Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A quantitative model for quantum transport in nano-transistors

Abstract

In a number of recent publications, a one-dimensional effective model for quantum transport in a nanotransistor was developed yielding qualitative agreement with the trace of an experimental transistor. To make possible a quantitative comparison, we introduce three phenomenological parameters in our model, the first one describing the overlap between the wave functions in the contacts and in the transistor channel, the second one is the transistor temperature, and the third one is the maximum height of the source-drain barrier. These parameters are adjusted to the traces of three experimental transistors. An accurate fit is obtained if the three adjustable parameters are determined for each gate voltage resulting in three calibration functions. In the threshold- and subthreshold regime the calibration functions are physically interpretable and allow one to extract key data from the transistors, such as their working temperature, their body factor, a linear combination of the flat band voltage and the built-in potential between substrate and source contact, and the quality of the wave function coupling between the contacts and the electron channel.

About the Authors

U. Wulf
BTU Cottbus-Senftenberg, Fakultät 1
Germany

Postfach 101344, 03013 Cottbus.



M. Krahlisch
BTU Cottbus-Senftenberg, Fakultät 1
Germany

Postfach 101344, 03013 Cottbus.



J. Kučera
Institute of Physics, Academy of Sciences of the Czech Republic
Czech Republic

Cukrovarnická 10, 162 53 Praha 6.



H. Richter
BTU Cottbus-Senftenberg, Fakultät 1
Germany

Postfach 101344, 03013 Cottbus.



J. Höntschel
GLOBALFOUNDRIES Dresden
Germany

Wilschdorfer Landstraße 101, 01109 Dresden.



References

1. Lundstrom M., Guo J. Nanoscale Transistors. Springer, New York, 2006.

2. Anantram M. P., A. Svizhenko. Multidimensional Modeling of Nanostructures. IEEE Trans. Electron Devices, 54, P. 2100–2115 (2007).

3. Vasileska D., Mamaluy D., et al. Semiconductor Device Modeling. J. Comput. Nanosci. , 5, P. 999– 1030 (2008).

4. Smrcka L. R-matrix and the coherent transport in mesoscopic systems.ˇ Superlattices and Microstructures, 8, P. 221–224 (1990).

5. Wulf U., Kucera J., Racec P. N., Sigmund E. Transport through quantum systems in the R-matrixˇ formalism. Phys. Rev. B, 58, P. 16209 (1998).

6. Nemnes G. A. , Wulf U., Racec P. N. Nano-transistors in the Landauer-Buttiker formalism.¨ J. Appl. Phys., 96, P. 596–604 (2004).

7. Nemnes G. A. , Wulf U., Racec P. N. Nonlinear I-V characteristics of nanotransistors in the LandauerButtiker formalism.¨ J. Appl. Phys., 98, P. 843081 (2005).

8. Nemnes G. A., Ion L., Antohe S. Self-consistent potentials and linear regime conductance of cylindrical nanowire transistors in the R-matrix formalism. J. Appl. Phys., 106, P. 113714 (2009).

9. Descouvemont P., Baye D. The R-matrix theory, Rep. Prog. Phys., 73, P. 36301 (2010).

10. Wulf U., Richter H. Scale-invariant drain current in nano-FETs. Journal of Nano Research, 10, P. 49–62 (2010).

11. Wulf U., Richter H. Scaling properties of ballistic nano-transistors. Nanoscale Research Letters, 6, P. 365–372 (2011).

12. Mil’nikov G., Mori N., Kamakura Y. Application of the R-matrix formalism method in quantum transport simulations. J. Comput. Electron, 10, P. 51–64 (2011).

13. Raffah B. M., Abbott P. C. Efficient computation of Wigner-Eisenbud functions. Computer Physics Communications, 184, P. 1581–1591 (2013).

14. Colinge J.-P. Fully-Depleted SOI CMOS for Analog Applications. IEEE Trans. Electron Devices, 45 P. 1010–1016 (1998).

15. Jensen K. L. Improved FowlerNordheim equation for field emission from semiconductors. J. Vac. Sci. Technol. B, 13, P. 516–527 (1995).

16. Taur Y., Ning T.H. Fundamentals of modern VLSI devices. Cambridge University Press, Cambridge, 2009, Sect. 2.3.

17. Sze S.M. Physics of Semiconductor Devices. John Wiley and Sons, New York, 1981, Sect. 7.


Review

For citations:


Wulf U., Krahlisch M., Kučera J., Richter H., Höntschel J. A quantitative model for quantum transport in nano-transistors. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(6):800-809.

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)