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1. Introduction

Linear water wave theory is a widely used approach for describing the behavior of surface waves in the
presence of rigid boundaries. In particular, this theory is a common tool for determining sloshing frequencies
and modes in containers occupied by a homogeneous fluid, that is, having constant density. The corresponding
boundary spectral problem, usually referred to as the sloshing problem, has been the subject of a great number of
studies over more than two centuries (a historical review can be found, for example, in [1]). In the comprehensive
book [2], an advanced technique based on spectral theory of operators in a Hilbert space was presented for studying
this problem.

In the framework of the mathematical theory of linear water waves, substantial work has been done in the
past two decades for understanding the difference between the results valid for homogeneous and two-layer fluids
(in the latter case the upper fluid occupies a layer bounded above by a free surface and below by a layer of fluid
whose density is greater than that in the upper one). These results concern wave/structure interactions and trapping
of waves by immersed bodies (see, for example, [3–5] and references cited therein), but much less is known about
the difference between sloshing in containers occupied by homogeneous and two-layer fluids. To the author’s
knowledge, there is only one related paper [6] with rigorous results for multilayered fluids, but it deals only with
the spectral asymptotics in a closed container. Thus, the first aim of the present paper is to fill in this gap at least
partially.

Another aim is to consider the so-called inverse sloshing problem; that is, the problem of recovering some
physical parameters from known spectral data. The parameters to be recovered are the depth of the interface
between the two layers and the density ratio that characterizes stratification. It is demonstrated that for determining
these two characteristics for fluids occupying a vertical-walled container with a horizontal bottom, one has to
measure not only the two smallest sloshing eigenfrequencies, which must satisfy certain inequalities, but also to
analyze the corresponding free surface elevations.

1.1. Statement of the direct problem

Let two immiscible, inviscid, incompressible, heavy fluids occupy an open container whose walls and bottom
are rigid surfaces. We choose rectangular Cartesian coordinates (x1, x2, y) so that their origin lies in the mean free
surface of the upper fluid and the y-axis is directed upwards. Then, the whole fluid domain W is a subdomain of
the lower half-space {−∞ < x1, x2 < +∞, y < 0}. The boundary ∂W is assumed to be piece-wise smooth and
such that every two adjacent smooth pieces of ∂W are not tangent along their common edge. We also suppose
that each horizontal cross-section of W is a bounded two-dimensional domain; that is, a connected, open set
in the corresponding plane. (The latter assumption is made for the sake of simplicity because it excludes the
possibility of two or more interfaces between fluids at different levels.) The free surface F bounding above the
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upper fluid of density ρ1 > 0 is the non-empty interior of ∂W ∩ {y = 0}. The interface I = W ∩ {y = −h},
where 0 < h < max{|y| : (x1, x2, y) ∈ ∂W}, separates the upper fluid from the lower one of density ρ2 > ρ1.
We denote by W1 and W2 the domains W ∩ {y > −h} and W ∩ {y < −h} respectively; they are occupied by
the upper and lower fluids respectively. The surface tension is neglected and we suppose the fluid motion to be
irrotational and of small amplitude. Therefore, the boundary conditions on F and I may be linearized. With a
time-harmonic factor, say cosωt, removed, the velocity potentials u(1)(x1, x2, y) and u(2)(x1, x2, y) (they may be
taken to be real functions) for the flow in W1 and W2 respectively must satisfy the following coupled boundary
value problem:

u(j)x1x1
+ u(j)x2x2

+ u(j)yy = 0 in Wj , j = 1, 2, (1)

u(1)y = νu(1) on F, (2)

ρ
(
u(2)y − νu(2)

)
= u(1)y − νu(1) on I, (3)

u(2)y = u(1)y on I, (4)

∂u(j)/∂n = 0 on Bj j = 1, 2. (5)

Here, ρ = ρ2/ρ1 > 1 is the non-dimensional measure of stratification, the spectral parameter ν is equal to ω2/g,
where ω is the radian frequency of the water oscillations and g is the acceleration due to gravity; Bj = ∂Wj\(F̄∪Ī)
is the rigid boundary of Wj . By combining (3) and (4), we get another form of the spectral coupling condition (3):

(ρ− 1)u(2)y = ν
(
ρu(2) − u(1)

)
on I. (6)

We also suppose that the orthogonality conditions∫
F

u(1) dx = 0 and

∫
I

(
ρu(2) − u(1)

)
dx = 0, dx = dx1dx2, (7)

hold, thus excluding the zero eigenvalue of (1)–(5).
When ρ = 1, conditions (3) and (4) mean that the functions u(1) and u(2) are harmonic continuations of each

other across the interface I . Then, problem (1)–(5) complemented by the first orthogonality condition (7) (the
second condition (7) is trivial), becomes the usual sloshing problem for a homogeneous fluid. It is well-known
since the 1950s that the latter problem has a positive discrete spectrum. This means that there exists a sequence of
positive eigenvalues {νWn }∞1 of finite multiplicity (the superscript W is used here and below for distinguishing the
sloshing eigenvalues that correspond to the case, when a homogeneous fluid occupies the whole domain W , from
those corresponding to a two-layer fluid which will be denoted simply by νn). In this sequence the eigenvalues
are written in increasing order and repeated according to their multiplicity; moreover, νWn → ∞ as n → ∞. The
corresponding eigenfunctions {un}∞1 ⊂ H1(W ) form a complete system in an appropriate Hilbert space. These
results can be found in many sources, for example, in the book [2].

2. Variational principle

Let W be bounded. It is well known that the sloshing problem in W for homogeneous fluid can be cast into
the form of a variational problem and the corresponding Rayleigh quotient is as follows:

RW (u) =

∫
W

|∇u|2 dxy∫
F

u2 dx
. (8)

In order to obtain the fundamental eigenvalue νW1 one has to minimize RW (u) over the subspace of the
Sobolev space H1(W ) consisting of functions that satisfy the first orthogonality condition (7). To find νWn for
n > 1, one has to minimize (8) over the subspace of H1(W ) such that each of its element u satisfies the
first condition (7) along with the following equalities

∫
F

uuj dx = 0, where uj is either of the eigenfunctions

u1, . . . , un−1 corresponding to the eigenvalues νW1 , . . . , νWn−1.
In the case of a two-layer fluid, we assume that the usual embedding theorems hold for both subdomains Wj ,

j = 1, 2 (the theorem about traces on smooth pieces of the boundary for elements of H1 included). This imposes
some restrictions on ∂W , in particular, on the character of the intersections of F and I with ∂W ∩ {y < 0}. Then
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using (6), it is easy to verify that the Rayleigh quotient for the two-layer sloshing problem has the following form:

R(u(1), u(2)) =

∫
W1

∣∣∇u(1)∣∣2 dxdy + ρ
∫
W2

∣∣∇u(2)∣∣2 dxdy∫
F

[
u(1)

]2
dx+ (ρ− 1)−1

∫
I

[
ρu(2) − u(1)

]2
dx
. (9)

To determine the fundamental sloshing eigenvalue ν1 one has to minimize R(u(1), u(2)) over the subspace of
H1(W1) ⊕ H1(W2) defined by both orthogonality conditions (7). In order to find νn for n > 1, one has to
minimize (9) over the subspace of H1(W1) ⊕ H1(W2) such that every element

(
u(1), u(2)

)
of this subspace

satisfies the equalities:∫
F

u(1) u
(1)
j dx = 0 and

∫
I

[
ρu(2) − u(1)

] [
ρu

(2)
j − u

(1)
j

]
dx = 0, j = 1, . . . , n− 1,

along with both conditions (7). Here,
(
u
(1)
j , u

(2)
j

)
is either of the eigensolutions corresponding to ν1, . . . , νn−1.

Now we are in a position to prove the following assertion.

Proposition 1. Let νW1 and ν1 be the fundamental eigenvalues of the sloshing problem in the bounded domain
W for homogeneous and two-layer fluids respectively. Then the inequality ν1 < νW1 holds.

The restriction that W is bounded is essential as the example considered in Proposition 4 below demonstrates.

Proof. If u1 is an eigenfunction corresponding to νW1 , then

νW1 =

∫
W

|∇u1|2 dxdy∫
F

u21 dx
.

Let u(1) and u(2) be equal to the restrictions of ρu1 and u1 to W1 and W2, respectively. Then the pair
(
u(1), u(2)

)
is an admissible element for the Rayleigh quotient (9). Substituting it into (9), we obtain that:

R(ρu1, u1) =

∫
W1

|∇u1|2 dxdy + ρ−1
∫
W2

|∇u1|2 dxdy∫
F

u21 dx
.

Comparing this equality with the previous one and taking into account that ρ > 1, one finds that
R(ρu1, u1) < νW1 . Since ν1 is the minimum of (9), we conclude that ν1 < νW1 . �

3. Containers with vertical walls and horizontal bottoms

Let us consider the fluid domain W = {x = (x1, x2) ∈ D, y ∈ (−d, 0)}, where D is a piece-wise smooth
two-dimensional domain (the container’s horizontal cross-section) and d ∈ (0,∞] is the container’s constant depth.
Thus, the container’s side wall ∂D × (−d, 0) is vertical, the bottom {x ∈ D, y = −d} is horizontal, whereas the
free surface and the interface are F = {x ∈ D, y = 0} and I = {x ∈ D, y = −h} respectively, 0 < h < d.

For a homogeneous fluid occupying such a container, the sloshing problem is equivalent to the free membrane
problem. Indeed, putting

u(x, y) = v(x) cosh k(y + d)
(
u(x, y) = v(x) eky when d =∞

)
,

one reduces problem (1)–(5) with ρ = 1, complemented by the first orthogonality condition (7) to the following
spectral problem:

∇2
xv + k2v = 0 in D, ∂v/∂nx = 0 on ∂D,

∫
D

v dx = 0, (10)

where ∇x = (∂/∂x1, ∂/∂x2) and nx is a unit normal to ∂D in R2. It is clear that νW is an eigenvalue of the
former problem if and only if k2 is an eigenvalue of (10) and

νW = k tanh kd when d <∞
(
νW = k when d =∞

)
, k > 0. (11)

It is well-known that problem (10) has a sequence of positive eigenvalues {k2n}∞1 written in increasing order and
repeated according to their finite multiplicity, and such that k2n →∞ as n→∞. The corresponding eigenfunctions
form a complete system in H1(D).
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Let us describe the same reduction procedure in the case when W is occupied by a two-layer fluid and d <∞.
Putting

u(1)(x, y) = v(x) [A cosh k(y + h) +B sinh k(y + h)], (12)

u(2)(x, y) = v(x)C cosh k(y + d), (13)

where A,B and C are constants, one reduces problem (1)–(5) and (7), ρ > 1, to problem (10) combined with the
following quadratic equation:

ν2 cosh kd− νk [sinh kd+ (ρ− 1) cosh kh sinh k(d− h)]

+ k2(ρ− 1) sinh kh sinh k(d− h) = 0, k > 0. (14)

Thus ν is an eigenvalue of the former problem if and only if ν satisfies (14), where k2 is an eigenvalue of (10).
Indeed, the quadratic polynomial in ν on the left-hand side of (14) is the determinant of the following linear

algebraic system for A, B and C:

A = C
[
cosh k(d− h)− ν−1(ρ− 1) k sinh k(d− h)

]
, B = C sinh k(d− h), (15)

A (k sinh kh− ν cosh kh) + C sinh k(d− h) (k cosh kh− ν sinh kh) = 0. (16)

The latter arises when one substitutes expressions (12) and (13) into the boundary condition (2) and the coupling
conditions (3) and (4). This homogeneous system defines eigensolutions of the sloshing problem provided there
exists a non-trivial solution, and so the determinant must vanish which is expressed by (14).

Let us show that the roots ν(+) and ν(−) of (14) are real in which case

ν(±) = k
b±
√
D

2 cosh kd
> 0 , (17)

where the inequality is a consequence of the formulae:

b = sinh kd+ (ρ− 1) cosh kh sinh k(d− h), (18)

D = b2 − 4 (ρ− 1) cosh kd sinh kh sinh k(d− h). (19)

Since D is a quadratic polynomial of ρ− 1, it is a simple application of calculus to demonstrate that it attains
the minimum at

ρ− 1 =
2 cosh kd sinh kh− sinh kd cosh kh

cosh2 kh sinh k(d− h)
,

and after some algebra one finds that this minimum is equal to

4 cosh kd sinh kh sinh k(d− h)

cosh2 kh
> 0,

which proves the assertion. Thus we arrive at the following.

Proposition 2. If W is a vertical cylinder with horizontal bottom, then the sloshing problem for a two-layer fluid
occupying W has two sequences of eigenvalues{

ν(+)
n

}∞
1

and
{
ν(−)n

}∞
1

defined by (17) with k = kn > 0, where k2n is an eigenvalue of problem (10).

The same eigensolution (u(1), u(2)) corresponds to both ν(+)
n and ν(−)n , where u(1) and u(2) (sloshing modes

in W1 and W2 respectively) are defined by formulae (12) and (13) with v belonging to the set of eigenfunctions
of problem (10) that correspond to k2n; furthermore, C is an arbitrary non-zero real constant, whereas A and B
depend on C through (15).

Next, we analyze the behavior of ν(±)n as a function of ρ.

Proposition 3. For every n = 1, 2, . . . the functions ν(−)n and ν(+)
n are monotonically increasing as ρ goes from

1 to infinity. Their ranges are:

(0, kn tanh knh) and (kn tanh knd, ∞)

respectively.
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Proof. In order to prove the proposition, it is sufficient to show that:

∂(b±
√
D )

∂ρ
= sinh k(d− h)

{
cosh kh±D−1/2

[
cosh kh sinh kd

+(ρ− 1) cosh2 kh sinh k(d− h)− 2 cosh kd sinh kh
]}

> 0 . (20)

Since
∂(b+

√
D )

∂ρ

∣∣∣∣∣
ρ=1

=
2 sinh2 k(d− h)

sinh kd
> 0 and

∂(b−
√
D )

∂ρ

∣∣∣∣∣
ρ→∞

= 0 ,

inequality (20) is a consequence of the following one:

±∂
2(b±

√
D )

∂ρ2
=

4 cosh kd sinh kh sinh3 k(d− h)

D3/2
> 0 for all ρ > 1.

The second assertion immediately follows from the first one and formulae (17)–(19). �

Combining Proposition 3 and formula (11), we arrive at the following assertion.

Corollary 1. The inequalities ν(−)n < νWn < ν
(+)
n hold for each n = 1, 2, . . . and every ρ > 1.

Dividing (17) by k and letting k = kn to infinity, it is straightforward to obtain the following.

Lemma 1. For every ρ > 1, the asymptotic formula:

ν(±)n ∼ ρ+ 1± |ρ− 3|
4

kn as n→∞,

holds with the exponentially small remainder term; here k2n is an eigenvalue of (10).

In other words, there are three cases:

(i) if ρ = 3, then ν(±)n ∼ kn as n→∞;

(ii) if ρ > 3, then ν(−)n ∼ kn and ν(+)
n ∼ (ρ− 1) kn/2 as n→∞;

(iii) if ρ ∈ (1, 3), then ν(−)n ∼ (ρ− 1) kn/2 and ν(+)
n ∼ kn as n→∞.

Combining these relations and the asymptotic formula νWn ∼ kn as n → ∞ (it is a consequence of formula (11)
defining νWn when a homogeneous fluid occupies W ), we obtain the following.

Corollary 2. As n→∞, we have that ν(−)n ∼ νWn when ρ ≥ 3, whereas ν(+)
n ∼ νWn provided ρ ∈ (1, 3].

Another corollary of Lemma 1 concerns the distribution function N (ν) for the spectrum of problem (1)–(5)
and (7). This function is equal to the total number of eigenvalues νn that do not exceed ν. An asymptotic formula
for N (ν) immediately follows from Lemma 1 and the asymptotic formula for the distribution of the spectrum for
the Neumann Laplacian (see [7], Chapter 6).

Corollary 3. The distribution function N (ν) of the spectrum for the sloshing of a two-layer fluid in a vertical
cylinder of cross-section D has the following asymptotics:

N (ν) ∼
[

4

(ρ− 1)2
+ 1

]
|D| ν2

4π
as ν →∞.

Here, |D| stands for the area of D.

It should be also mentioned that in [6] the asymptotics for N (ν) was obtained for a multi-layer fluid occupying
a bounded closed container.

It follows from Lemma 1 and Corollary 2 that the asymptotic formula for the distribution function of the
spectrum

{
νWn
}∞
1

is similar to the above one, but the first term in the square brackets must be deleted. Moreover,
in the case of homogeneous fluid the same asymptotic formula (up to the remainder term) holds for arbitrarily
shaped fluid domains (see [2], Section 3.3). Since the first term in the square brackets tends to infinity as ρ→ 1,
the transition from the two-layer fluid to the homogeneous one in the asymptotic formula for N (ν) is a singular
limit in the sense described in [8]. A similar effect occurs for modes trapped by submerged bodies in two-layer
and homogeneous fluids as was noted in [4].

In conclusion of this section, it should be noted that in the case of an infinitely deep vertical cylinder it is easy
to verify that ν = k is an eigenvalue of the sloshing problem for a two-layer fluid if and only if k2 is an eigenvalue
of problem (10). Comparing this assertion with that at the beginning of this section, we obtain the following.
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Proposition 4. In an infinitely deep vertical-walled container, the sloshing problem for a two-layer fluid has the
same set of eigenvalues and the same eigenfunctions of the form v(x) eky , k > 0, as the sloshing problem for a
homogeneous fluid in the same container; here, k2 is an eigenvalue and v is the corresponding eigenfunction of
problem (10).

4. Inverse problem

Let a given container W be occupied by a two-layer fluid, but now we assume that the position of the interface
between layers and the density of the lower layer are unknown. The density of the upper layer is known because
one can measure it directly. The sequence of eigenvalues

{
νWn
}∞
1

corresponding to the homogeneous fluid is also
known because it depends only on the domain W . The inverse problem we are going to consider is to recover the
ratio of densities ρ and the depth of the interface h from measuring some sloshing frequencies on the free surface.
Thus, we let the fundamental eigenvalue ν1 be known along with the second-largest one.

The formulated inverse problem is not always solvable. Indeed, according to Proposition 4, it has no solution
when W is an infinitely deep container with vertical walls. Moreover, the inverse problem is trivial for all domains
when ν1 = νW1 . In this case, Proposition 1 implies that the fluid is homogeneous, that is, ρ = 1 and h = d.
Therefore, we restrict ourselves to the case of vertically-walled containers having a finite depth d in what follows.

4.1. Reduction to transcendental equations

In view of what was said above, the inverse problem for W = D × (−d, 0) can be stated as follows. Find
conditions that allow us to determine ρ > 1 and h ∈ (0, d) when the following two eigenvalues are known: the
fundamental one ν1 and the smallest eigenvalue νN that is greater than ν1. Thus, N is such that k2n = k21 for
all n = 1, . . . , N − 1, which means that the fundamental eigenvalue k21 of problem (10) is of multiplicity N − 1
(of course, ν1 has the same multiplicity). For example, if D is a disc, then the multiplicity of k21 is two (see [9],
Section 3.1), and so νN = ν3 in this case.

According to formula (17), we have that ν1 = ν
(−)
1 . Hence the first equation for ρ and h is as follows:

b1 −
√
D1 =

2 ν1
k1

cosh k1d. (21)

Here, b1 and D1 are given by formulae (18) and (19) respectively with k = k1.
To write down the second equation for ρ and h, we have the dilemma whether

νN = ν
(−)
N or νN = ν

(+)
1 ? (22)

Let us show that either of these options is possible. Indeed, Proposition 3 implies that νN = ν
(−)
N provided ρ− 1

is sufficiently small. On the other hand, let us demonstrate that there exists a triple (ρ, d, h) for which νN = ν
(+)
1 .

For this purpose we have to demonstrate that the inequality

ν
(−)
N = kN

bN −
√
DN

2 cosh kNd
≥ k1

b1 +
√
D1

2 cosh k1d
= ν

(+)
1

holds for some ρ, d and h. As above bj and Dj , j = 1, N , are given by formulae (18) and (19), respectively, with
k = kj .

Let h = d/2, then we have:

4 ν
(±)
j = kj

{
(ρ+ 1) tanh kjd±

[
(ρ+ 1)2 tanh2 kjd+ 8 (ρ− 1)

1− cosh kjd

cosh kjd

]1/2}
,

and so
4
[
ν
(−)
N − ν(+)

1

]
→ kN (ρ+ 1− |ρ− 3|)− k1 (ρ+ 1 + |ρ− 3|) as d→∞.

The limit is piecewise linear function of ρ, attains its maximum value 4(kN − k1) at ρ = 3 and is positive for
ρ ∈ (1 + 2 (k1/kN ), 1 + 2 (kN/k1)).

Summarizing, we arrive at the following.

Proposition 5. Let k2N be the smallest eigenvalue of problem (10) other than k21 , and let ν(−)N be the sloshing
eigenvalue defined by (17)–(19) with k = kN . Then

(i) ν(−)N < ν
(+)
1 when ρ − 1 > 0 is sufficiently small (of course, its value depends on d, h and the domain

D);

(ii) ν(−)N > ν
(+)
1 when ρ ∈ (1 + 2 (k1/kN ), 1 + 2 (kN/k1)), h = d/2 and d is sufficiently large (of course, its

value depends on ρ and D).
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Obviously, assertion (ii) can be extended to values of h that are sufficiently close to d/2.

4.2. Options for the second equation

Let us develop a procedure for determining which of the two equalities (22) can be chosen to complement
equation (21) in order to find ρ and h. Our procedure is based on an analysis of the free surface elevations
corresponding to the measured values ν1 and νN . Indeed, when a two-layer fluid oscillates at the frequency
defined by some νj , the free surface elevation is proportional to the trace u

(1)
j (x, 0) (see, for example, [10],

Section 227).

According to formula (12), the trace u(1)1 (x, 0) is a linear combination of linearly independent eigenfunctions
v1(x), . . . , vN−1(x) corresponding to the fundamental eigenvalue k21 of problem (10); of course, its multiplicity

is taken into account. By Proposition 2 the free surface elevation associated with ν
(+)
1 is also proportional to a

linear combination of v1, . . . , vN−1. Since these functions are known, one has to determine whether the measured
free-surface elevation corresponding to νN can be represented in the form of such a combination and only in such
a form. If this is the case, then νN = ν

(+)
1 < ν

(−)
N and the following equation:

b1 +
√
D1 =

2 νN
k1

cosh k1d (23)

forms the system for ρ and h together with (21).
Besides, it can occur that the measured free-surface elevation corresponding to νN is representable in two

forms, one of which is a linear combination of v1, . . . , vN−1, whereas the other one involves the function vN as
well as other eigenfunctions corresponding to the eigenvalue k2N of problem (10) along with v1, . . . , vN−1. It is

clear that this happens when νN = ν
(+)
1 = ν

(−)
N . Indeed, if all coefficients at the eigenfunctions of k2N vanish,

then the profile is represented by v1, . . . , vN−1, otherwise not. In this case, equation (21) can be complemented by
either equation (23) or the following one:

bN −
√
DN =

2 νN
kN

cosh kNd. (24)

Of course, it is better to use the system that comprises equations (21) and (23) because the right-hand side terms
in these equations are proportional.

If the measured free-surface elevation corresponding to νN cannot be represented as a linear combination of
v1, . . . , vN−1, then νN = ν

(−)
N < ν

(+)
1 , in which case the elevation is a linear combination of eigenfunctions that

correspond to the eigenvalue k2N of problem (10) the second largest after k21 . In this case, equation (21) must be
complemented by (24).

Thus, we arrive at the following procedure for reducing the inverse sloshing problem to a system of two
equations.

Procedure. Let v1, . . . , vN−1 be the set of linearly independent eigenfunctions of problem (10) corresponding to
k21 . If the observed elevation of the free surface that corresponds to the measured value νN has a representation as
a linear combination of v1, . . . , vN−1, then ρ and d must be determined from equations (21) and (23). Otherwise,
equations (21) and (24) must be used.

The simplest case is when the fundamental eigenvalue of problem (10) is simple, that is, N = 2. Then
the above procedure reduces to examining whether the free surface elevations corresponding to ν1 and ν2 are
proportional or not. In the case of proportionality, equations (21) and (23) must be used. Equations (21) and (24)
are applicable when there is no proportionality.

5. Solution of the transcendental systems

In this section, we consider the question how to solve systems (21) and (24), and (21) and (23) for finding ρ
and h.

5.1. System (21) and (23)

Equations (21) and (23) can be easily simplified. Indeed, the sum and difference of these equations are as
follows:

b1 =
νN + ν1
k1

cosh k1d and D1 =

(
νN − ν1
k1

)2

cosh2 k1d .
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Substituting the first expression into the second equation (see formulae (18) and (19)), we obtain:

(ρ− 1) sinh k1h sinh k1(d− h) =
νN ν1
k21

cosh k1d , (25)

whereas the first equation itself has the following form:

(ρ− 1) cosh k1h sinh k1(d− h) =
νN + ν1
k1

cosh k1d− sinh k1d . (26)

The last two equations immediately yield:

tanh k1h =
νN ν1

k1 (νN + ν1 − νW1 )
,

where formula (11) is applied. Thus we are in a position to formulate the following.

Proposition 6. Let ν1 and νN 6= ν1 be the smallest two sloshing eigenvalues measured for a two-layer fluid
occupying W = D × (−d, 0). Let also:

0 <
νN ν1

k1 (νN + ν1 − νW1 )
< tanh k1d ,

where k21 is the fundamental eigenvalue of problem (10) in D and νW1 is defined by formula (11) with k = k1. If
Procedure guarantees that ρ and h satisfy equations (21) and (23), then:

h =
1

k1
tanh−1

νN ν1
k1 (νN + ν1 − νW1 )

,

whereas ρ is determined either by (25) or by (26) with this h.

We recall that tanh−1 z = 1
2 ln 1+z

1−z (see [11], Section 4.6).

5.2. System (21) and (24)

Since equations (21) and (24) have the same form, we treat them simultaneously. Eliminating square roots, we
get:

(ρ− 1) sinh kj(d− h) (νj cosh kjh− kj sinh kjh) =
νj
kj

(νj cosh kjd− kj sinh kjd) , j = 1, N,

which is linear with respect to ρ− 1. Taking into account formula (11), we write this system in the form:

(ρ− 1) sinh kj(d− h) (kj sinh kjh− νj cosh kjh) =
νj
kj

(
νWj − νj

)
cosh kjd, j = 1, N, (27)

where the right-hand side term is positive in view of Corollary 1. We eliminate ρ − 1 from system (27), thus
obtaining the following equation for h:

ν1
k1

(
νW1 − ν1

)
cosh k1d sinh kN (d− h) (kN sinh kNh− νN cosh kNh)

−νN
kN

(
νWN − νN

)
cosh kNd sinh k1(d− h) (k1 sinh k1h− ν1 cosh k1h) = 0. (28)

Let us denote by U(h) the expression on the left-hand side and investigate its behaviour for h ≥ 0, because solving
equation (28) is equivalent to finding zeroes of U(h) that belong to (0, d).

It is obvious that U(d) = 0, and we have that:

U(0) = −νN ν1
(
νW1 − ν1

k1
cosh k1d sinh kNd−

νWN − νN
kN

cosh kNd sinh k1d

)
.

After applying formula (11), this takes the form:

U(0) =
(
νWN ν1 − νN νW1

) νN ν1
kN k1

cosh kNd cosh k1d , (29)

and so U(0) is positive, negative or zero simultaneously with νWN ν1 − νN νW1 .
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We have that

U ′(h) =
ν1 kN cosh k1d

k1
(νW1 − ν1) [kN sinh kN (d− 2h) + νN cosh kN (d− 2h)]

−νN k1 cosh kNd

kN
(νWN − νN ) [k1 sinh k1(d− 2h) + ν1 cosh k1(d− 2h)] ,

U ′′(h)

2
=
νN k

2
1 cosh kNd

kN
(νWN − νN ) [k1 cosh k1(d− 2h) + ν1 sinh k1(d− 2h)]

−ν1 k
2
N cosh k1d

k1
(νW1 − ν1) [kN cosh kN (d− 2h) + νN sinh kN (d− 2h)] .

Then, formula (11) yields the following asymptotic formula:

U(h) ∼ (d− h) (νWN − νN ) (νW1 − ν1)

[
ν1 kN
k1

− νN k1
kN

]
cosh kNd cosh k1d as d− h→ +0. (30)

Since equation (28) is obtained under the assumption that νN = ν
(−)
N and ν1 = ν

(−)
1 , Corollary 1 yields that each

factor in the asymptotic formula is positive except for the difference in the square brackets.
The next lemma gives a condition providing a relationship between the value U(0) and the behavior of U(h)

for h < d and sufficiently close to d.

Lemma 2. If the following inequality holds:

ν1 kN
k1

− νN k1
kN

≤ 0, (31)

then U(0) < 0 and U(h) < 0 when h < d and sufficiently close to d.

Proof. Let us prove the inequality U(0) < 0 first. Since

νWN ν1 − νN νW1 = ν1 kN tanh kNd− νN k1 tanh k1d,

according to formula (11). Furthermore, it follows from (31) that:

νWN ν1 − νN νW1 ≤ νN k21 d
[

tanh kNd

kNd
− tanh k1d

k1d

]
< 0, (32)

because z−1 tanh z is a monotonically decreasing function on (0,+∞) and k1 < kN . Then (29) implies that
U(0) < 0.

If inequality (31) is strict, then the second assertion immediately follows from the asymptotic formula (30).
In the case of equality in (31), the asymptotic formula (30) must be extended to include the second-order term

with respect to d− h (see the second derivative above). Thus we obtain that:

U(h) ∼ (d− h)2

{
νN k

2
1 cosh kNd

kN
(νWN − νN ) [k1 cosh k1d− ν1 sinh k1d]

−ν1 k
2
N cosh k1d

k1
(νW1 − ν1) [kN cosh kNd− νN sinh kNd]

}
as d− h→ +0.

Applying the equality νN = ν1 (kN/k1)2 along with formula (11), we write the expression in braces as follows:

ν1 kN k
−1
1 cosh kNd cosh k1d

[
(νWN − νN ) (k21 − ν1νW1 )− (νW1 − ν1) (k2N − νNνWN )

]
,

and we have in the square brackets:

k21 ν
W
N − k2N νW1 + νWN νW1 νN − νWN νW1 ν1 + νW1 νN ν1 − νWN νN ν1 .

Substituting νN = ν1 (kN/k1)2, we see that this expression is the following quadratic polynomial in ν1:(
νW1 − νWN

)
(kN/k1)2 ν21 + νWN νW1

[
(kN/k1)2 − 1

]
ν1 + νWN k21 − νW1 k2N .

Its first and third coefficients are negative (for the latter one this follows from formula (32) because it is equal to
the expression in the square brackets multiplied by a positive coefficient). On the other hand, the second coefficient
is positive. Therefore, the last expression is negative when ν1 > 0, which implies that the right-hand side of the
last asymptotic formula is negative. This completes the proof of the second assertion. �

The immediate consequences of Lemma 2 are the following two corollaries.
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Corollary 4. If inequality (31) holds, then equation (28) for h (and the inverse sloshing problem for a two-layer
fluid occupying W ) either has no solution or have more than one solution.

Proof. Inequality (31) implies that U(0) < 0 and U(h) < 0 for h < d, but sufficiently close to d. Hence U(h)
either has no zeroes on (0, d), or has more than one zero. �

Corollary 5. Let ν1 and νN ∈ (ν1, ν
W
N ) be the smallest two measured sloshing eigenvalues for a two-layer fluid

occupying W = D × (−d, 0). Then a necessary condition that equation (28) has a unique solution h is the
simultaneous validity of the following two inequalities:

ν1 kN
k1

− νN k1
kN

> 0 and νWN ν1 − νN νW1 < 0. (33)

Proof. Let equation (28) have a unique solution on (0, d). According to Corollary 4, inequality (31) contradicts to
this assumption, and so the first inequality (33) must hold. Then the asymptotic formula (30) implies that U(h) > 0
when h < d and is sufficiently close to d. Hence, the assumption that equation (28) has a unique solution on
(0, d) implies that either the second inequality (33) is true or νWN ν1 = νN ν

W
1 . Let us show that this equality is

impossible which completes the proof.
Indeed, according to formula (29), the latter equality means that U(0) = 0, and so

U(h) ∼ h
(
νWN νW1 − νN ν1

)(ν1 kN
k1

− νN k1
kN

)
cosh kNd cosh k1d as h→ +0.

Here, the formula for U ′ is used along with (11) and the fact that νWN ν1 = νN ν
W
1 . Since the first inequality (33)

is already shown to be true, we have that U(h) > 0 when h 6= 0, but is sufficiently close to +0. Since we also
have that U(h) > 0 when h < d and is sufficiently close to d, we arrive at a contradiction to the assumption that
equation (28) has a unique solution on (0, d). �

Now we are in a position to formulate the following

Proposition 7. Let ν1 and νN ∈ (ν1, ν
W
N ) be the smallest two sloshing eigenvalues measured for a two-layer fluid

occupying W = D × (−d, 0). If inequalities (33) hold for ν1 and νN , then either of the following two conditions
is sufficient for equation (28) to have a unique solution h ∈ (0, d) :

(i) U ′(h) vanishes only once for h ∈ (0, d);
(ii) U ′′(h) < 0 on (0, d).

Proof. Inequalities (33) and formulae (29) and (30) imply that U(0) < 0 and U(h) > 0 for h < d and sufficiently
close to d. Then, either of the formulated conditions is sufficient to guarantee that equation (28) has a unique
solution on (0, d). �

It is an open question whether equation (28) can have more than one solution (consequently, at least three
solutions), when inequalities (33) are fulfilled.

6. Conclusions

We have considered the direct and inverse sloshing problems for a two-layer fluid occupying an open container.
Several results obtained for the direct problem include:

(i) variational principle and its corollary concerning inequality between the fundamental sloshing eigenvalues
for homogeneous and two-layer fluids occupying the same bounded domain.

(ii) Analysis of the behavior of eigenvalues for containers with vertical walls and horizontal bottoms. It
demonstrates that there are two sequences of eigenvalues with the same eigenfunctions corresponding to eigenvalues
having the same number in each of these sequences. The elements of these sequences are expressed in terms of
eigenvalues for the Neumann Laplacian in the two-dimensional domain which is a horizontal cross-section of the
container.

(iii) In the particular case of infinitely deep container with vertical boundary, eigenvalues and eigenfunctions
for homogeneous and two-layer fluids are the same for any depth of the interface. This makes senseless the inverse
sloshing problem in a two-layer fluid occupying such a container.

Inverse sloshing problem for a two-layer fluid, that occupies a container of finite constant depth with vertical
walls, is formulated as the problem of finding the depth of the interface and the ratio of fluid densities from
the smallest two eigenvalues measured by observing them at the free surface. This problem is reduced to two
transcendental equations depending on the measured eigenvalues. There are two systems of such equations and to
obtain these systems one has to take into account the behavior of the observed free surface elevation. Sufficient
conditions for solubility of both systems have been found.
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