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Three-dimensional Stokes equations with variable viscosity in cylindrical coordinates are considered. This

case is natural for flow through a nanotube in biological applications. We obtain exact particular solutions –

a benchmark for numerical approache.
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1. Introduction

Flow through nanotubes are intensively investigated, particularly due to its biological
applications, e.g., as a transport channel for some compounds into the cell (see, e.g., [1]).
Although there is no general approach in nanohydrodynamics [2-6], the Stokes approximation
(with variable viscosity) is available in many cases. We consider the axisymmetric case,
which is natural for the nanotube flow. Biologists need a reliable computational approach
to describe and predict the mass transport through a nanotube “to” and “from” the cell.
There are several computational schemes for solution of the Stokes and continuity equations,
but in the case of strongly varying viscosity, these schemes are plagued by difficulties. One
would like to have an instrument for testing of these algorithms. One convenient method
is to suggest benchmark solutions for some particular cases [7-9]. In this paper, such a
benchmark solution is constructed for the axisymmetric case. It is interesting to note that
the same mathematical problem appears in geophysics [10, 11].

This paper deals with the Stokes and continuity equations for the case of variable
viscosity and density having the following form:

(∇ · σ) = −ρG , (1)

∇(ρv) = 0, (2)

where v is velocity, η is a dynamic viscosity, σ is the total stress tensor, p is a pressure, G is
a gravitational force. We consider equations (1), (2) in cylindrical coordinates (r, ϕ, z) and
construct a solution for the case when the variables depend only on the radius r.

2. Benchmark solutions

We construct particular solutions of the system of Stokes and continuity equations for
specific density and viscosity distributions: η = η(r), ρ = ρ(r). Let vr = vr(r), vϕ = vϕ(r),
vz = vz(r), P = P (r), η = η(r), ρ = ρ(r), G = G(r). Then equation (1) simplifies
considerably:

2η
1

r
v,r + 2η′v,r + 2ηv,,r − 2η

1

r2
vr − P ′ = −ρGr (3)
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η′v,ϕ −
1

r
η′vϕ + ηv,,ϕ +

1

r
ηv,ϕ − η

1

r2
vϕ = −ρGϕ (4)

η
1

r
v,z + η′v,z + ηv,,z = −ρGz. (5)

The continuity equation takes the form:

ρ
1

r
vr + ρ′vr + ρv,r = 0. (6)

In this case, we obtain the following solutions of equations (1), (2):

vr = c
rρ
, vϕ = c1f(r) + c2r + C1(r)f(r) + C2(r)r,

vz = −
r∫

1

1
ηr2

(
r2∫
1

r1ρGzdr1 + c1)dr2 + c2,
(7)

P (r) =

∫
(ρGr + 2η

1

r
v,r + 2η′v,r + 2ηv,,r − 2η

1

r2
vr)dr, (8)

where

f(r) = exp(

r∫
1

(
1

r2

+
1

ηr3
2

1
r2∫
1

1
ηr31
dr1 + C

)dr2),

C1(r) =

∫
rρGϕ

η(f − f ′r)
dr, C2(r) = −

∫
fρGϕ

η(f − f ′r)
dr.

Formulas (7), (8) gives us the solution of equations (1), (2). Derivation of the solution is
presented in Appendix A in detail.

3. Multigrid method

In this work, we derive a procedure of multigrid method for solving the Stokes equa-
tions with variable viscosity in cylindrical coordinates. The analogous algorithm for the
Cartesian coordinates was described in [10]. We derive a similar scheme for cylindrical
coordinates.

As usual, the multigrid method algorithm contains three steps: 1) smoothing opera-
tion 2) restriction operation 3) prolongation operation. Cylindrical coordinates are orthog-
onal coordinates, thus the implementation of the prolongation and restriction operations in
our method is not different from that in the case of the Cartesian coordinates. As for the
smoothing operation, it differs. This procedure is described in Appendix B in detail.

The scheme for algorithm testing is as follows. Let us consider some particular
analytical solutions (7), (8): vr = −1

r
, vϕ = r2, vz = − 1

10
ρGzr

5 − 1
3
r3, P (r) = ρGrr + 1.2 1

r2

in the domain 1 6 r 6 2, 0 6 φ 6 1, 0 6 z 6 1 (ρ = const, Gr = 10, Gϕ = 0, Gz = 10,
η = r−3). We calculate the values for velocity and pressure given by our analytical solution
and take these values as the boundary conditions for the numerical algorithm. The deviation
of the numerical solution values from the analytical solution is related to the error of the
multigrid scheme. The dependence of the relative error on the grid step for the multigrid
scheme is shown in Figure.1. Positive curve slopes indicate a convergence for the algorithm.
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Fig. 1. Error norm via the grid resolution in logarithmic scale: blue lines-
pressure, red lines- vr , black lines - vϕ , green lines - vz; solid lines - L1-error,
dashed lines- L∞ -error, solid dotted lines- L2-error

Appendix A. Derivation of the Stokes equations solution

Integration of (6) gives us:

vr =
c

rρ
. (9)

Substitution of (9) in (3) gives us the expression for pressure:

P (r) =

∫
(ρGr+2η

1

r
v,r + 2η′v,r + 2ηv,,r − 2η

1

r2
vr)dr. (10)

Consider equation (4). Simple transformation gives us:

v,,ϕ + v,φ(
η′

η
+

1

r
)− v(

φ

1

r

η′

η
+

1

r2
) =
−ρGϕ

η
(11)

We seek a solution of (11) in the form vϕ(r) = vϕ0(r) + vϕ1(r), where vϕ0(r) is particular
solution of (11) and vϕ1(r) is the general solution of the corresponding homogeneous equation:

v,,ϕ + v,ϕ(
η′

η
+

1

r
)− v(

ϕ

1

r

η′

η
+

1

r2
) = 0. (12)

Let us make a replacement:

z =
v′ϕ
vϕ

(13)

in (12). It transforms into the first-order equation:

z′ + z(
η′

η
+

1

r
) + z2 − 1

r

η′

η
− 1

r2
= 0. (14)

If one makes the substitution z = 1
ηr
y, where y = y(r) then (14) transforms into the Riccati

equation:

y′ + y2 1

ηr
− η′ − η

r
= 0. (15)
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Function y = η is a particular solution of (15). Keeping this in mind, we seek the solution
in the form y = u+ η. For function u = u(r) one obtains the Bernoulli equation:

u′ = −2
1

r
u− 1

ηr
u2. (16)

Note that u(r) = 0 is a solution. We seek a non-trivial solution of (16) in the form u = 1
r2
q

, where q = q(r). The equation simplifies:

q′ +
1

ηr3
q2 = 0,

giving us:

q =
1∫
1
ηr3
dr

Coming back to (12), we get:

v′ϕ
vϕ

=
1

ηr
(η +

1

r2

1∫
1
ηr3
dr

)

After integration, one obtains:

ln(|vϕ|) =

r∫
1

(
1

r2

+
1

ηr3
2

1
r2∫
1

1
ηr31
dr1 + c11

)dr2 + c21

Solution u(r) = 0 of (16) leads to the following solution of (12):

vϕ = cr

As a result, we obtain the general solution of (12) in the following form:

vϕ1(r) = c1f(r) + c2r,

where f(r) = exp(
r∫

1

( 1
r2

+ 1
ηr32

1
r2∫
1

1

ηr31
dr1+C

)dr2).

We seek a particular solution of equation (11) by the Lagrange method in the form
vϕ0(r) = C1(r)f(r) + C2(r)r.

Here C1(r), C2(r) satisfy the system of equation:

C ′1f(r) + C ′2r = 0

C ′1f
′(r) + C ′2 = −ρGϕ

η

.

Correspondingly, C1(r) =
∫ rρGϕ

η(f−f ′r)dr, C2(r) = −
∫ fρGϕ

η(f−f ′r)dr

As a result, we come to the following solution of equation (4):

vϕ(r) = c1f(r) + c2r + C1(r)f(r) + C2(r)r, (17)

we let v,z = w(r), equation (8) takes the form:

w′ + (
η′

η
+

1

r
)w = −ρ

η
Gz (18)

If one makes the substitution w = $ 1
ηr

, where $ = $(r), then (11) transforms into equation:

$′
1

ηr
= −ρ

η
Gz
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Integration gives us:

w = − 1

ηr
(

r∫
1

r1ρGzdr1 + c1),

As a result, we get the following expression for the velocity component:

vz = −
r∫

1

1

ηr2

(

r2∫
1

r1ρGzdr1 + c1)dr2 + c2. (19)

Appendix B. Gauss-Seidel smoother

Smoothing operation can be implemented on the basis of Gauss-Seidel iterations.
The respective iterative pressure and velocity update schemes for a regularly spaced grid
can be derived:

P new
(i,j,l) = P(i,j,l) + ηn(i,j,l)∆R

continuity
i,j,l θcontinuityrelaxation (20)

∆Rcontinuity
i,j,l = Rcontinuity

i,j,l − vr
r
− ∂vr

∂r
− 1

r

∂vϕ
∂ϕ
− ∂vz

∂z
, (21)

vnewr(i,j,l) = vr(i,j,l) +
∆Rr−Stokes

i,j,l

Cvr(i,j,l)
θStokesrelaxation (22)

vnewφ(i,j,l) = vϕ(i,j,l) +
∆Rϕ−Stokes

i,j,l

Cvϕ(i,j,l)

θStokesrelaxation (23)

vnewz(i,j,l) = vz(i,j,l) +
∆Rz−Stokes

i,j,l

Cvz(i,j,l)

θStokesrelaxation (24)

where θcontinuityrelaxation, θ
Stokes
relaxation are relaxation parameters. Cvr(i,j,l), Cvϕ(i,j,l) ,Cvz(i,j,l) is the coef-

ficients at vr(i,j,l)vϕ(i,j,l), vz(i,j,l) in Stokes equations (1). For models with variable viscosity,
the respective residuals in Eqs.(22)–(24) become:

∆Rr−Stokes
i,j,l = Rr−Stokes

i,j,l − ∂τrr
∂r
− τrr − τϕϕ

r
− 1

r

∂τrϕ
∂ϕ
− ∂τrz

∂z
+
∂P

∂r
, (25)

∆Rϕ−Stokes
i,j,l = Rϕ−Stokes

i,j,l − ∂τrϕ
∂r
− 2τrϕ

r
− 1

r

∂τϕϕ
∂ϕ
− ∂τϕz

∂z
+

1

r

∂P

∂ϕ
, (26)

∆Rz−Stokes
i,j,l = Rz−Stokes

i,j,l − ∂τrz
∂r
− τrz

r
− 1

r

∂τϕz
∂ϕ
− ∂τzz

∂z
+
∂P

∂z
(27)

where τ is a deviatoric stress tensor.

B.1 Discretization of the continuity equation

Fig. 2 shows an elementary volume (cell) of a 3D staggered grid that can be used for
discretization. Using the stencil with six velocity nodes around a cell (Fig.2), equation (21)
takes the form:

∆Rcontinuity
i,j,l = Rcontinuity

i,j,l − 1
rj+∆r/2

vr(i+1,j+1,l+1)+vr(i+1,j,l+1)

2
− vr(i+1,j+1,l+1)−vr(i+1,j,l+1)

∆r
−

− 1
rj+∆r/2

vϕ(i+1,j+1,l+1)−vϕ(i,j+1,l+1)

∆ϕ
− vz(i+1,j+1,l+1)−vz(i+1,j+1,l)

∆z
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Fig. 2. Indexing of different variables for a 3D staggered grid

Fig. 3. Stencil of a 3D staggered grid used for the discretization of the
r-Stokes equation with variable viscosity
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B.2 Discretization of Stokes equations

An example of stencil for the discretization of the r-Stokes equation is shown in Fig.3.

For terms in equations (22), (25), we obtain the following discretization:

1. Pressure derivative:

∂P

∂r
=
P(i−1,j,l−1) − P(i−1,j−1,l−1)

∆r

Discretization for terms which contain deviatoric stress tensor components:

2.

(
∂τrr
∂r

)i,j,l = (
∂

∂r
(2η

∂vr
∂r

))i,j,l = 2
1

∆r
(η(i−1,j,l−1)

vr(i,j+1,l) − vr(i,j,l)
∆r

−η(i−1,j−1,l−1)

vr(i,j,l) − vr(i,j−1,l)

∆r
)

3.

(τrr)i,j,l = (2η
∂vr
∂r

)i,j,l = (ηn(i−1,j,l−1) + ηn(i−1,j−1,l−1))
vr(i,j+1,l) − vr(i,j−1,l)

2∆r

4.

(τϕϕ)i,j,l = (2η(1
r

∂vϕ
∂ϕ

+ vr
r

))i,j,l = 1
rj

(ηn(i−1,j,l−1) + ηn(i−1,j−1,l−1))(
1

∆ϕ
(
vϕ(i,j+1,l)+vϕ(i,j,l)

2
−

−vϕ(i−1,j+1,l)+vϕ(i−1,j,l)

2
) + vr(i,j,l))

5.

(∂τrϕ
∂ϕ

)i,j,l = ( ∂
∂ϕ

(η(1
r
∂vr
∂ϕ

+ ∂vϕ
∂r
− vϕ

r
)))i,j,l = 1

∆ϕ
(ηrϕ(i,j,l−1)(

1
rj

vr(i+1,j,l)−vr(i,j,l)
∆ϕ

+
vϕ(i,j+1,l)−vϕ(i,j,l)

∆r

− 1
rj

vϕ(i,j+1,l)+vϕ(i,j,l)
2

)− ηrϕ(i−1,j,l−1)(
1
rj

vr(i,j,l)−vr(i−1,j,l)

∆ϕ
+

vϕ(i−1,j+1,l)−vϕ(i−1,j,l)

∆r
− 1

rj

vϕ(i−1,j+1,l)+vϕ(i−1,j,l)

2
))

6.

(∂τrz
∂z

)i,j,l = ( ∂
∂z

(η(∂vz
∂r

+ ∂vr
∂z

)))i,j,l = 1
∆z
ηrz(i−1,j,l)(

vz(i,j+1,l)−vz(i,j,l)
∆r

+
vr(i,j,l+1)−vr(i,j,l)

∆z
)−

−ηrz(i−1,j,l−1)(
vz(i,j+1,l−1)−vz(i,j,l−1)

∆r
+

vr(i,j,l)−vr(i,j,l−1)

∆z
)

.

Discretization for coefficient Cvr(i,j,l) in equation (16) takes the form:

Cvr(i,j,l) = −2
ηn(i−1,j,l−1)+ηn(i−1,j−1,l−1)

∆r2
− ηn(i−1,j,l−1)+ηn(i−1,j−1,l−1)

r2j
−

− 1
r2j

ηrϕ(i,j,l−1)+ηrϕ(i−1,j,l−1)

∆ϕ2 − ηrz(i−1,j,l)+ηrz(i−1,j,l−1)

∆z2

Discretization for the ϕ-Stokes and z-Stokes equations can be constructed and indexed anal-
ogously.
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