Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Spectra of coherent transmittance and reflectance of periodic, Fibonacci, and Thue-Morse multilayers of dielectric particles

Abstract

Coherent transmittance and reflectance of multilayers consisting of one-dimensional Fibonacci, Thue-Morse, and periodic sequences of plane-parallel ordered monolayers of spherical alumina and silica particles are inves- tigated in the 0.3 µm to 2 µm spectral range. Consideration is based on the quasicrystalline approximation for individual monolayers and the transfer matrix method for multilayers. Comparison with sequences of the homogeneous plane-parallel layers is made. It is shown that the Fibonacci and Thue-Morse structures provide more possibilities to control light in comparison with the regular ones. These results can be used for the development of optical filters, solar cells, light emitting diodes, displays, etc.

About the Authors

A. A. Miskevich
B.I. Stepanov Institute of Physics of NAS of Belarus
Belarus

68, Nezalezhnastsi ave., Minsk, 220072.



V. A. Loiko
B.I. Stepanov Institute of Physics of NAS of Belarus
Belarus

68, Nezalezhnastsi ave., Minsk, 220072.



References

1. I. A. Sukhoivanov, I. V. Guryev, Photonic Crystals: Physics and Practical Modeling, Springer-Verlag (2009).

2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: molding the flow of light, Princeton: Princeton University Press (2008).

3. E. Yablonovitch, T. J. Gmitter. Photonic band structure: The face-centered-cubic case. Phys. Rev. Let., 63, P. 1950–1953 (1989).

4. D. Levine, P. J. Steinhardt. Quasicrystals: A New Class of Ordered Structures. Phys. Rev. Let., 53, P. 2477–2480 (1984).

5. D. Shechtman, I. Blech, D. Gratias, J. W. Cahn. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Let., 53, P. 1951–1953 (1984).

6. H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo. Double Photonic Quasi- Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes. Jpn. J. Appl. Phys., 49, P. 022101 (2010).

7. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. We- gener, G. von Freymann. Three-dimensional silicon inverse photonic quasicrystals for infrared wave- lengths. Nat. Materials, 5, P. 942–945 (2006).

8. M. Florescu, S. Torquato, and P. J. Steinhardt. Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci., 106, P. 20658–20663 (2009).

9. Sergei V. Zhukovsky, Andrei V. Lavrinenko, and Sergey V. Gaponenko. Optical Filters Based on Fractal and Aperiodic Multilayers In Optics of Aperiodic Structures — Fundamentals and Device Applications. Ed. by Luca Dal Negro, springer, 509 p. (2013). P. 109–140.

10. A. Mouldi and M. Kanzari. Design of microwave devices exploiting Fibonacci and hybrid peri- odic/Fibonacci one dimensional photonic crystals. Progress In Electromagnetics Research B, 40, P. 221– 240 (2012).

11. R. W. Peng, M. Wang, A. Hu, S. S. Jiang, G. J. Jin, D. Feng. Photonic localization in one-dimensional k-component Fibonacci structures. Phys. Rev. B, 57, P. 1544–1551 (1998).

12. L. Dal Negro and N.-N. Feng. Spectral gaps and mode localization in Fibonacci chains of metal nanopar- ticles. Opt. Exp., 15, P. 14396–14403 (2007).

13. P. W. Mauriz, M. S. Vasconcelos, E. L. Albuquerque. Optical transmission spectra in symmetrical Fibonacci photonic multilayers. Phys. Let. A, 373, P. 496–500 (2009).

14. H. Aynaou, V. R. Velasco, A. Nougaoui, E. H. El Boudouti, B. Djafari-Rouhani, D. Bria. Application of the phase time and transmission coefficients to the study of transverse elastic waves in quasiperiodic systems with planar defects. Surface Science, 538, P. 101–112 (2003).

15. C. Sibilia, M. Bertolotti, M. Centini, G. D’Aguanno, M. Scalora, M. J. Bloemer, and Ch. M. Bowden. Linear and Nonlinear Optical Properties of Quasi-Periodic One-Dimensional Structures. in Optical Prop- erties of Nanostructured Random Media: Topics Appl. Phys. 82 , V. M. Shalaev. ed. Springer-Verlag, Berlin, Heidelberg (2002), pp. 63–92.

16. C. Rockstuhl, F. Lederer, T. Zentgraf , H. Giessen. Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays. App. Phys. Let., 91, P. 151109 (2007).

17. S. V. Boriskina, A. Gopinath, L. Dal Negro. Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures. Opt. Exp., 16, P. 18813–18826 (2008).

18. Priya Rose T., E. Di Gennaro, G. Abbate, and A. Andreone. Isotropic properties of the photonic band gap in quasicrystals with low-index contrast. Phys. Rev. B, 84, P. 125111-1 (2011).

19. L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, P. Schurtenberger, J. J. Saenz and F. Scheffold. Photonic properties of strongly correlated colloidal liquids. Phys. Rev. Let., 93, P. 073903 (2004).


Review

For citations:


Miskevich A.A., Loiko V.A. Spectra of coherent transmittance and reflectance of periodic, Fibonacci, and Thue-Morse multilayers of dielectric particles. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(6):778-794.

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)