matrix CT (3.6) is positively definite and detCl = 1, l = 1, . . . , T .

Proof. First we observe that in the conditions of the theorem we can substitute CT by C
T

(4.9). The necessary
part of the theorem is proved in the preceding sections. We are left to prove the sufficiency of these conditions.

Let there be a vector (1, r1, . . . , r2T−2) such that the matrix C
T

constructed from it using (4.9) satisfies
conditions of the theorem. Then we can construct the potential (b1, . . . , bT−1) using (4.15)–(4.16) and consider
the dynamical system (1.1) with this potential. For this system, we construct the connecting operator CTnew and its

rotated C
T

new using (2.2), (3.1), (3.6) and (4.9). We will show that the matrices C
T

and C
T

new coincide.
First, we note that we have two matrices constructed by (4.9), one comes from the vector (1, r1, . . . , r2T−2)

and the other comes from (1, rnew1 , . . . , rnew2T−2). Also they have a common property that detC
l
= detC

l

new = 1

for all l = 1, . . . , T (one by theorem’s condition and the other by representation C
T

new = (W
T

new)
∗W

T

new).

Secondly, we note that if we calculate the potential (b1, . . . , bT−1) using (4.15)–(4.16) from any of C
T

and

C
T

new matrices, we obtain the same answer.
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Therefore we have two matrices of the type (4.9) with the unit principal minors and the property

det(cl+1
1 , . . . cl+1

l , cl+1
l+2) = det(cnew

l+1
1 , . . . cnew

l+1
l , cnew

l+1
l+2) ∀l = 0, . . . , T − 2. (4.21)

If we look at (4.21) for l = 0, we see that r1 = rnew1 . From the fact that for both matrices C
T
, C

T

new the principal
minors of the second order are equal to one, we infer that r2 = rnew2 . We continue this procedure, and from (4.21)

with l = n, we infer that r2n+1 = rnew2n+1 and from equality to one of principal minor of the order n + 2 of C
T
,

C
T

new, we can infer that r2n+2 = rnew2n+2 for all n = 2, . . . , T − 2 by induction. This finishes the proof. �

5. Spectral representation of CT and rt

In this section, we consider the inverse spectral problem and show the connection of the spectral (2.5), (2.6)
and dynamical (3.1), (3.2) inverse data. If we introduce the special control δ = (1, 0, 0, . . .), then the kernel of
response operator (3.2) is:

rit = (Riδ)t = vδ1,t, (5.1)

on the other hand, we can use (2.9), (2.10) to obtain:

vδ1,t =

N∑
k=1

1

ρk
Tt(λk). (5.2)

So on introducing the spectral function:

ρN (λ) =
∑

{k |λk<λ}

1

ρk
, (5.3)

from (5.1), (5.2) we deduce that:

rit =

∞∫
−∞

Tt(λ) dρ
N (λ), t ∈ N.

Let us evaluate (CTi f, g) for f, g ∈ FT , using the expansion (2.9):

(CTi f, g) =

N∑
n=1

vfn,T v
g
n,T =

N∑
n=1

N∑
k=1

1

ρk
TT (λk) ∗ fϕkn

N∑
l=1

1

ρl
TT (λl) ∗ gϕln

=

N∑
k=1

1

ρk
TT (λk) ∗ fTT (λk) ∗ g =

∞∫
−∞

T−1∑
l=0

TT−l(λ)fl

T−1∑
m=0

TT−m(λ)gm dρ
N (λ).

From the equality above, it is evident that (cf. (3.6)):

{CTi }l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρN (λ), l,m = 0, . . . , T − 1. (5.4)

Let us consider the spectral problem:{
φi+1 + φi−1 − bnφi = λφi, n = 0, . . . , N + 1,

φ0 = 0, φN+1 = 0.
(5.5)

In the second section, we construct the spectral data for this problem – eigenvalues of the corresponding Hamilton-
ian and norming coefficients (2.5), (2.6). Now we answer the question how to recover the potential (b1, . . . , bN )
from this data.

Our strategy will be to use the dynamical approach from the fourth section to treat this IP. First, we observe
that to know (2.6) is the same as to know the spectral function (5.3). Consider the system (1.1) with the same
potential bn for n = 1, . . . , N . We notice that as explained in the beginning of section four, R2N = R2N

i and
correspondingly, rt = rit, t = 1, . . . , 2N. Due to this, we deduce that CT = CTi for T = N + 1. Thus, the inverse
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problem can be solved in the following way: from the spectral data (2.6), we construct the spectral function
by (5.3). Then, we construct:

rt = rit =

∞∫
−∞

Tt(λ) dρ
N (λ), t = 1, . . . , 2N,

CTlm = {CTi }l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρN (λ), l,m = 0, . . . , N − 1.

After we have in hands the connecting operator, we can use the methods of section four to find (b1, . . . , bN ).
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