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1. Introduction

Starting from the pioneering works [1] and up to the present time [2-20], electron-
electron (e-e) interactions are the subject of ever growing interest because of their funda-
mental role in kinetic phenomena. Among others, one should note the hot electrons effects,
quantum corrections to the conductivity, and damping (destruction) of Landau qunatiza-
tion in bulk and two-dimensional semiconductors with degenerate electrons. Also known
are anomalies in the low-temperature magnetotransport arising when 2D electrons fill sev-
eral size- quantized subbands. In particular, the authors of [2] predicted non-monotonous
behavior of kinetic coefficients as the density of the 2D electrons is changed and several
size-quantized subbands in a 2D system are filled. Experimentally, the reduction of mobil-
ity with the growth of electron surface density ns was discovered in [3, 4]. Later [5 - 7],
a complicated set of phenomena was discovered and studied in the AlxGa1−xAs/GaAs het-
erostructure whose potential well contained two size-quantized (the main Em, and the first
excited Ep) subbands. Most interesting among them are the amplitude and the frequency
modulation of the transverse Shubnikov-de Haas (SdH) magnetoresistance [8], sharp bends
in the magnetic field dependence of the oscillation amplitude δ (1/B) [9, 10] as well as the
non-monotonous behavior of the Dingle temperature TD with the 2D electron density ns and
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the temperature T [11, 12]. In spite of the variety of experimental details and approaches to
their interpretation, the indicated effects were all shown to be caused by filling of the second
excited size-quantized subband. The mechanism triggering the non-linear effects is the in-
tersubband interaction. In [4, 5] following point was discussed; when the doping level of the
AlxGa1−xAs (Si) /GaAs heterojunction is high enough for ns to reach 8 ·1011cm−2, the quan-
tum well contains two size-quantized subbands with energies Em and Ep electron densities nm
and np, respectively, and the SdH oscillations of ρxx exhibit frequencies Fm,p = (πh/e)nm,p
with the periods ∆m,p (1/B) = F−1m,p. The main feature is the modulation of the main fre-
quency Fm amplitude with the frequencyFp, the modulation depth growing with temperature
and being more pronounced at the lower magnetic fields. The second feature is the devel-
opment of oscillations at a different frequency Fm − Fp. These oscillations do not depend
on temperature and transform to oscillations with a frequency Fm as the magnetic field is
raised.

Assuming constant electron density and Fermi energy oscillations, Kadushkin [9, 10]
explained the main features of the amplitude-frequency modulation of the SdH oscillations
by the intersubband interaction. Authors of [2] derived an analytic expression for the ampli-
tude of oscillations containing components at the frequencies Fm,p, Fm−Fp. They analyzed
the experiments, taking into account the electron-phonon interaction. Formally, the Dingle
temperature is related to the non- thermal collisional broadening time τq through the expres-
sion TD = ~/2πkτq. Description of the SdH oscillations of ρxx [8] based on the two subbands
(m and p) model is in good agreement with the experimental results obtained in [12].

In the present paper, we report results from the study of e-e relaxation processes
in a system of highly degenerate 2D electrons with finely structured energy spectrum and
electron density spatial distribution. Expressions for the electron-electron intra-(τ intraee ) and
intersubband (τ interee ) interaction are derived and the matrix elements of the full screening
potential Vtot (q, ω) and the dielectric function for χ (q, ω) in the approximation far from the
long wave limit are calculated. The oscillations in τ expq (T, ns) ' τ thee (T, ns) are shown to
be related to the excitation of plasmons in the components of 2D electron system and the
plasmon spectrum is studied.

2. Mechanism of Landau quantization destruction

One of the important points in the derivation of expressions for τ intraee and τ interee is the
calculation of the full screening potential matrix elements which, within the perturbation
theory approach, implies the transformation of the potential V (r, t) into Vtot (q, ω). In our
problem, this corresponds to the following physical situation.

Let us consider 2D electrons, crystal lattice, and the source of perturbation as a
thermodynamic system in equilibrium at the thermal bath temperature T . The electrons
interact amongst themselves and with the crystal lattice with relaxation times τee and τeph,
respectively. At lower temperatures and in a quantizing magnetic field B, the equilibrium
energy and momentum distribution of 2D electrons is given by harmonic oscillators with
the cyclotron frequency ωc. The electron states are correlated and coherent because of
the strong e-e interaction with the relaxation times hierarchy τee � τp � τε where τp
and τε are the relaxation times of momentum p and energy ε. The electron states on the
cyclotron orbits are coherent because the lifetime on these orbits exceeds the mean free time
(momentum relaxation time). Although the electron state initial phase is determined by the
electron settling into the cyclotron orbit and has a random nature, the motion of electrons
on cyclotron orbits is synchronized and it is precisely this point that allows one to apply the
random phase approximation (RPA) to these magnetized electrons. It is worthwhile to note
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that the reduced Wigner radius for the studied heterojunctions with ns ' (0.5÷2)·1012cm−2,
V (q, ω) is 0.6÷ 1.2, so that the use of RPA is rather justified [1].

Electron collisions with the crystal lattice defects destroy the ground quantum state
(cyclotron orbits), which is seen in the broadening of Landau levels, resulting in finite values
for the kinetic coefficients’ oscillation amplitudes.

In the absence of an external electric field, the equilibrium state of electrons is char-
acterized by the temperature T 0

D which stipuleted the chaotization of the 2D electrons, which
are in thermodynamic equilibrium with the crystal lattice (T, T 0

D) in the quantizing magnetic
field B. Note that the perturbations of the potential relief of the quantum well’s 2D channel,
caused by various defects, are time-independent: V (r, t). The electron system state (T, T 0

D)
stationary with respect to the electron-lattice interaction is controlled through the energy

and momentum relaxation with the characteristic time τ
(ε,p)
eph .

The mechanism for the destruction of the quantum Landau state (T, T 0
D)B and de-

velopment of a new equilibrium stationary state (T, T ∗D), which is not in equilibrium with
respect to the initial equilibrium state (T, T 0

D), can be described in the following way. The
electric field E causes a drift of the 2D electron system along the heterojunction quantum
well (in the xy-plane) so that the electrons “scan” the spatial distribution of the heterojunc-
tion defects. In the reference frame associated with the 2D electrons, the observer sees the
results of scanning the potential well defects as Vtot (q, ω). Here, the electric field E acts
only as the means of sweeping the external (with respect to 2D electrons) perturbations,
converting them into a time-dependent potential which is expressed in the transition from
V (r, t) to the Fourier component Vtot (q, ω).

In the 2D electron system perturbed by (T, T 0
D) the collisions acquire a different

nature and at T = const and B = const, the equilibrium broadening kT 0
D is affected by

the perturbation caused by the external field E so that a new equilibrium state with the
broadening kT 0

D is established. This new equilibrium state (T, T ∗D), should be considered as
a non-equilibrium one with respect to (T, T 0

D)B.

Fig. 1. The energy diagram of the conduction band Ec (z) for a heterojunction
with two filled size-quantized subbands Em and Ep with electron densities nm
and np = nn + nd; dp is the undoped spacer thickness, and N+

D , N
−
A ,∆,Λ, δx

are the sources of perturbation of the 2D electron system
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Our analysis of e-e interaction is based on the calculation of the conduction band
energy structure Ec (z). We approximate the potential well of the heterojunction by a
triangular profile [11] with the sharp bends at the size-quantized levels Em = Ec (dm) and
Ep = Ec (dp).

Fig. 2. Schematic model illustrating the channels through which the pertur-
bation from the sources causing non-thermal collisional broadening of Landau
levels passes. See text for details

Schematics of the e-e interactions in the 2D system is presented in Fig. 1, which also
shows the typical channels through which the perturbation due to various sources, such as
ionized donors N+

D , acceptors N−a , growth islands of length Λ and height ∆, as well as the
mole fraction variations δx, affects the electron system. Here, nm, is the 2D electron density
in the ground (main) size-quantized subband while nn and nd are the satellites of the per-
turbed (excited) subband component np = nn + nd located close to (“near”) and far from
(“distant”) the heterointerface (in the following referred to as the n− and d−satellites). Of
all the channels of Landau quantization damping which we consider, one should emphasize
those three that reveal the major features. Since nm >> nn, nm, and the centers of gravity
of |ψ (z)|2 at the levels Em and Ep, are spatially resolved, the perturbation is sensed (ab-
sorbed) during time τ (1) by the set of 2D electrons. Then, through the intrasubband (τmmee )
and intersubband (τmnee , τ

md
ee , τ

nd
ee ) e-e interactions mediated by the (τnnee ) and (τ ddee ) intrasub-

band interactions, the perturbation is extended to the entire 2D system. The path of this
mechanism is shown in Fig.1 by the solid line:

τ (1) ⇒ (τmnee )⇒
(
τndee , τ

mn
ee

)
⇒
(
τnnee , τ

dd
ee , τ

nd
ee

)
= τ (1)ee . (1)

The major factor here is the interaction of nm, and nd electrons (m− d), while nn, is
a passive element. The second scenario corresponds to the situation where perturbation is
first sensed by the n−satellite. In that case, the time needed to destroy the quantization is
formed in the chain shown in Fig.1 by the dashed line:

τ (2) ⇒ (τnnee )⇒
(
τndee
)
⇒
(
τmnee , τ

nd
ee

)
⇒
(
τnnee , τ

dd
ee , τ

nd
ee

)
= τ (2)ee . (2)

Here, the system behavior is governed by the intersubband ′′n − d′′, ′′n − m′′ and
′′m−d′′ interactions. The ′′n−d′′- interaction is the major one in this channel and nm, plays
the role of a passive element. The third version is formed in the chain where the ′′m − n′′
interaction dominates while nd is a passive element:

τ (3) ⇒ (τmmee )⇒
(
τmnee , τ

md
ee

)
⇒
(
τnnee , τ

dd
ee , τ

nd
ee

)
= τ (3)ee . (3)
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The corresponding path is shown by the dot-and-dash line. With respect to the
nature of induced transitions the e-e interactions can be classified into three types: (1)
interactions within a single subband limited to the transitions within the same subband;
(2) intrasubband interaction exciting the intersubband transitions, and (3) intersubband
interactions also resulting in intrasubband transitions.

To within the second order in the external potential Vtot (q, ω) in the perturbation
theory expansion, the time required for the e-e interaction to change the state 〈k| p〉 into
〈k + q| p− q〉 is given by a well-known expression:

1

τ eeij
=

∞∫
−∞

dω
∑
k,m

∑
q

∣∣∣V ijkl
tot (q, ω)

∣∣∣2×
×
∑
k,p

δ (Ej (k + q) + El (p− q)− E (k)− Ek (p)) fkfp (1− fk+q) (1− fp−q), (4)

where indices i, j, k, l run over the set consisting of symbols m (main component) and n, d
(satellites of the np-component) which label the electron transition type; f - Fermi-Dirac
function. Using the notations given in [12 - 20], (4) can be written as:

1

τ eeij
=

∞∫
−∞

dω

π2ch2(~ω/2kBT )

∑
k,m

∑
q

∣∣∣V ijkl
tot (q, ω)

∣∣∣2χik (q, ω)χ∗jk (q, ω). (5)

Matrix elements of the m− n, m− d intersubband interactions were calculated with
the wave functions ψm (z) as well as the ψn (z) and ψd (z) components of the wave function
ψp (z) with appropriate boundary conditions.

Taking into account the parameters of the energy band diagram, the matrix elements
of the full screening potential for the first and second type transitions are reduced to the
form:

V ijkl
tot (q, ω) =

Ej
2dlS (q3 + 2πe2q3χik (q, ω))

, (6)

where S = L2 - square of 2D system.
For i = k and j = l, while for the third type:

V ijkl
tot (q, ω) =

Ej (1− qdj)− Ej (1 + qdi)

2 (di − dj)S (q3 + 2πe2q4χik (q, ω))
, (7)

with i = j and k = l. In the form convenient for calculations, the relaxation times for the
first and second type transitions are written as:

1

τ intraij

=
E2
jm
∗2S

16π5d2j~4ninj
P−n (T ) , (8)

while for the third type:

1

τ interli

=
m∗2S

8π6(di − dm)2~4

{
(Ei − Em)2

8π
Q−n (T ) − (Ei − Em) (Eldm + Emdi)√

8π
W−n (T )

}
(9)

for i 6= l. The polynomials in (8) and (9) are:

P−n(T ) =
B1

T
+
B2

T 2
+
B3

T 3
+ ...,
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Q−n(T ) =
B1

T
− B2

T 2
+
B3

T 3
− ...,

W−n(T ) =
B2

T 2
+
B4

T 4
+ ...

with the coefficients Bk defined by the Riernann zeta-function ς(z, v). The non-monotonous
behavior of τ−1ee (T ) is determined by the uniformly converging sums P−n (T ), Q−n (T ) and
W−n (T ) multiplied by the zeta- and gamma-functions [9]:

ς (z, v) =
1

Γ(z)

∞∫
0

tz−1e−vt

1− e−t
dt,

where z = dm
dm+dp

; v = ~2π
2kBT

(
nmnp

nm+np

) 1
2
.

The products of P−n (T ), Q−n (T ) and W−n (T ) with ς(z, v) are rather sensitive to the
electron concentration in the size-quantized subbands. For example, for nm > 8 · 1011cm−2

(nd = 0.1nm, nn = 0.1nd, dp/dm = 3.5) the factor ς(z, v) in (9) results only in some smoothen-
ing of the non-monotonous behavior while at nm > 8 · 1011cm−2 the curve τ−1ee (T ) does not
contain any non-monotonous parts at all.

Calculations of τ thee were performed within the outlined schematic model of the Landau
quantization destruction, taking into account the paths corresponding to channels (1-3),
including both intra- and intersubband transitions according to (8) and (9) employing the
Matthiessen rule τ−1ee =

∑
i

(τ−1ee )i, where the summation is performed over all intra- and

intersubband components of the schematic model presented in Fig. 2.

3. Electron “bottleneck”

Presented for comparison in Figs. 3a and 3b are the experimentally measured and cal-
culated curves τ expq (T, ns) and τ thee (T, ns) for several heterostructure samples where 2D elec-

trons are certainly known to fill only the lowest size- quantized subband (ns < 8 ·1011cm−2).
Figures 4a and 4b show the experimental and calculated curves for the time of destruction
of Landau quantization for two heterostructures with electron density sufficient for filling of
the two size-quantized subbands (see [9, 10] for the details of the analysis of the experiment).

Fig. 3. Comparison of the experimental τ expq (T ) (nm,nd or nn) [2] (a) and

calculated τ thee (T ) (b) curves for different values of the m−subband electron
density: nm, 1011cm−2: 1, 4− 8.5; 2, 5− 6.9; 3, 6− 6.3

The energy and geometrical parameters were taken from the energy diagrams E (z)
for the samples with appropriate electron densities. The first result is a quantitative “hit” of
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the calculated times into the range of T in the studied temperature interval 2 6 T 6 12K for
the real densities nm ≈ 1012cm−2, nd = 0.1nm , nn = 0.01nm and, respectively, dp/dm = 3.
Of all the considered versions of the model presented in Fig.2, scenario (3) is the most
satisfactory one and the curve τ thee (T, ns), plotted in Fig. 4b, was calculated exactly for
this scenario. Further, it should be noted that at low temperatures (T < 5K), the Landau
quantization damping is governed by nm−electrons. Numerical analysis of the expansion of
the dielectric functions (6) reveals the appearance of non- monotonous parts in the curve
τ thee (T, ns) at nm > 8 · 1011cm−2 and T > 5K (see (10-13)), allowing one to argue [9,10]
that the typical oscillations of τ thee (T ) arise only after the electrons fill the second excited
size-quantized subband and for the system response to the thermal perturbation at T > 5K.
The third obtained result is the role of nn−satellite in the appearance of the oscillations
regardless of which component of the 2D electron system senses the perturbation, as shown
in Fig.2 by channel τ (3).

Fig. 4. Comparison of the experimental τ expq (T ) [2] (a) and calculated

τ thee (T ) (b) curves for different values of the m−subband electron density:
1 − 9.1; 2 − 10.0

This was also directly seen in (9). Indeed, for nn = 0, only τ intramm (T ) and τ intradd (T )
are different from zero and no oscillations arise in τ thee (T ). The bottleneck effect is explained
in the following way; variation of temperature initiates the frequency scan of the external
perturbation Vtot (q, ω) towards higher ω. The 2D electron system is transparent for Vtot (q, ω)
until the frequency ωτ of one of the components (nm nd, or nn) is reached. The lowest
ωτ corresponds to the nn−satellite and it is this component or, to be more precise, its
intrasubband relaxation that is the bottleneck for Vtot (q, ω), perturbing the 2D electron
system as a whole and finally destroying the cyclotron orbit quantization (damping of Landau
quantization). This bottleneck effect in the e-e interactions illustrates the coincidence of the
resonant frequencies for ′′m− n′′and ′′d− n′′ channels (see Fig. 5 (curves 1 and 3) below in
the range of low frequencies).

Thus, the experimentally observed features in τ expq (T ) at T < 5K are only related to

the intrasubband e-e transitions, τ expq (T ) ≈ τ thee (T ) ≈ τ intramm (T ). At higher temperatures, a
mixed mechanism of the Landau quantization destruction is realized:

τ expq ≈ τ 3ee

[
(τmnee )−1 =

(
τ int ramn

)−1
+
(
τ int ermn

)−1
;
(
τndee
)−1

=
(
τ int rann

)−1
+
(
τ int ernd

)−1]
.

It should be noted that by varying the well parameters, one can obtain a satisfactory
agreement with experimental results. This technique offers the possibility of recovering the
actual potential profile from the superposition of the curves τ expq and τ thee , measured for the
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samples with different doping levels, and therefore, showing different variations of the form-
factors dp/dm and Ep/Em. However, this matching of the calculated curves τ thee with the
experimental ones τ expq is limited by a certain arbitrariness in the adjustable parameters
dp/dm and Ep/Em (the potential well form-factors) since the curve E (z) cannot be derived
with sufficient accuracy because of the uncertainties in ND, NA and the band discontinuity
∆Ec/∆Eg for the AlGaAs/GaAs heterostructure [7, 9, 10].

Fig. 5. Frequency dependence of the dielectric function for the interaction
between the main size-quantized m−subband electrons with the n−satellite of
the p−subband. nm, 1011cm−2: (1)− 8.5, (2)− 10, (3)− 11.5; dp/dm = 3.5

4. Spectrum of collective excitation

Bearing in mind the oscillations in τ expq and τ thee , it is natural to expect the reso-
nant response of the components of a complex 2D electron system to the external per-
turbation Vtot (q, ω) at the plasma oscillations’ frequency. The 2D system responds to the
spectrum of Vtot (q, ω) by one of its nm, nn, nd components (or their combination), and
in a timeτee (τ intraee , τ interee ), the perturbation extends to the entire system resulting in the
destruction of quantum states (cyclotron orbits), which is experimentally observed as the
reduction of the δ(1/B)T oscillations’ amplitude. The latter is formally equivalent to the rise
of temperature T at which the measurements are taken. Therefore, the resonant response
featuring the Landau quantization destruction corresponds to a minimum in the curves τ expq

and τ thee . We have performed a spectral analysis of the dispersion equations (6) for χ (q, ω)
for various channels of e-e interactions according to the scheme shown in Fig. 2 and various
relative values of the densities nm, nn, nd in the situation where two size-quantized subbands
are occupied (nm > 8 · 1011cm−2). The plasma oscillation frequencies ωτ are found from the
dispersion equation χ (q, ω) = 0, the minima in τ thee (T ) corresponding to the minima in
Reχ (q, ω) and Imχ (q, ω) = 0 while the maxima in τ thee (T ) correspond to Reχ (q, ω) = 0
and maxima in Imχ (q, ω) [1, 19].

To calculate Reχ (q, ω) and Imχ (q, ω), the expression (6) should be take in the form
of function χ (ω):

χik (ω) =
1

S

∑
q

χik (q, ω). (10)
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Taking into account the characteristic scales q ∈
{
d−1m , d−1p

}
of the 2D electron system,

the summation over q results in the expression:

χik (ω) = f (ni, ω) + f (nk, ω) , (11)

where

fi(ni, ω) = L
√
ni

 1

L
√
ni
−

√2π −

(
m∗ωL

~√niπ
−
∞∑
k=1

{
(−1)k−1

2k(2k)!

(
m∗ωL

~√niπ

)2k
})2

1/2

−

−

√2π −

(
m∗ωL

~√niπ
−
∞∑
k=1

{
(−1)k−1

2k(2k)!

(
m∗ωL

~√niπ

)2k
})2

1/2
 . (12)

The latter expression reduces to:

fi (ni, ω) = L
√
ni

 1

L
√
ni
−

[
√

2π −
(
m∗ωL

~√niπ
− ln

(
m∗ωL

~√niπ

)
+ C − Ci

(
m∗ωL

~√niπ

))2
]1/2
−

−

[
√

2π −
(
m∗ωL

~√niπ
+ ln

(
m∗ωL

~√niπ

)
− C + Ci

(
m∗ωL

~√niπ

))2
]1/2 , (13)

where C is the Euler constant, f (nk, ω) is given by (12) and (13) after the substitution of

ni by nk; Ci(x) =
x∫
−∞

cos t
t
dt - integral cosinus. The alternating sums over k in (12) prove to

be rapidly converging. Fig. 5 illustrates the partial contributions of various mechanisms to
the Landau quantization destruction and the density-dependent singularities. For example,
plotted in Fig. 5 are the frequency dependences Reχ (q, ω) and Imχ (q, ω) for nm ≈ 1012cm−2

for three intersubband transition channels. It is seen that the nm−nn and nn−nd interactions
are dominat. Moreover, the resonant frequency is determined by the n−satellite density.
Shown in Fig. 5 is the influence of the second size-quantized subband filling factor. An
increase in the density nm, (and hence nn and nd) results in the resonant frequency shift
to higher values while the discontinuity.in Reχ (q, ω) and Imχ (q, ω) is reduced which is
consistent with the third scenario of the schematic model presented in Fig. 2 (domains “a”
the real and “b” the imaginary parts of χ (ω)).

Similar analysis of the other channels for paths (1) and (2) of the model presented in
Figs. 2 confirmed on the whole the trends presented in Fig. 5.

It should be noted here that in [12], the curve τee (T ) was obtained for a pair of
coupled rectangular wells in the long wavelength limit at T = 0, which is incompatible with
tile conditions of the experiments reported in [9]. In that case [12], the calculations of τee (T )
result in divergences which cannot be neglected when solving a particular problem. On the
other hand, formulas of the type of (9) and (10) derived by us for the inter- and intrasubband
e-e interactions allow one to obtain expressions for τ intraee (T ) and τ interee (T ) given in [12] with
the coefficients Bi in (8, 9) do not containing any divergencies.
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5. Conclusions

In conclusion, it should be noted that a similar problem for 2D electrons seems to
have been first considered in [12], and since then, numerous attempts have been undertaken
[13-18] to study this problem for 2D electron system where several size-quantized subbands
are filled at T 6= 0 in the long wavelength limit. However, the plasma oscillation spectrum
has not been obtained in any of these works. Characteristic features of 2D electron systems,
such as the amplitude-frequency modulation, beatings, and sharp bends in the oscillation
amplitude magnetic field dependence make the description of Landau quantization damping,
in terms of the Dingle temperature, rather problematic. Another point to be considered is
the fact that in the magnetic field range where a strong amplitude-frequency modulation
takes place, the p−subband electrons are in the state close to the quantum limit and one
can only speak of the oscillation’s period in a rather limited sense.
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