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1. Introduction

This work is devoted to considering the Cauchy problem on a half-plane for some fourth-order nonstrictly
hyperbolic linear equation with constant coefficients. The operator appearing in the equation involves a composition
of first-order differential operators. The Cauchy problem for such an equation was previously considered in [1,2]
in the case of a strictly hyperbolic equation (a Petrovskii hyperbolic equation [3,4]). The general solution for
both strictly and nonstrictly hyperbolic equations of arbitrary order was constructed there as well. The case of a
nonstrictly hyperbolic equation with the coincidence of all characteristics was considered in [5], and the solutions
of the Cauchy problem in all cases of a nonstrictly hyperbolic third-order equation of such a form were obtained
in [6].

Unique solvability of the problem and the construction of solution for the Cauchy problem is one of the
classical problems in the theory of differential equations. Differential equations arise in the modelling of several
natural phenomena, and the Cauchy problem is one of the first and most important.

The Cauchy problem for hyperbolic partial differential equations was studied by many mathematicians for a
long time, mostly by methods of functional analysis. In this paper, we suggest the following analytical methods for
solving the Cauchy problem. First, we find the general solutions using the characteristics of the equation. Next,
from the general solution, we determine the solution which satisfies the Cauchy conditions. The latter step is the
main difficulty for the determination of the required analytical solution. The general solution of the homogeneous
equation depends on a number of arbitrary functions. To determine them, we use Cauchy differential conditions.
This leads to the corresponding system of differential equations. In each particular case, solving this system
requires a different method and approach. In addition, the solutions depend on a number of arbitrary constants. In
order to prove the uniqueness of the solution for a given Cauchy problem, it is necessary to prove that all these
arbitrary constants are cross-eliminated after substitution into the general solution.

Partial differential equations of fourth order are encountered when studying mathematical models for certain

natural and physical processes. An example of such type of equations, is the fourth-order governing differential
equation for nanorod based on nonlocal second-order strain gradient model [see [7,8]]:
5 0%u(t, ) Ou(t, x) Q%u(t,x)
gt TEAT e e =0 W
and the flexural wave equation for an Euler-Bernoulli beam has a fourth order derivative in space and is given as
[see [9,10]]:

EA(GQG,)

O*u(t, x) ou(t, ) O?u(t, x)
oz* n4 a1 P 4 ot?
On the plane R? of two independent variables ¢ and z, we introduce the half-plane @ = [0, +oc) x R on

which we consider the following partial differential equation of fourth-order, for a function u : R> 3 Q D (t,z) —
u(t,z) e R:

EI =0. @)

£Du(t,2) = [T (80— a®o, + b0 ) u(t0) = f(t,2),  (t,2) €Q, 3)

k=1
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together with the initial conditions:

ou 0%y O3y
ul —o — ¥0o (.%') ) a7 = ¥1 (:L‘) ) YD = 2 (m) ) a3 = ¥3 (CL‘) ) “4)
=0 Ot |,—g ot t=0 ot? t=0
where 9; = %, Oy = 97 are the first derivatives with respect to ¢, z and a(k), b*) are given real numbers,
x

f:Q — R with @ = [0, +00) x R, the closure of Q.
Consider the fourth-order homogeneous equation:

LD (t,z)=0, (t.z)€Q, (5)
with
p r(k)
£®@ =TT (2 = W, +0) ", (©)
k=1

where p and %) are positive integers such that p < 4 and rM 4@ P =g, By [2], the general solution
of Eq. (5) has the form:

p r(k)
u(t,z) = Z evMt Z tsflf(ks) (x + a(k)t) . (7
k=1 s=1

In this paper, we study five cases of fourth-order non-strictly hyperbolic equations, in particular:

Case 1: vV =4 and rV) =0, j =2,4.

Case 2: V) =37 =1 and +(™ = 0 with m = 3,4.
Case 3: ¥ =23 =2 and (m) = 0 with m = 3, 4.
Case 4: 1!
Case 5: ) =1Vi=1,4.

2. Main results

In this section, we consider the some cases for fourth-order non-strictly hyperbolic equations of the form (5).

Case 1: V) =4 and ) = 0, j = 2,4. Assume that the coefficients of (5) satisfy a'® = a, b*) = b, Vk =T, 4.
Then, according to (7), the general solution of (5) can be written in the following form:

u(t,z) =e b (filz +at) + tfa(z + at) + £ f3(z + at) + 2 fa(z + at)) . ®)
By plugging (8) into (4), after simplifying, we obtain:
(@) = po();
—bfi(z) + fa(x) + afi(x) = p1(2);
b fi(w) + 2f3(x) — 2b(f2(2) + afi(2)) + 2af3(z) + a®f)'(z) = pa(2);
—0° f1(x) + 6 fa(x) + 36*(fa(x) + afi(x)) + 6af;(x)
(z)

—3b (ng(:z:) + 2afy(z) + asz(m)) + 3a? 7(x) + a3f{" T

p3();

or equivalently:

f1(w) = po(z);
fa(z) = p1(x) 4+ bpo(z) — apy(z);
f3(z) = % (p2(2) 4 b*po(x) + 2bp1 (x) — 2a¢) (x) — 2abpi(x) + a’ef () ;
a(2) = 5 (93(0) + Bpo(e) = 3 (2) + bpo())
a(ph(x) + 2bg) (z) + b0} (x) — 209 () — 2abgy (z) + a’f ()

+ 3b(pa() + oo () + 2opa(2) — 3a2 (] (2) + bl () — gl (1)) — a0} (1))
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Substituting f1(z), f2(x), f3(z), fa(x) into (8), finally we have:

1 ,
u(t,z) = éefbt(((i + 6Bt + 3b%t2 + b33 o (z + at) + t(3(2 + 20t + b*t) 1 (x + at)
+ 3t(1 + bt)pa(z + at) + t2p3(x + at) — 6ap)(x + at) — 6abtp)(x + at) — 3ab*t> o} (x + at)
— 6at (x + at) — 6abt*p} (z + at) — 3at*ph(x + at) + 3a*te] (z + at)
+ 3a®bt% 9y (x + at) + 3a*t* (x + at) — a®t>¢]) (x + at)).

Case 2: The coefficients of (5) satisfy a® =q, b = b with k = 1,2,3 and a® # a, bk — arbitrary constants.
According to (7), the general solution of equation (5) has the form:

u(t,r) =e (fi(z +at) + tfo(x + at) + £ f3(z + at)) + e_b(4>tf4(x +a™t). 9
Similarly, due to (4), we get the following system of differential equations for the functions fy(z) with k = 1,2, 3, 4:
fi(@) + fa(x) = @o(x);
~bfi(x) + fola) = b fa(x) + afi(z) + a'? fi(x) = 1 (2);
D f1(2) + 2f3(x) + (02 fa(x) = 20(fol) + afi (@) + 2af3(x) — 22D fi(z)
+a® f{ (@) + (@) f{ () = pa(2);
=0 fi(@) = (B fa(@) + 36 (f2(2) + af{(x)) + 6afs(x) + 3aW (BN fi(x) + 30 f5 ()
=3b(2f3(x)) + 2af3(x) + @ f () = 36 (aW)2 £ (@) + a® f1" (2) + (a)* 1" () = ().

For the sake of convenience, we introduce the following notations Qf differential operators: di = ad/dx — b,
dy = aWd/dz — b™® and &! = (ad/dz — b)Y, &’ = (a(4)d/dx — b(4))j. The system of differential equations for
the unknown function fi(x), fa(z), f3(x), fa(z) becomes:

fi(@) + fa(x) = po(2);

dif1(@) + fa(2) + dafa(z) = 1(2);
di fr(x) + 2dy fo(x) + 2fs(z) + di fa(z) = @2();
di f1(x) + 3d3 fo(x) + 6du f3(x) + di fa(x) = p3(x).

Observe that the preceding system can be reduced to the one of differential equations with diagonal matrix.
To this end, we apply the operator d4 to the first three equations in the system and subtract every other equation
of the resulting system from the preceding one. As a result, we obtain:

fi(@) + fa(z) = po(z);
(di — da) f1(z) + f2(2) = @1(x) — dapo();
(di — dida) f1(z) 4+ (2dy — da) fo(x) + 2f3(2) = @2(2) — dapr ();
(df — didy) fi(x) + (3d} — 2d1ds) fo() + (6dy — 2d4) f3(x) = p3(x) — dapa()

By continuing transformations in a similar way, we receive:

Ji(x) + fa(z) = po(w);
(di — da) f1(x) + fa(z) = p1(x) — dapo(z);
(df — dida) f1(2) + (2d1 — da) fo(2) + 2f3(2) = @a(x) — dagr (2);
(d‘;’ — d%d4 — (d% —dydy)(3dy — dy)) f1(z) + (3d% —2dydy — (2dy — dy)(3dy — dy)) fo(z) =
p3(x) — dapa(x) — (3d1 — da)(p2(2) — dapr(2)),

instead of f(z) by fi1(z), we obtain third-order ODE for f;(z)
(3d} — 2dyds — (2dy — dy)(3dy — da)) (1(x) — dapo(x) — (di — da) f1(2))
+ (d} — didy — (d} — dida)(3dy — du)) f1(x) = ps3(x) — dapa(x) — (3dy — ds) (pa2(x) — dapr (x))

or

(di — da)* fr(z) = D(x), (10)
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where
O(x) = p3(x) — 3d1p2(z) + Sd%pl(x) —dy (3d% — 3dids + di) wo(x).

After solving (10), we have:

b—b@
Fi(@) = ea—aD (O 4 20y + 22C5) + V(), (11
1 T b—b(4)
with U(z) = 3o —a@) /@(z)ea—a(“) (x_z)(x — 2)%dz,

where C7,Cs and C5 are arbitrary integration constants. Then, using (11) and the first three equations of
system of differential equations, it is easy to find three other functions for the solution of (9):

b—b(4)

fa(x) = @o(z) — ea=a™*(C} + 20y + 22C3) — U(z),
ala) = e1(2) = (ds — ) V(&) = dgeo(x) — (0 — a D)o (Cy + 22C),
r) = © (pale) — (@) — 21 o) — 2 (x)
= S02(a) — 5(& — B)V() — Sdigo(a) — dyo(z) + da(d — d)U(@) + drdapo()

b—b(4)

teoe®” ((a(4))203 — ba® Cy — 200D O3z — a2C3 + abD Oy + 2ab(4)03m)

b—b(4)

+eaa®” (—Zaa(4)03 +baD Oy + 2ba'Y Cs2 + 2a%C5 — ab™ Cy — 2ab(4)03m) .
Now, substituting f1(x), fo(x), f3(x), f4(z) into 9, we get the solution:
u(t,z) = e " (U(x + at) + t(p1(z + at) — (dy — dy)¥(x + at) — dypo(x + at)))
+ e~ bt¢2 <;gp2(x +at) — %(d2 d))V(z + at) — 7d4g00(x + at)>
+ e*btt2< —dyp1(z + at) + di(dy — dg)¥(x + at) + d1dapo(z + at))
+ et (gao(a: +aWt) - U(z+ a(4)t)> .
Case 3: We have coefficients of equation (5) satisfy a'® = a, b*) = b with k = 1,2, a'® = ¢, b*) = d with

k=3,4, c # a and b, d — arbitrary constants. According to equation (7), the general solution of equation (5) in
this case has the form:

u(t,z) = e P (fi(z + at) + tfo(z +at)) + e % (fa(x + ct) + tfa(z + ct)), (12)

we compute partial derivatives of first,second and third order in t and substitute them into the initial conditions
(4), we get the following system of differential equations on the functions fj(z) with k = 1,2,3,4:

f1(@) + f3(z) = po(w);
—bf1(x) + fa(x) — dfs(x) + fa(x) + afi(z) + cf3(x) = w1(2);

b* fi(x) + d* fa(x) — 2bfa(x) — 2abfi(x) + 2af5(x) — 2dfs(x) — 2edf3(z) + 2cf4(x)
+a® fi' () + A f (x) = pa();

—b3 f1(x) — &3 f3(x) + 30 fo(x) + 3b%af] () + 3d> fu(x) + 3dcfi(x) — 6abf2(x)
3ba’ f1' (x) + 3a® f3 (x) — 6edfy(x) — 3de® 3 (x) + 3¢ [ (x) + a® 1" (z) + & 3 (2) = p3(2).

- We introduce the following notation for differential operators: dy = ad/dr — b, do = cd/dzr — d and
&} = (ad/dx —b)’, &} = (cd/dx —d)’. 1In this notation, we rewrite system of differential equations for the
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unknown function f1(x), fo(z), f3(z), f4(x) in the form:

fi(@) + f3(z) = po(2);

difi(z) + f2(x) + daf3(z) + fa(z) = p1();

di f1(x) + 2di fo(x) + d5 f3(2) + 2da fa(x) = pa(2);
d3 f1(x) + 3d7 fo(x) + d5 f3(x) + 3d3 fa(x) = p3(x),

instead of fy(z), f3(x), fa(x) by fi(x), we obtain third-order ODE for f;(z):
—1 3 1 3
<2d? + §d2d§ + §d§ - 2d1d§) filz) =

p3(r) — gdzw(w) - gdupz(x) + 3didap1 () + dz‘PO( ) — %dldgtpo(@,
or
(df — 3dad? + 3dyd3 — d3) fi(z) = ®(x), (13)
where ®(z) = —2p3(z) + 3dap2(z) + 3d1p2(x) — 6d1daspr () — dypo() + 3d1d3po ().
Solving the third-order differential equation from (13), we get:

1 [ b—d
- | a=e(T=2) (p _ )2
+ a—c) / (2)e (z — 2)%dz,

0

fl(a:) = egz (Cl + 2Cy + .%‘203)

1 x
with U(z) = 2((1—0)3/(1)(2)ea =1 ) (z — z)%dz, we obtain:
0

filz) = game® (C1 + 2Cs + 2°C3) + U(z), (14)

where C7, Cy and C are arbitrary integration constants. Then, using function 14 and the first three equations of
system of differential equations it is easy to find three other functions for the solution of (12):

f3(@) = po(x) — =5 (Cy + 2Cy + 22Cs) — U(),
fox) = Chea=c™ — (a — ¢)Ceac"x

] (¢2(2) — 2dagp1(2) — (df — 2dad1)¥(2) + d3po(z) — d3¥(2)) o=t (@—2)
2(a —¢)

+

dz,
0

fa(@) = p1(x) — ¥ (z) — dapo(x) + da¥(x) — Caea=c” + (a — ¢)Cyen=c’a

/ — 2dap1(2) — (di — 2dad1) ¥ (2) + d3po(2) — d3¥(2)) paze(@=2)
2(a —¢)
0

dz

—(a— )ea < (Cy 4+ 2C52) .

Now, substitute f1(z), f2(z), f3(x), fa(z) into (12), we get the solution:

u(t,x) = e "W (x + at) + te P'Q(x + at) + e Ppo(x + ct) — eV (x + ct)
+te” M (—Q(z + ct) + o1 (z + ct) — dyV(z + ct) — doo(x + ct) + daV(z + ct)),

where

_ /”” (2(2) — 2dap (2) — (&% — 2dad) W (2) + d3po(2) — dBU(=)) =22

2(a—c)
0
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Case 4: We have coefficients of equation (5) satisfy a® =a, b® =bwithk =1,2,a® = ¢, b® =d, ¥ =¢,
bV = f c#a+#eand (b—d)(a—e) # (b— f)(a—c). According to equation (7), the general solution of
equation (5) in this case has the form:

u(t,x) = e (filw +at) + thr(v +at)) + e~ fa(z +ct) + e fula + et), (15)

we compute partial derivatives of first,second and third order in ¢ and substitute them into the initial conditions
(4), we get the following system of differential equations on the functions fj(z) with k = 1,2, 3,4:

fi(z) + f3(x) + fa(x) = po(x);
=bfi(z) + fa2(x) — dfs(z) — ffa(z) + afi(x) + cfi(z) + efi(z) = p1(2);
b fi(x) + d® fs(z) + [ fa(x) — 2bf2(x) — 2abfi(x) + 2af2(w)
—2cdfy(x) = 2ef fi(x) + a® f{'(x) + S f3 (x) + € [ () = pa(2);
—0 fi(x) — & f3(x) — £ fa(x) + 36% fa(2) + 3b%a f] () + 3ed® f5(x) + e f? fi(x) — 6abf2(w)
—3ba® f{'(x) + 3a® 3 (x) = 3c2df3 (x) — 3e> [ f1 (x) + a® ["(2) + 15" (2) + €* 1 (2) = p3(2).

We introduce the following notation of differential operators: d; = ad /dx —b, d3 = cd/dx — d, dy = ed/dx — f
and d] = (ad/dx — b)Y, d} = (cd/dx — dY, &} = (ed/ dxz — f)’. In this notation, we rewrite system of differential
equations for the unknown function f1(z), fo(x), f3(x), f in the form:

4()
fi(@) + f3(z) + fa(z) = po(z),
difi(z) + fa(z) + d3f3($) + dafa(z) = @1 (
di f1(x) + 2dy fo () + d3 f3(x) + di fa(x) = pa(z
&} f1(2) + 33 fo (@) + d5 f3(x) + di fa(x) = @3(

fi(z) + f3(z) + fa
(di — da) f1(2) + fao(x) + (d3 — d4) f3
(&} = dadh) f1(2) + (2d1 — da) fa () + (
(d} — dad?) f1(2) + (3d} — 2dady) fo () + (dF —
or
() (
(di — da) f1(z) + f2(x) + (d5 — da) f3(2) (
(di — dydy — d3dy + dds) f1(x) + (2d1 — dy — d3) fa(z) = pa(x
(d3 — dyd? — dzd3 + dzdydy) f1(z) + (3d3 — 2dady — 2d3dy + dzdy) fo() (
instead of f;(z) by f2(x), we obtain second-order ODE for fo(x):

(d2 — dydy — dzdy + dsdy) fo(z) =
©3(2) — dapa(2) — d3p2(2) + dsdapr () — dipa(2) + didapr () + didsipr(z) — didsdapo(),

e1(x) + dzdspo(x),
3p2(7) + dadspr (),

or
(d2 — dydy — d3dy + d3dy) f2(z) = D(x), (16)
where

O(x) = p3(7) — dap2(x) — dzp2(x) + dsdspr () — dipa(x) + didapr (v) + didzi(z) — didzdapo(x).
Solving the second-order differential equation from (16), we get:
—f

T @(Z) (eg(z—z) 6‘1 C(r z))
Fo(z) = Crev=t7 4 Che™t +/b(c—e)+d(e—a)+f(a—c)dz’
0

dz, we obtain:

| fB(2) (20— ei=t )
w1thQ(£E):)/b(Ce)+d(ea)+f(aC)

fa(z) = Clea c +CQ€‘ £ +Q( ), 17
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Then, using function (17), we find three other functions for the solution of (15):

i - 3 e, x (2d1 — dy — d5)(2) (eZ:Z (x—z) eziﬁ (m—Z)) )
fl(aj‘) = Ugea—«c + qeae—e” — / b(C _ 6) + d(e — a) =+ f(a — C) ?

H(z—z)

F (2(2) = dagpi (=) — dapa (2) + dadapo (2)) (€57 — 2= =2))
n d
/ b(c—e)+dle—a)+ fla—c)

z

0
b—d

r ((a - 6)016%2 —(a— C)Czegz> (ea—ﬂ(m_z) _eae ("”_Z))
_/ (a—c)(a—e) dz
0

b—d b—f

b—d b—f T ((a - e)clez%iz - (a - C)CQQ%Z) (eﬁ(x—z) - e”’_"‘(x_z))
=0O(z) + Csee=<® + Cpea=e® — / d
) (a—c)(a—e)

z

with

z

T (2d1 - d4 — dg)Q(z) (e%(w—z) _ ez:ﬁ (w_z))
@(33)__/ blc—e)+d(e—a)+ f(a—c) d

z bod (g2 =S (-2
(#2(2) = dapr(2) = dapa (2) + dadagpo (2)) (575079 = ei=t o))
—|—/ dz,
0

blc—e)+d(e—a)+ fla—c)

and
d—f [ 1(2) — dapo(2) — (A1 —da) f1(2) — fa(2 eeme (@=2)
o) = Cretote 4 [ (0200 = damnls) <d( f){() f2(2) .
) c—e
_ ei:c{fﬂ w (spl(z)—d4(p0(2)—(d1 —d4)@(z)_Q(z))ei:£(mfz) .
,C5 +O/ (C_e) d

=1 (z—2)

z (Cle%z _|_ CQQ%Z — (b — f)(Cge%Z + C46HZ> ec—e

-/ =0 o

b=f dif(azfz)

0
22— f) ((a—e)C e%ti(aic)c pomtt) (pa=iz—t) _ o=t (z-1)) J =L
0/ 0/ | | <a—c>2<a—e))<c< —0) ) iz

((a =) (EtCger=ss 4 oloyen=er) ) er=i )

a
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—(dy — - =L (z—2)
fa(z) = pola / p1(2) = dapo(2) — (d — d1)O(2) — Q(2)) e* .
(c—e)
0
((a’ )Clea c? (G—C)CQG%Z) (62 ‘i(x z) _ ez:é(zfz))
+/ dz
(a—c)la—e)
0
z (Clea c +C’26a < — (b f)(c3ea . +C4ea b=ty )6”;:5(35%)
+/ dz
(c—e)
0

() ((af e)Crea=c! — (a— 6)02621&) (ei St biﬁ(Z*t)) =t (@=2)

(a—c)(a—e)(c—e)
MZ — ﬂz I r—z

j((ae) (Z:ZCSW’C +%C4eafﬁ ))ec e(2=2)

+ dz
(c—e)

0

/ (a—e€) C’1ea et (afc)C'zea ét) (Z ‘Zez St b_feiiﬁ(z_t)>ec f@=2)
—c

J - ac—o

dtdz

+
o
o

o\

After substitution of fi(x), fa(z), f3(x), fa(z) into equation (15), we get a solution of the Cauchy problem in
this case :

u(t,z) = e O (x + at) + te 'Q(z + at) + e oo (x + et) — e 1O (x + et)

et 7at<so1<z> — dugpo(2) = (dy — d)O() = Q) et 2
/ (c=o)
et 7%(901(2) — dugpo(2) = (dy — d0)O(z) = Rz)) e )
J (=) |

Case 5: We have coefficients of equation (5) satisfy a'? # a\9) with Vi, = 1,4 and (b — @) (aM — a®)) £
O — B3 (@® —a@), B — @) (@D —a®) £ B — s (0D — @), According to equation (7), the
general solution of equation (5) in this case has the form:

u(t,e) = et f(@ 4+ aV) + e o+ a@t) + e (x4 a®t) + eV fu(z +aWr),  (18)

we compute partial derivatives of first,second and third order in ¢ and substitute them into the initial conditions (4),
we get the following system of differential equations on the functions fj(x) with k = 1,2,3,4 and we introduce
the following notation for differential operators: d; = a(i)d/ dz — b, and d{ = <a(i)d/ dx — b(i)) with i = 1,4
and j = 1,3. In this notation, we rewrite the system of differential equations for the unknown function fi(z),

f2(z), f3(x), fa(z) in the form:

fi(@) + fa(@) + f3(z) + fa(z) = po(2);
difi(z) + da fo(x )+d3f3($)+d4f4(56) e1(2);
di f1(2) + &5 o) + d5 f3(x) + di fa(x) = p2();
A3 fr(x) + d5 fo() + d5 f3(2) + di fa(x) = p3(2);

or
fi(@) + fa(z) + f3(2) + fa(@) = @o(z);

(di — da) f1(w) + (dg — da) f2(x) + (d3 — da) f3(x) = ¢

(d} — dvdy — dsdy + dady) f1(z) + (d5 — dady — dsda + dsds) f2(x) = ¢

N =
8 8
~
(.
L X
= >
€ €
— o
—~
& &

— dg1(z) + dsdapo(x),
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instead of fa(z) by fi(z), we obtain third-order ODE for f;(z)
(d3 — dyd? — d3d? + dsdydy) fr(z) + (d5 — duds — dsd3 + dzdady) fo(x) =
@3(x) — dap2(x) — dap2(x) + dadaepr (2);

(df — dyd} — d3d; + dsdids — dad] + dodydy + dodsdy — dadsdy) fi(z) =
@3(x) — dap2(x) — dzp2(x) + dzdsp1(x) — dawa(x) + dadspr (x) + dadspr (v) — dadsdapo(z);
where
®(x) = ps(z) — dapa(2) — d3p2(x) + dsdapr(z) — dap2(2) + dadapr () + dadsipr(z) — dadsdapo().
After solving this equation, we receive

(1) _p(2) p(1) _p(3) p(1) _p(4)

fi(z) = Crea@=a® T4 CeeaM—a®@” 4 Chea@—a@”

p(1) _p(k) zfz)

4 T = (
P(2)eaM—a®
S dz

=/ p/ am a(m ((1)fa<2>)(a<1>fa<3>)(a<1>fa<4>)

p(1) _p(2) p(1) _ b(3) p(1) _ b(4)

= Cres@—a®@ " 4 Chea®—a® " 4 Cyea® @ 4 ((z),

p(1) _ p(2) p(1) _ p3) b — p*)
where P()) = (A - a(l)_a(Q)) (A - a(1>—a<3>> (A B a<1>_a(4>> and

T p(1) _p(k)

4 (x—2)
P(2)ea®—a®
Q) =3 / — (2)e dz.
= P (s(l):zw) (@D — a@)(a® — a®)(a®) — o)
Then, using function f;(x), we find three other functions for the solution of (18):
b(2) _p(3) = p(2) _p(4) -
fo(z) = U(z) + Crea@ @ " 4 Cgea®@—at®
i/m (@® — a®)(@® — a®)Cy_, (bD — b*))2(z, 2) .
o 1) — ,(k)\2(,(4) (p(2) _ (3 2)(H(3) _ p(4 3)(h(4) _ p(2
. i D — 53 (a® — a®)Cp_y (B — b0 (z, 2) o
2s ) (- a(k @@ (@ — @) 1 a@ (G — 6@) 1 a® (6@ — b))
-0
. 4 / D — b®) (@@ — ¢®)Cp_1 (M) — pNI(z, 2) ©
2] (@ = a®)(@® (R @)+ a® (B — ) + (50 — b))
B 24:/ M — @)D = p®)Cy,_1T1(x, 2) ©
2 3 2 3) _ K4 3 4) _ KH(2 ’
2 @R —5®) a0 —50) + a0 — b))
. Yty @-2) 3y
_ [ (p1(2) = dapo(2) = (dy — da) f1(2) = (da — da) f2(2)) e~ dz + Cee%w
a®) — g4 ’
0
fa(@) = po(z) — fo(z) = fi(z) — f2(2) — f3(2),
where
b(2) _p(4) ((L Z) b(2) b»(3) (2—2)
T ((d% —dydy — dsdy + d3d4)Q(2’)) ( a@ —a® a(? —a() >
V() =- / a® (@ — @) + a@ (6 — @) + o (b@ _ p@) dz
0
p(2) _p(4) (z—2) 5(2) _p(3) (z—2)
2 (p2(2) — dap1(2) — dsp1(2) + dzdapo(2)) (6“(2)“(4) —ea®-a® >
* / a® 0@ — b)) + a® (B0 — b)) + aB® (b _ ) 4z,

0
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p(1) _ b(k) p(2) _p(4) b(2) _3(3)
(2, 2) = o < D= 7 _ e (7 Z>>.

After substitution of fi(x), fa(x), f3(z), fa(x) into equation (18), we get a solution of the Cauchy problem
in this case:

u(t,z) = e_bmtﬂ(x +aMt) + e_b(z)t\ll(x +a@t)

z+a®t O b @)y
+ —p®)y (p1(2) — dagpo(2))ea® —a® ) J
¢ 2@ —a® z
0
wae M(L-ﬁ-a )t—Z)
b3y ((di — da)2(2) + (d2 — dyg)¥(2))ea®-a® J
‘ a®) — g ?
0
+ e (pola+ ) — Qe+ V) — (@ + )
w+a®t B® b L@y
b (¢1(2) = dago(=))er@ =@ D
a® — g
0
z+a®t »(3) _p(4) (e+a®i—z)
e ((d1 — dg)Q(2) + (do — dg) TV (2))ea® -a® J
¢ a(3) — a(4) -
0

We obtain the following theorem:

Theorem 2.1. The Cauchy problem (4) — (5) has a unique classical solution in 04(@) for arbitrary functions
©;(j =0,3) in the class C*7/(R), j =0,3.

Now, consider the Cauchy problem for the inhomogeneous equation. Since the considered problem is linear,
it follows that its solution u can be represented as the sum of two functions w = uw + v, where @ is a solution of
problem (4) — (5), and v is a solution of following equations:

LB ()= f(t,z), (tz)eq, (19)
with the homogeneous Cauchy conditions:
v 0%v v
U‘t:o ) 3t —o ’ 6t2 —o ) 6t3 —o ( )

We define the function v(¢,z) via the function w(t, 7, z) with a parameter 7 € [0, c0) by the relation:
¢
v(t,x) = /w (t —7,7,2)dr.
0

The function w treated as a function of the independent variables ¢ and = is a solution of the homogeneous
equation (5) with the Cauchy conditions:

ow 9w Bw
:0 —_ = _— = _— = .
wWhier =0 o, o) T (r.)
Indeed, we have:
0
v, O:/w( T, T,x)dT =0,
0 08
t_
v 00x+/” TTx)d -0,
ot,_, )
0
@ B 0096 / t—Tva)d _o
2 P 7
0
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o
ot3

dr =0,

o or? BIE

0
B 0%w(0,0, ) N / Pw(t —7,7,1)
0

4 ¢
LBy (t,z) = H (8t —a®a, + b(k)) v(t,z) = f(t,z) + / (5(4)w (t—r,7, x)) dr = f(t,x).
k=1 0

Theorem 2.2. If the right-hand side of Eq. (3) belongs to the set C**(Q) and the functions v;i(j =0,3)
occurring in condition (4) belong to the class C377(R), then for such arbitrary functions, there exists a unique

classical solution uw = u + v of problem (3), (4) in the class C4(Q), where  is the classical solution for problem
(4), (5) and v is the solution for problem (19), (20).
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