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1. Introduction

In the physical literature, local potentials, i.e., multiplication operators by a function,
are typically used. But the potentials constructed, for example, in pseudo-potential theory [6]
turn out to be non-local. Such for a periodic operator are given by the sum of local and a
finite dimensional potentials. Non-local separable two-body interactions have often been used
in nuclear physics and many-body problems because of the fact that the two-body Schrödinger
equation is easily solvable for them, and leads to closed expressions for a large class of such
interactions. They have also been used very systematically with Faddeev equations for the
three-body problem. Their main feature is that the partial-wave t-matrix has a very simple
form, and can be continued off the energy-shell in a straightforward manner, a feature which is
most important, as is well known, in nuclear physics, and in the Faddeev equations [11].

Many works are devoted to the investigations of the essential spectrum of the discrete
Schrödinger operators with local potentials, see e.g., [2,8]. In particular, in [2] it was proved that
the essential spectrum of a three-particle discrete Schrödinger operator is the union of at most
finitely many closed intervals even in the case where the corresponding two-particle discrete
Schrödinger operator has an infinite number of eigenvalues.

In the present paper, we study the model operator H associated with a system of three
particles on a d-dimensional lattice and interacting via non-local potentials, where the role of
a two-particle discrete Schrödinger operator played by the Friedrichs model. Usually, such
operators are arise in the Hubbard model [7, 9]. It is remarkable that the Hubbard model is
currently one of the most intensively studied many-electron models of metal, but very few exact
results have been obtained for the spectrum and the wave functions of the crystal described by
this model. Hence, it is very interesting to obtain exact results, at least in special cases, for
example, in the case of non-local potentials. For this reason, we intend to discuss the case
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where the kernel of non-local interaction operators (partial integral operators) has rank n with
n ≥ 3. An important problem in the spectral theory of such operators is to describe the essential
spectrum and to study the number of eigenvalues located outside the essential spectrum.

The following results are obtained:
(i) We construct an analog of the Faddeev equation for the eigenfunctions of H;
(ii) We describe the location of the essential spectrum of H and show that it is the union of at
most n+ 1 bounded closed intervals;
(iii) We find upper bound of the spectrum of H;
(iv) We estimate the lower bound of the essential spectrum of H for the case d = 1.

We remark that the results (i) and (ii) has been announced in [16] without proof. This
paper is devoted to the detailed proof of the results (i)–(iv).

The organization of the present paper is as follows. Section 1 is an introduction. In
Section 2, the model operator H is described as a bounded self-adjoint operator in the Hilbert
space. In Section 3, the main results are formulated. In Section 4, the number and location
of the eigenvalues of the corresponding Friedrichs model are studied. In Section 5, an analog
of the Faddeev equation and its symmetric version for the eigenfunctions of H is obtained. In
Section 5, the essential spectrum of H is investigated. In Section 7, the lower bound of the
essential spectrum of H is estimated for the case d = 1.

2. Three-particle model operator on a lattice

Let C, R, Z and N be the set of all complex, real, integer and positive integer numbers,
respectively.

We consider the discrete Schrödinger operator Â := Â0−K̂ acting in the space l2((Zd)2).

The kinetic energy Â0 is given by a convolution with a function of the general form:

(Â0ψ̂)(s1, s2) =
∑

n1,n2∈Zd

u0(s1 − n1, s2 − n2)ψ̂(n1, n2),

and the potential energy K̂ is defined by:

(K̂ψ̂)(s1, s2) = (u1(s1) + u2(s2))ψ̂(s1, s2).

We assume that the functions u0(·, ·) and uα, α = 1, 2 satisfy the conditions

|u0(s1, s2)| ≤ C0 exp(−a(|s1|+ |s2|)), a > 0;

|uα(s1)| ≤ Cα exp(−bα|s1|), bα > 0, α = 1, 2,

where |s1| := |s11|+ . . .+ |s1d| for s1 = (s11, . . . , s1d) ∈ Zd and Cα, α = 1, 2, 3 are constants.
The operator Â is a particular case of the lattice model Hamiltonian studied in [10, 18].
Let Td be the d-dimensional torus. The operations addition and multiplication by real

numbers elements of Td ⊂ Rd should be regarded as operations on Rd modulo (2πZ1)d. For
example, if d = 4 and

a =

(
π

2
,
π

6
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)
, 6a = (π, π, 0, 0) ∈ T4.
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Let L2((Td)α) be the Hilbert space of square integrable (complex) functions defined on
(Td)α, α = 1, 2 and F : l2((Zd)2)→ L2((Td)2) be the standard Fourier transformation:

(F ψ̂)(p, q) =
1

(2π)d

∑
n1,n2∈Zd

ψ̂(n1, n2) exp(i[(p, n1) + (q, n2)]).

Then, (see [18]) the operator:

A := FÂF−1 : L2((Td)2)→ L2((Td)2)

can be represented as A := A0−K1−K2, where the operators A0 and Kα, α = 1, 2 are defined
by:

(A0f)(p, q) = k0(p, q)f(p, q), f ∈ L2((Td)2);

(K1f)(p, q) =

∫
Td

k1(p− s)f(s, q)ds, (K2f)(p, q) =

∫
Td

k2(q − s)f(p, s)ds, f ∈ L2((Td)2).

Here k0(·, ·) and kα(·) are the Fourier transform of the functions u0(·, ·) and uα(·), α = 1, 2,
respectively. Usually, the operator A is called the momentum representation of the discrete
operator Â.

In the Hilbert space Ls
2((Td)2) of square integrable symmetric (complex) functions de-

fined on (Td)2, we consider the model operator:

H := H0 − V1 − V2, (2.1)

where H0 is the multiplication operator by the function w(·, ·) :

(H0f)(p, q) = w(p, q)f(p, q)

and Vα, α = 1, 2 are non-local interaction operators:

(V1f)(p, q) =
n∑
i=1

vi(q)

∫
Td

vi(s)f(p, s)ds, (V2f)(p, q) =
n∑
i=1

vi(p)

∫
Td

vi(s)f(s, q)ds.

Here, f ∈ Ls
2((Td)2), n ∈ N with n ≥ 3, the functions vi(·), i = 1, . . . , n are real-valued linearly

independent continuous functions on Td and the function w(·, ·) is a real-valued symmetric
continuous function on (Td)2. By definition, the operators Vα, α = 1, 2 are partial integral
operators with a degenerate kernel of rank n.

Under these assumptions, the operator H is bounded and self-adjoint.
The spectrum, the essential spectrum and the discrete spectrum of a bounded self-adjoint

operator will be denoted by σ(·), σess(·) and σdisc(·), respectively.
Schrödinger operators of the form (2.1), associated with a system of three particles on

a lattice, were studied in [1, 3, 5, 14] for the case n = 1 and [15] for the case n = 2. In [1, 3]
the sufficient conditions for the finiteness and infiniteness of the discrete spectrum are found.
In [14], the Efimov effect for (2.1) was demonstrated when the parameter function w(·, ·) has
a special form. In [5] the essential spectrum and the number of eigenvalues of the model (2.1)
were studied for the function w(·, ·) of the form w(p, q) = u(p)u(q).
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3. Statements of the main results

To study the spectral properties of the operator H, we introduce a family of bounded
self-adjoint operators (Friedrichs models) h(p), p ∈ Td, acting on L2(Td) by the rule:

h(p) := h0(p)− v,
where h0(p) is the multiplication operator by the function w(p, ·) on L2(Td) :

(h0(p)f)(q) = w(p, q)f(q)

and v is the non-local interaction operator on L2(Td) :

(vf)(q) =
n∑
i=1

vi(q)

∫
Td

vi(s)f(s)ds.

The perturbation v of the operator h0(p) is a self-adjoint operator of rank n. Therefore,
in accordance with the Weyl theorem about the invariance of the essential spectrum under the
finite rank perturbations, the essential spectrum of the operator h(p) coincides with the essential
spectrum of h0(p). It is evident that σess(h0(p)) = [m(p);M(p)], where the numbers m(p) and
M(p) are defined by:

m(p) := min
q∈Td

w(p, q) and M(p) := max
q∈Td

w(p, q).

This yields σess(h(p)) = [m(p);M(p)].
We remark that for some p ∈ Td the essential spectrum of h(p) may degenerate to the

set consisting of the unique point {m(p)} and hence we cannot state that the essential spectrum
of h(p) is absolutely continuous for any p ∈ Td. For example, if the function w(·, ·) has the
form:

w(p, q) :=
d∑
i=1

[3− cos pi − cos(pi + qi)− cos qi] , q = (q1, . . . , qd) ∈ Td,

and p = π := (π, . . . , π) ∈ Td, then σess(h(π)) = {4d}.
For any p ∈ Td, we define the analytic functions in C \ [m(p);M(p)] by:

Iij(p ; z) :=

∫
Td

vi(s)vj(s)ds

w(p, s)− z
, i, j = 1, . . . , n;

∆(p ; z) := det (δij − Iij(p ; z))ni,j=1 , δij :=

{
1, if i = j

0, if i 6= j
.

It is clear that Iij(p ; z) = Iji(p ; z) for all i, j = 1, . . . , n. The function ∆(p ; ·) is called the
Fredholm determinant associated with the operator h(p).

Note that for the discrete spectrum of h(p), the equality

σdisc(h(p)) = {z ∈ C \ [m(p);M(p)] : ∆(p ; z) = 0}
holds (see Lemma 4.1).

Let us introduce the following notations:

m := min
p,q∈Td

w(p, q), M := max
p,q∈Td

w(p, q), σ :=
⋃
p∈Td

σdisc(h(p)), Σ := σ ∪ [m;M ];

L
(n)
2 (Td) := {g = (g1, . . . , gn) : gi ∈ L2(Td), i = 1, . . . , n}.
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For each z ∈ C \ [m;M ], we define the n × n block operator matrices A(z) and K(z)

acting in the Hilbert space L(n)
2 (Td) as:

A(z) := (Aij(z))ni,j=1 , K(z) := (Kij(z))ni,j=1 ,

where the operator Aij(z) is the multiplication operator by the function δij − Iij(· ; z) and the
operator Kij(z) is the integral operator with the kernel:

Kij(p, s; z) :=
vj(p)vi(s)

w(p, s)− z
,

(s is the integration variable).
We note that for each z ∈ C \ [m;M ], all entries of K(z) belong to the Hilbert-Schmidt

class and therefore, K(z) is a compact operator.
Recall that for each z ∈ C \ Σ, the operator A(z) is bounded and invertible (see

Lemma 5.1) and for such z we define the operator T (z) := A−1(z)K(z).
Now, we give the main results of the paper.
The following theorem is an analog of the well-known Faddeev’s result for the opera-

tor H and establishes a connection between eigenvalues of H and T (z).

Theorem 3.1. The number z ∈ C \ Σ is an eigenvalue of the operator H if and only if the
number λ = 1 is an eigenvalue of the operator T (z). Moreover, the eigenvalues z and 1 have
the same multiplicities.

We point out that the matrix equation T (z)g = g, g ∈ L
(n)
2 (Td) is an analog of the

Faddeev type system of integral equations for eigenfunctions of the operator H and it plays a
crucial role in the analysis of the spectrum of H.

Since for any z ∈ C \ Σ the kernels of the entries of T (z) are continuous functions on
(Td)2, the Fredholm determinant ∆(z) of the operator I−T (z), where I is the identity operator
in L(n)

2 (Td), exists and is a real-analytic function on C \ Σ.
According to Fredholm’s theorem and Theorem 3.1, the number z ∈ C \ Σ is an

eigenvalue of H if and only if ∆(z) = 0, that is,

σdisc(H) = {z ∈ C \ Σ : ∆(z) = 0}.

The following theorem describes the essential spectrum of the operator H.

Theorem 3.2. For the essential spectrum of H , the equality σess(H) = Σ holds. Moreover the
set σess(H) consists no more than n+ 1 bounded closed intervals and max(σess(H)) = M.

The sets σ and [m;M ] are called two- and three-particle branches of the essential
spectrum of H, respectively.

The definition of the set σ and the equality,⋃
p∈Td

[m(p);M(p)] = [m;M ]

together with Theorem 3.2, give the following equality:

σess(H) =
⋃
p∈Td

σ(h(p)). (3.1)

Here, the family of operators h(p) have a simpler structure than the operator H. Hence, in many
instances, (3.1) provides an effective tool for the description of the essential spectrum.
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In [12], the essential spectrum of several classes of discrete Schrödinger operators on the
lattice Zd was studied by means of the limit operators method. In [13], this method has been
applied to study the location of the essential spectrum of electromagnetic Schrödinger operators.

Roughly speaking, the limit operators approach of [13] works as follows. The study of
the essential spectrum of unbounded operator is reduced to the study of the essential spectrum
of a related bounded operator which belongs a certain Banach space B. With each operator
A ∈ B, there is an associated family Ah of operators, called the limit operators of A, which
reflect the behavior of the operator A at infinity. It is shown in [13] that:

σess(A) =
⋃

σ(Ah),

where the union is taken over all limit operators Ah of A and mentioned that this identity also
holds for operators in the Wiener algebra on Zd.

4. Estimates for the number of eigenvalues of h(p)

In this section we study the number and location of the eigenvalues of h(p). The
following lemma describes the relation between the eigenvalues of the operators h(p) and zeros
of the function ∆(p ; ·).

Lemma 4.1. For any fixed p ∈ Td the number z(p) ∈ C \ [m(p);M(p)] is an eigenvalue of
h(p) if and only if ∆(p ; z(p)) = 0.

Proof. Let p ∈ Td be a fixed. Suppose fp(·) ∈ L2(Td) is an eigenfunction of the operator h(p)
associated with the eigenvalue z(p) ∈ C \ [m(p);M(p)]. Then, fp(·) satisfies the equation:

w(p, q)fp(q)−
n∑
i=1

vi(q)

∫
Td

vi(s)fp(s)ds = z(p)fp(q). (4.1)

For any z(p) ∈ C \ [m(p);M(p)] and q ∈ Td the relation w(p, q) − z(p) 6= 0 holds.
Then, the equation (4.1) implies that the function fp(·) can be represented as:

fp(q) =
1

w(p, q)− z(p)

n∑
i=1

Civi(q), (4.2)

where

Ci :=

∫
Td

vi(s)fp(s)ds, i = 1, . . . , n. (4.3)

Substituting the expression (4.2) for fp(·) into the equality (4.3), we conclude that the
equation (4.1) has a nontrivial solution if and only if the following system of n linear equations
with n unknowns 

n∑
j=1

(δ1j − I1j(p ; z(p)))Cj = 0

n∑
j=1

(δ2j − I2j(p ; z(p)))Cj = 0

............................................
n∑
j=1

(δnj − Inj(p ; z(p)))Cj = 0
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or n× n matrix equation

(δij − Iij(p ; z(p)))ni,j=1

 C1

...
Cn

 = 0

has a nontrivial solution (C1, . . . , Cn) ∈ Cn, i.e., if the condition ∆(p ; z(p)) = 0 is satisfied,
where Cn is the n-th Cartesian power of the set C. Lemma 4.1 is proven. �

For λ ∈ R and a bounded self-adjoint operator A acting in the Hilbert space H denoted
by HA(λ), a subspace such that (Af, f) < λ‖f‖ for any f ∈ HA(λ) and set

N(λ,A) := sup
HA(λ)

dimHA(λ).

The number N(λ,A) is equal to infinity if λ > max(σess(A)); if N(λ,A) is finite, then
it is equal to the number of the eigenvalues of A smaller than λ.

The following lemma describes the number and location of the eigenvalues of h(p).

Lemma 4.2. For any fixed p ∈ Td, the operator h(p) has no more than n eigenvalues (counting
multiplicities) lying on the l.h.s. of m(p) and has no eigenvalues on the r.h.s. of M(p).

Proof. Let p ∈ Td be a fixed. Since the operator v is a self-adjoint operator of rank n, applying
Theorem 9.3.3 of [4] we obtain:

N(m(p), h0(p))− n ≤ N(m(p), h(p)) ≤ N(m(p), h0(p)) + n;

N(−M(p),−h0(p))− n ≤ N(−M(p),−h(p)) ≤ N(−M(p),−h0(p)) + n.

The equality σ(h0(p)) = [m(p);M(p)] implies that

N(m(p), h0(p)) = N(−M(p),−h0(p)) = 0.

Thus, N(m(p), h(p)) ≤ n.
From the positivity of the operator v, it follows that the assertions:

((h(p)− z)f, f) =

∫
(w(p, s)− z)|f(s)|2ds− (vf, f) < 0,

hold for any z > M(p) and f ∈ L2(Td). This means that the operator h(p) has no eigenvalues
lying on the r.h.s. of M(p), that is, N(−M(p),−h(p)) = 0. Lemma 4.2 is proven. �

5. An analog of the Faddeev equation for eigenfunctions of H

In this section, we derive an analog of the Faddeev type system of integral equations
for the eigenfunctions, corresponding to the eigenvalues of H, that is, we prove Theorem 3.1.
First, we give an additional lemma.

For any fixed p ∈ Td we define the matrix-valued analytic functions in C\ [m(p);M(p)]
by

A(p ; ·) := (δij − Iij(p ; ·))ni,j=1 , ∆ij(p ; ·) := (−1)i+jMij(p ; ·),

where Mij(p ; z) is the (i, j) minor, i.e., the determinant of the submatrix formed from the
original matrix A(p ; z) by deleting the i-th row and j-th column (i, j = 1, . . . , n).
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Lemma 5.1. For any z ∈ C \ Σ, the operator A(z) is bounded and invertible. Moreover, the
inverse operator A−1(z) is the multiplication operator by the matrix:

A−1(p ; z) :=
1

∆(p ; z)


∆11(p ; z) ∆21(p ; z) . . . ∆n1(p ; z)

∆12(p ; z) ∆22(p ; z) . . . ∆n2(p ; z)
...

...
. . .

...
∆1n(p ; z) ∆2n(p ; z) . . . ∆nn(p ; z)

 .

Proof. By definition, A(z) is the multiplication operator by the matrix A(p ; z).
It is clear that for any fixed z ∈ C \ [m;M ], the matrix-valued function A(· ; z) is

continuous on the compact set Td. This fact yields the boundedness of the operator A(z).
Taking into account the equality det(A(p ; z)) = ∆(p ; z), we obtain that for any p ∈ Td and
z 6∈ Σ the inequality det(A(p ; z)) 6= 0 holds. Therefore, for any for any p ∈ Td and z 6∈ Σ
the matrix A(p ; z) is invertible. Now, using the definition of A−1(p ; z), one can easily see that
for any z 6∈ Σ, the operator A−1(z) is the inverse to A(z) and is bounded. Lemma 5.1 is thus
proved. �

Proof of Theorem 3.1. Let z ∈ C \Σ be an eigenvalue of the operator H and f ∈ Ls
2((Td)2) be

the corresponding eigenfunction. Then, the function f satisfies the equation Hf = zf or

(w(p, q)− z)f(p, q)−
n∑
i=1

[
vi(q)

∫
Td

vi(s)f(p, s)ds+ vi(p)

∫
Td

vi(s)f(s, q)ds
]

= 0. (5.1)

The condition z 6∈ [m;M ] yields that the inequality w(p, q) − z 6= 0 holds for all
p, q ∈ Td. Then, from equation (5.1), we have that the function f has form:

f(p, q) =
1

w(p, q)− z

n∑
i=1

[vi(q)gi(p) + vi(p)gi(q)] , (5.2)

where for i = 1, . . . , n the functions gi(·) are defined by:

gi(p) :=

∫
Td

vi(s)f(p, s)ds. (5.3)

For any i, j ∈ {1, . . . , n}, p ∈ Td and z 6∈ [m;M ], we set

ĝij(p ; z) :=

∫
Td

vi(s)gj(s)

w(p, s)− z
ds.

Substituting the expression (5.2) for f to the equality (5.3), we obtain that the following
system of n linear equations with n unknowns:

n∑
i=1

(δ1i − I1i(p ; z))gi(p) =
n∑
j=1

vj(p)ĝ1j(p ; z)

n∑
i=1

(δ2i − I2i(p ; z))gi(p) =
n∑
j=1

vj(p)ĝ2j(p ; z)

.....................................................................
n∑
i=1

(δni − Ini(p ; z))gi(p) =
n∑
j=1

vj(p)ĝnj(p ; z)

or n× n matrix equation

A(z)g = K(z)g, g = (g1, . . . , gn) ∈ L(n)
2 (Td) (5.4)
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has a nontrivial solution if and only if the equation (5.1) has a nontrivial solution and the linear
subspaces of solutions of (5.1) and (5.4) have the same dimension.

By Lemma 5.1, for any z ∈ C \ Σ, the operator A(z) is invertible and hence, equation
(5.4) is equivalent to the following n × n matrix equation g = A−1(z)K(z)g, i.e. the equation
g = T (z)g has a nontrivial solution if and only if the equation (5.4) has a nontrivial solution. �

It is easy to see that for any p ∈ Td and z < min Σ the inequality ∆(p ; z) > 0
holds. This means that the operator A(z) is a strictly positive and hence, there exists its
positive square root, which will be denoted by A−

1
2 (z). So for z < min Σ we define the

operator T̂ (z) := A−
1
2 (z)K(z)A−

1
2 (z). Then the operator equation T̂ (z)g = g is called the

symmetric version of the Faddeev equation for the eigenfunction of the operator H. Analogously
to Theorem 3.1 one can prove that the number z < min Σ is an eigenvalue of the operator H if
and only if the number 1 is an eigenvalue of T̂ (z).

6. Investigations of the essential spectrum of H

In this section, applying the statements of sections 4 and 5, the Weyl criterion [17] and
the theorem on the spectrum of decomposable operators [17] we prove Theorem 3.2.

Denote by ‖·‖ and (·, ·) the norm and scalar product in the corresponding Hilbert spaces.

Proof of Theorem 3.2. We start the proof with the inclusion Σ ⊂ σess(H). Since the set Σ has
form Σ = σ ∪ [m;M ], first we show that [m;M ] ⊂ σess(H). Let z0 ∈ [m;M ] be an arbitrary
point. We prove that z0 ∈ σess(H). To this end, it is convenient to use Weyl criterion [17],
i.e. it suffices to construct a sequence of orthonormal functions {fk} ⊂ Ls

2((Td)2) such that
‖(H − z0E)fk‖ → 0 as k →∞. Here, E is an identity operator on Ls

2((Td)2).
From continuity of the function w(·, ·) on the compact set (Td)2, it follows that there

exists some point (p0, q0) ∈ (Td)2 such that z0 = w(p0, q0).
For k ∈ N we consider the following vicinity of the point (p0, q0) ∈ (Td)2 :

Wk := Vk(p0)× Vk(q0),

where

Vk(p0) :=
{
p ∈ Td :

1

k + 1
< |p− p0| <

1

k

}
,

is the punctured neighborhood of the point p0 ∈ Td.
Let µ(Ω) be the Lebesgue measure of the set Ω and χΩ(·) be the characteristic function

of the set Ω. We choose the sequence of functions {fk} ⊂ Ls
2((Td)2) as follows:

fk(p, q) :=
1√
µ(Wk)

χWk
(p, q).

It is clear that {fk} is an orthonormal sequence.
For any k ∈ N, let us consider (H − z0E)fk and estimate its norm:

‖(H − z0E)fk‖2 ≤ 2 sup
(p,q)∈Wk

|w(p, q)− z0|2 + 8nµ(Vk(p0))
n∑
i=1

‖vi‖2 max
p∈Td
|vi(p)|2.

From the construction of the set Vk(p0) and from the continuity of the function w(·, ·),
it follows ‖(H − z0E)fk‖ → 0 as k →∞, i.e. z0 ∈ σess(H). Since the point z0 is arbitrary, we
have [m;M ] ⊂ σess(H).

Now, let us prove that σ ⊂ σess(H). Taking an arbitrary point z1 ∈ σ, we show that
z1 ∈ σess(H). Two cases are possible: z1 ∈ [m;M ] or z1 6∈ [m;M ]. If z1 ∈ [m;M ], then it is
already proven above that z1 ∈ σess(H). Let z1 6∈ [m;M ]. Definition of the set σ and Lemma 4.1
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imply that there exists a point p1 ∈ Td such that ∆(p1 ; z1) = 0. Then, the system of n linear
homogeneous equations with n unknowns:

n∑
j=1

(δ1j − I1j(p1 ; z1))lj = 0

n∑
j=1

(δ2j − I2j(p1 ; z1))lj = 0

..........................................
n∑
j=1

(δnj − Inj(p1 ; z1))lj = 0

or n× n matrix equation

(δij − Iij(p1 ; z1))ni,j=1

 l1
...
ln

 = 0 (6.1)

with respect to l1, . . . , ln has infinitely many solutions.
We denote by l′ := (l′1, . . . , l

′
n) ∈ Cn one of the non-trivial solition of (6.1).

Let us choose a sequence of orthogonal functions {f̃k} as follows:

f̃k(p, q) :=
1

w(p, q)− z1

n∑
i=1

[
vi(q)g

(k)
i (p) + vi(p)g

(k)
i (q)

]
,

where for i = 1, . . . , n and k ∈ N the function g(k)
i (·) is defined by:

g
(k)
i (p) := l′ick(p)χVk(p1)(p)(µ(Vk(p1)))−1/2.

Here, {ck} ⊂ L2(Td) is chosen from the orthogonality condition for {f̃k}, that is, from the
condition:

(f̃k, f̃m) =
2√

µ(Vk(p1))
√
µ(Vm(p1))

n∑
i,j=1

l′il
′
j

∫
Vk(p1)

∫
Vm(p1)

ck(p)cm(q)vi(p)vj(q)

(w(p, q)− z1)2
dpdq = 0 (6.2)

for k 6= m. The existence of {ck} is a consequence of the following proposition.

Proposition 6.1. There exists an orthonormal system {ck} ⊂ L2(Td) satisfying the conditions
supp ck ⊂ Vk(p1) and (6.2).

Proof of Proposition 6.1. We construct the sequence {ck} by the induction method. Suppose

that c1(p) := χV1(p1)(p)
(√

µ(V1(p1))
)−1

. Now, we choose c̃2 ∈ L2(V2(p1)) so that ‖c̃2‖ = 1

and (c̃2, ε
(2)
1 ) = 0, where:

ε
(2)
1 (p) := χV2(p1)(p)

n∑
i,j=1

l′il
′
jvi(p)

∫
Td

vj(q)c1(q)dq

(w(p, q)− z1)2
.

Set c2(p) := c̃2(p)χV1(p1)(p). We continue this process. Suppose that c1(p), . . . , ck(p) are
constructed. Then, the function c̃k+1(·) ∈ L2(Vk+1(p0)) is chosen so that it is orthogonal to all
functions:

ε(k+1)
m (p) := χVk+1(p1)(p)

n∑
i,j=1

l′il
′
jvi(p)

∫
Td

vj(q)cm(q)dq

(w(p, q)− z1)2
, m = 1, . . . , k
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and ‖c̃n+1‖ = 1. Let ck+1(p) := c̃k+1(p)χVk+1(p1)(p). Thus, we have constructed the orthonormal
system of functions {ck} satisfying the assumptions of the proposition. Proposition 6.1 is
proved. �

We continue the proof of Theorem 3.2. To estimate the norm of the function f̃k from
below, we rewrite it in the form:

f̃k(p, q) =
(µ(Vk(p1)))−1/2

w(p, q)− z1

[
χVk(p1)(p)ck(p)

n∑
i=1

l′ivi(q) + χVk(p1)(q)ck(q)
n∑
i=1

l′ivi(p)

]
.

Then direct calculation shows that

‖f̃k‖ ≥
Mn√

µ(Vk(p1))
, Mn :=

1

max
p,q∈Td

|w(p, q)− z1|
‖

n∑
i=1

l′ivi‖. (6.3)

By the assumption the functions vi(·), i = 1, . . . , n are linearly independent and hence, we have

‖
n∑
i=1

l′ivi‖ > 0.

Setting fk := f̃k/‖f̃k‖, k ∈ N, we conclude that the system of functions {fk} is
orthonormal.

Now, for k ∈ N, we consider (H − z1E)fk and estimate its norm as:

‖(H − z1E)fk‖ ≤ ‖A(z1)Gk‖+ ‖K(z1)Gk‖, (6.4)

where the vector function Gk is defined by:

Gk :=

(
g

(k)
1

‖f̃k‖
, . . . ,

g
(k)
n

‖f̃k‖

)
∈ L(n)

2 (Td).

Note that {Gk} ⊂ L
(n)
2 (Td) is a bounded orthogonal system. Indeed, the orthogonality

of this system follows from the fact that for any i = 1, . . . , n and k 6= m, the supports of the
functions g(k)

i (·) and g(m)
i (·) do not intersect. Taking into account the equality:

‖Gk‖2 =
1

‖f̃k‖2

1

µ(Vk(p1))

n∑
i=1

l′2i ,

and the inequality (6.3), we conclude that the system of vector-functions {Gk} is uniformly
bounded, more exactly, the inequality:

‖Gk‖2 ≤ 1

M2
n

n∑
i=1

l′2i ,

holds for any k ∈ N.
Since the operator K(z1) is compact and {Gk} is a bounded orthogonal system, we have

‖K(z1)Gk‖ → 0 as k →∞.
Let us now estimate the first summand of (6.4):

‖A(z1)Gk‖ ≤
1

Mn

sup
p∈Vk(p1)

‖A(p ; z1)l′‖.

Taking into account the equality A(p1 ; z1)l′ = 0 and the continuity of the matrix-valued
function A(· ; z1), we get the following:

sup
p∈Vk(p1)

‖A(p ; z1)l′‖ → 0 as k →∞
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and hence, by (6.4), we have ‖(H − z1E)fk‖ → 0 as k → ∞. This implies that z1 ∈
σess(H). Since the point z1 is arbitrary, we have σ ⊂ σess(H). Therefore, we have proved
that Σ ⊂ σess(H).

Now, we prove the inverse inclusion, i.e. σess(H) ⊂ Σ. Since for each z ∈ C \ Σ,
the operator K(z) is compact, A−1(z) is bounded and ‖T (z)‖ → 0 as z → ∞, the operator
T (z) is a compact-operator-valued function on C\Σ. Then from the self-adjointness of H and
Theorem 3.1, it follows that the operator (I−T (z))−1 exists if z is real and has a large absolute
value. The analytic Fredholm theorem (see, e.g., Theorem VI.14 in [17]) implies that there is a
discrete set S ⊂ C\Σ such that the function (I−T (z))−1 exists and is analytic on C\(S∪Σ) and
is meromorphic on C \ Σ with finite-rank residues. This implies that the set σ(H) \ Σ consists
of isolated points, and the only possible accumulation points of Σ can be on the boundary. Thus
σ(H) \ Σ ⊂ σdisc(H) = σ(H) \ σess(H). Therefore, the inclusion σess(H) ⊂ Σ holds. Finally,
we obtain the equality σess(H) = Σ.

By Lemma 4.2 for any p ∈ Td, the operator h(p) has no more than n eigenvalues
(counted multiplicities) on the l.h.s. of m(p) and has no eigenvalues on the r.h.s. of M(p).
Then, by the theorem on the spectrum of decomposable operators [17] and by the definition
of the set σ, it follows that the set σ consists of the union of no more than n bounded closed
intervals, which are located on the r.h.s. of the point M. Therefore, the set Σ consists of
the union of no more than n + 1 bounded closed intervals and max Σ = M. Theorem 3.2 is
completely proved. �

At the end of this section we give information about the upper bound of the spectrum
of H. By Theorem 3.2, we have max(σess(H)) = max(σ(H0)) = M. Then, the positivity of the
operator V1 + V2 implies:

((H − z)f, f) = ((H0 − z)f, f)− ((V1 + V2)f, f) < 0,

for all z > M and f ∈ Ls
2((Td)2), that is, the operator H has no eigenvalues greater than M.

This fact, together with Theorem 3.2, gives max(σ(H)) = M. Therefore, the eigenvalues of
the operator H are located only below the bottom of the three-particle branch of its essential
spectrum.

7. The lower bound of the essential spectrum of H. Case d = 1

In this section, we consider the special class of parameter functions vi(·), i = 1, . . . , n
and w(·, ·) to estimate the lower bound of the essential spectrum of H when d = 1.

Let d = 1 and P0 ∈ T be a fixed element. Throughout this section, we always assume
that there exists a number j0 ∈ {1, . . . , n} such that the function vi(·) is a P0-periodic for
all i ∈ {1, . . . , n} \ {j0}, and the function vj0(·) is an analytic function on T satisfying the
condition: ∫

T

vj0(s)g(s)ds = 0, (7.1)

for any P0 - periodic function g ∈ L2(T). In addition, we suppose that:
(i) w(·, ·) is a P0 - periodic function by the second variable;
(ii) w(·, ·) is a twice continuously differentiable function on T2;
(iii) there exists a finite subset Λ ⊂ T such that the function w(·, ·) has non-degenerate minima
at the points of Λ× Λ.

The following example shows that the class of functions vi(·), i = 1, . . . , n and w(·, ·),
satisfying the above mentioned conditions is non empty. We set

v1(x) := c1 cos(x), vi(x) := ci(cos(2x))i, ci ∈ R \ {0}, i = 2, . . . , n.
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Then j0 = 1, the functions vi(·), i = 2, . . . , n are π - periodic, i.e. P0 = π. If g ∈ L2(T) is a π
-periodic function, then:∫

T

v1(s)g(s)ds =

∫
T

v1(s+ π)g(s+ π)ds = −
∫
T

v1(s)g(s)ds,

which implies the equality (7.1). One can see that the function w(·, ·) defined by:

w(x, y) := 2γ1 + γ2 − γ1 cos(2x)− γ2 cos(2x+ 2y)− γ1 cos(2y), (7.2)

with γ1, γ2 > 0 satisfy the conditions (i)–(iii) with Λ := {0, π}.
Let the operator hj0(x) act in L2(T) as follows:

(hj0(x)f)(y) = w(x, y)f(y)− vj0(y)

∫
T

vj0(s)f(s)ds.

Setting n = 1 and ∆j0(x ; z) := 1− Ij0j0(x ; z), from Lemma 4.1, we obtain that:

σdisc(hj0(x)) = {z ∈ C \ [m(x);M(x)] : ∆j0(x ; z) = 0}. (7.3)

Since, for any fixed x ∈ T, i ∈ {1, . . . , n}\{j0} and z ∈ C\ [m(x);M(x)], the function
vi(·)(w(x, ·) − z)−1 is a π - periodic continuous function on compact set T, according to the
equality (7.3) we obtain:∫

T

vj0(s)vi(s)ds

w(x, s)− z
= 0, i ∈ {1, . . . , n} \ {j0}.

Then, the definition of the function ∆(· ; ·) implies that:

∆(x ; z) = ∆j0(x ; z)Mj0j0(x ; z),

where Mj0j0(x ; z) is defined in Section 5.
It means that σdisc(hj0(x)) ⊂ σdisc(h(x)). Therefore,

minσ ≤ min
⋃
x∈T

σdisc(hj0(x)).

For δ > 0 and a ∈ T we set

Uδ(a) := {x ∈ T : |x− a| < δ}.
Now, we study the discrete spectrum of hj0(x).

Lemma 7.1. If vj0(x0) 6= 0 for some x0 ∈ Λ, then there exists δ > 0 such that for any
x ∈ Uδ(x0) the operator hj0(x) has a unique eigenvalue z(x), lying on the left of m(x).

Proof. Since the function w(·, ·) has non-degenerate minimum at the point (x0, x0) ∈ T2, by
the implicit function theorem there exists δ > 0 and an analytic function y0(·) on Uδ(x0) such
that for any x ∈ Uδ(x0), the point y0(x) is the unique non-degenerate minimum of the function
w(x, ·) and y0(x0) = x0. Therefore, we have w(x, y0(x)) = m(x) for any x ∈ Uδ(x0).

Let w̃(·, ·) be the function on Uδ(x0)× T as:

w̃(x, y) := w(x, y + y0(x))−m(x).

Then, for any x ∈ Uδ(x0), the function w̃(x, ·) has non-degenerate zero minimum at the point
x0 ∈ T. Now, using the equality∫

T

v2
j0

(s)ds

w(x, s)−m(x)
=

∫
T

v2
j0

(s+ y0(x))ds

w̃(x, s)
, x ∈ Uδ(x0),
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the continuity of the function vj0(·), the facts that vj0(x0) 6= 0 and y0(x0) = x0, it is easy to see
that:

lim
z→m(x)−0

∆j0(x ; z) = −∞

for all x ∈ Uδ(x0).
Since, for any x ∈ T, the function ∆j0(x ; ·) is continuous and monotonically decreasing

on (−∞;m(x)), the equality

lim
z→−∞

∆j0(x ; z) = 1 (7.4)

implies that for any x ∈ Uδ(x0), the function ∆j0(x ; ·) has a unique zero z = z(x), lying in
(−∞;m(x)). By equality (7.3), the number z(x) is the eigenvalue of hj0(x). �

Let us give an example for the function y0(·) mentioned in the proof of Lemma 7.1.
To this end, we consider the function w(·, ·) of the form (7.2). This function can be written as
follows:

w(x, y) = γ1 + γ2 + γ1(1− cos(2x))− a(x) cos(2y)− b(x) sin(2y), (7.5)

where the coefficients a(x) and b(x) are given by:

a(x) := γ1 + γ2 cos(2x), b(x) := −γ2 sin(2x). (7.6)

Then, from the equality (7.5), we obtain following representation for w(·, ·) :

w(x, y) = γ1 + γ2 + γ1(1− cos(2x))− r(x) cos(2(y − y0(x))

with

r(x) :=
√
a2(x) + b2(x), y0(x) := arcsin

b(x)

r(x)
.

Taking into account (7.6), we have that the function y0(·) is an odd regular function and
for any x ∈ T the point y0(x) is the minimum point of the function w(x, ·).

We note that if vj0(x0) = 0, then from analyticity of vj0(·) on T, it follows that there
exist positive numbers C1, C2 and δ such that the inequalities:

C1|x− x0|θ ≤ |vj0(x)| ≤ C2|x− x0|θ, x ∈ Uδ(x0), (7.7)

hold for some θ ∈ N. Since the function w(·, ·) has non-degenerate minima at the points of
Λ× Λ, there exist C1, C2 > 0 and δ > 0 such that estimates:

C1(|x−x′|2+|y−y′|2) ≤ w(x, y)−m ≤ C2(|x−x′|2+|y−y′|2), (x, y) ∈ Uδ(x′)×Uδ(y′); (7.8)

w(x, y)−m ≥ C1 (x, y) 6∈ Λ× Λ. (7.9)

Hence, if vj0(x
′) = 0 for all x′ ∈ Λ, then using the inequalities (7.7), (7.8) and (7.9), one can

easily see that for any x ∈ T the integral∫
T

v2
j0

(s)ds

w(x, s)−m
,

is positive and finite.
For x′ ∈ Λ, the Lebesgue dominated convergence theorem yields

∆j0(x
′ ;m) = lim

x→x′
∆j0(x ;m), and hence, if vj0(x

′) = 0 for all x′ ∈ Λ, then the function

∆j0(· ;m) is continuous on T.
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Lemma 7.2. Let vj0(x
′) = 0 for all x′ ∈ Λ;

(i) If min
x∈T

∆j0(x ;m) ≥ 0, then for any x ∈ T the operator hj0(x) has no eigenvalues, lying on

the left of m;
(ii) If min

x∈T
∆j0(x ;m) < 0, then there exists a non empty set Gj0 ⊂ T such that for any x ∈ Gj0

the operator hj0(x) has a unique eigenvalue z(x), lying on the left of m.

Proof. First, we recall that if vj0(x
′) = 0 for all x′ ∈ Λ, then the function ∆j0(· ;m) is continuous

on the compact set T. Two cases are possible: min
x∈T

∆j0(x ;m) ≥ 0 or min
x∈T

∆j0(x ;m) < 0.

Let min
x∈T

∆j0(x ;m) ≥ 0. Since for any x ∈ T the function ∆j0(x ; ·) is monotonically

decreasing on (−∞;m) we have:

∆j0(x ; z) > ∆j0(x ;m) ≥ min
x∈T

∆j0(x ;m) ≥ 0,

that is, ∆j0(x ; z) > 0 for all x ∈ T and z < m. Therefore, by equality (7.3) for any x ∈ T, the
operator hj0(x) has no eigenvalues in (−∞;m).

Now, we suppose that min
x∈T

∆j0(x ;m) < 0 and introduce the following subset of T :

Gj0 := {x ∈ T : ∆j0(x ;m) < 0}.

Since ∆j0(· ;m) is continuous on the compact set T, there exists at least one point
x0 ∈ T such that:

min
x∈T

∆j0(x ;m) = ∆j0(x0 ;m),

that is, x0 ∈ Gj0 . So, the set Gj0 is non empty. It is clear that, if max
x∈T

∆j0(x ;m) < 0, then

∆j0(x ;m) < 0 for all x ∈ T and hence Gj0 = T.
Since for any x ∈ T the function ∆j0(x ; ·) is continuous and monotonically decreasing

on (−∞;m] by the equality (7.4) for any x ∈ Gj0 , there exists a unique point z(x) ∈ (−∞;m)
such that ∆j0(x ; z(x)) = 0. By the equality (7.3) for any x ∈ Gj0 the point z(x) is the unique
eigenvalue of hj0(x).

By the construction of Gj0 , the inequality ∆j0(x ;m) ≥ 0 holds for all x ∈ T \ Gj0 . In
this case, for any x ∈ T \Gj0 , the operator hj0(x) has no eigenvalues in (−∞;m). �

We set
Emin := min{λ : λ ∈ σess(H)}.

Then, Emin ∈ σess(H) and it is called the lower bound of the essential spectrum of H.

Lemma 7.3. Let one of the following conditions hold:
(i) vj0(x0) 6= 0 for some x0 ∈ Λ;
(ii) vj0(x

′) = 0 for all x′ ∈ Λ and min
x∈T

∆j0(x ;m) < 0.

Then Emin < m.

Proof. Let vj0(x0) 6= 0 for some x0 ∈ Λ. Then, by Lemma 7.1 there exists δ > 0 such that for
any x ∈ Uδ(x0) the operator hj0(x) has a unique eigenvalue z(x), lying on the left of m(x). In
particular, z(x0) < m(x0). Since m = min

x∈T
m(x) = m(x0), it follows that minσ ≤ z(x0) < m,

that is, Emin < m.
Let vj0(x

′) = 0 for all x′ ∈ Λ and min
x∈T

∆j0(x ;m) < 0. Then, by part (ii) of Lemma 7.2,

for any x ∈ Gj0 the operator hj0(x) has a unique eigenvalue z(x), lying on the left of m(x).
Therefore, we obtain minσ ≤ z(x′) < m for all x′ ∈ Gj0 , that is, Emin < m. �
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Notice that if vj0(x
′) = 0 for all x′ ∈ Λ and min

x∈T
∆j0(x ;m) ≥ 0, then the location of

the bounds Emin and m depends on the zeros of the function Mj0j0(x ; ·). If for all x ∈ T this
function has no zeros, lying on the l.h.s. of m, then Emin = m. If for some x = x0 ∈ T this
function has at least one zero on (−∞;m), then Emin < m.

We remark that the results of this section are useful when we find the conditions which
guarantee the finiteness or infiniteness of the number of the eigenvalues of H, lying below the
bottom of its essential spectrum, in the one dimensional case.
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