Quantum ring with wire: a model of two-particles problem
References
1. Melnikov Yu. B., Pavlov B. S. Two-body scattering on a graph and application to simple nanoelectronic devices // J. Math. Phys., 1995. V. 36. P. 2813–2825.
2. Harmer M. Two particles on a star graph, I // J. Math. Phys., 2007. V. 14(4). P. 435–439.
3. Harmer M. Two particles on a star graph, II // J.Math. Phys., 2008. V. 15(4). P. 473–480.
4. Павлов Б. С. Теория расширений и явнорешаемые модели // УМН, 1987. V. 42(6). P. 99–131.
5. Exner P. Leaky quantum graphs: a review // Analysis on Graphs and its Applications, 2008. V. 77. P. 523–564.
6. Kurylev Ya. V. Boundary conditions on curves for the three-dimensional Laplace operator // J. Sov. Math., 1983. V. 22. P. 1072–1082.
7. Exner P., Ichinose T. Geometrically induced spectrum in curved leaky wires // J. Phys. A: Math. Gen., 2001. V. 34. P. 1439–1450.
8. Brasche J. F., Exner P., Kuperin Yu. A., Seba P. Schrodinger operators with singular interactions // J. Math. Anal. Appl., 1994. V. 184(1). P. 112–139.
9. Popov I. Yu. The resonator with narrow slit and the model based on the operator extension theory // J. Math. Phys., 1992. V. 33(11). P. 3794–3801.
10. Popov I. Yu. The extension theory and the opening in semitransparent surface // J. Math. Phys., 1992. V. 33(5). P. 1585–1589.
11. Exner P., Kondej S. Bound states due to a strong delta interaction supported by a curved surface // J. Phys. A, 2003. V. 36. P. 443–457.
12. Teta A. Quadratic forms for singular perturbations of the Laplacian // Res. Inst. Math. Sci., 1990. V. 26(5). P. 803–817.
13. Лобанов И. С., Лоторейчик В. Ю., Попов И. Ю. Оценка снизу спектра двумерного оператора Шредингера с 𝛿-потенциалом на кривой // ТМФ, 2010. Т. 162(3). С. 397–407.
14. Ikebe T., Shimada S. Spectral and scattering theory for the Schrodinger operators with penetrable wall potentials // J. Math. Kyoto Univ., 1991. V. 31(1). P. 219–258.
15. Суслина Т. А., Штеренберг Р. Г. Абсолютная непрерывность спектра оператора Шредингера с потенциалом, сосредоточенным на периодической системе гиперповерхностей // Алгебра и анализ, 2001. Т. 13. C. 197–240.
16. Posilicano A. A Krein-like formula for singular perturbations of self-adjoint operators and applications // J. Func. Anal., 2001. V. 183. P. 109–147.
17. Прудников А. П. Интегралы и ряды / А. П. Прудников, Ю. А. Брычков, О. И. Марычев. — М.: Наука, 1981. — 800 с
Review
For citations:
Eremin D.A., Popov I.Yu. Quantum ring with wire: a model of two-particles problem. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(2):15-31. (In Russ.)