Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Sulfated nano-ceria as a catalyst of hex-1-ene oligomerization

Abstract

Oligomerization of hex-1-ene over acid catalysts obtained by the impregnation of cerium dioxide by sulfatecontaining compounds (sulfuric acid or its salts) was studied. Maximum conversion of hexene-1 over sulfated ceria catalysts was 7–12% at 60°C.

About the Authors

S. A. Lermontov
Institute of Physiologically Active Compounds of the Russian Academy of Sciences
Russian Federation

Chernogolovka, Moscow region



A. N. Malkova
Institute of Physiologically Active Compounds of the Russian Academy of Sciences
Russian Federation

Chernogolovka, Moscow region



L. L. Yurkova
Institute of Physiologically Active Compounds of the Russian Academy of Sciences
Russian Federation

Chernogolovka, Moscow region



A. Ye. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation

Moscow



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences; Materials Science Department, Moscow State University
Russian Federation

Moscow



References

1. A. Corma. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev., 95, P. 559–614 (1995).

2. A.S.C. Brown, J.S.J. Hargreaves Sulfated metal oxide catalysts. Superactivity through superacidity? Green Chem., 1, P. 17–20 (1999).

3. S.A. Lermontov, A.N. Malkova, L.L. Yurkova, V.K. Ivanov, A.Ye. Baranchikov, L.P. Vasilyeva. Fluorinated metal oxide-assisted oligomerization of olefins. Mend.Comm., 23, P. 110–112 (2013).

4. Y. Wu, S. Liao. Review of SO2−4 /MxOy solid super-acid catalysts. Front. Chem. Eng. China, 3, P. 330– 343 (2009).

5. J.R. Sohn. Recent advances in solid superacids. J. Ind. Eng. Chem., 10, P. 1–15 (2004).

6. K. Arata, H. Matsushita, M. Hino, H. Nakamura. Synthesis of solid superacids and their activities for reactions of alkanes. Catal. Today, 81, P. 17–30 (2003).

7. M. Waqif, J. Bachelier, O. Saur. Lavalley J.-C. Acidic properties and stability of sulfate promoted metal oxides. J. Mol. Catal., 72, P. 127–138 (1992).

8. B.M. Reddy, M.K. Patil. Organic syntheses and transformations catalyzed by sulfated zirconia. Chem. Rev., 109, P. 2185–2208 (2009).

9. K. Arata. Organic syntheses catalyzed by superacidic metal oxides: sulfated zirconia and related compounds. Green Chem., 11, P. 1719–1728 (2009).

10. S.G. Ryu, B.C. Gates. n-Hexane conversion catalyzed by sulfated zirconia and by iron- and manganesepromoted sulfated zirconia: catalytic activities and reaction network. Ind. Eng. Chem. Res., 37, P. 1786– 1792 (1998).

11. S. Rezgui, R.E. Jentoft, B.C. Gates. n-pentane isomerization and disproportionation catalyzed by promoted and unpromoted sulfated zirconia. Catal. Lett., 51, P. 229–234 (1998).

12. T.K. Cheung, F.C. Lange, B.C. Gates. Propane conversion catalyzed by sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and USY zeolite. J. Catal., 159, P. 99–106 (1996).

13. V.K. Ivanov, A.B. Shcherbakov, A.V. Usatenko. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev., 78, P. 855–871 (2009).

14. Catalysis by Ceria and Related Materials. Imperial College Press, London, 528 pp (2002).

15. V. Ivanov, G. Kopitsa, S. Lermontov, L. Yurkova, N. Gubanova, O. Ivanova, A. Lermontov, M. Rumyantseva, L. Vasilyeva, M. Sharp, K. Pranzas, Yu. Tretyakov. pH control of the structure, composition, and catalytic activity of sulfated zirconia. J. Solid State Chem., 198, P. 496–505 (2013).

16. L.L. Yurkova, S.A. Lermontov, V.P. Kazachenko, V.K. Ivanov, A.S. Lermontov, A.E. Baranchikov, L.P. Vasil’eva. Sulfated SnO2 as a high-performance catalyst for alkene oligomerization. Inorganic Materials, 48, P. 1012–1019 (2012).

17. A.E. Baranchikov, O.S. Polezhaeva, V.K. Ivanov, Y.D. Tretyakov. Lattice expansion and oxygen nonstoichiometry of nanocrystalline ceria. CrystEngComm, 12, P. 3531–3533 (2010).

18. J.R. Sohn, W.C. Park. New NiSO4/ZrO2 catalyst for ethylene dimerization. Bull. Korean Chem. Soc., 20, P. 1261–1262 (1999).

19. J.R. Sohn, W.C. Park. New syntheses of active catalysts for ethylene dimerization. Bull. Korean Chem. Soc., 21, P. 1063–1064 (2000).

20. V.K. Ivanov, O.S. Polezhaeva, A.E. Baranchikov, A.B. Shcherbakov. Thermal stability of nanocrystalline CeO2 prepared through freeze drying. Inorg. Mater., 46, P. 43–46 (2010).

21. A. Mantilla, F. Tzompantzi, G. Ferrat, A. Lpez-Ortega, E. Romero. Ortiz-Islas E., G´omez R., Torres M. Room temperature olefins oligomerization over sulfated titania. Chem. Commun., P. 1498–1499 (2004).

22. R. Sakthivel, H.A. Prescott. Synthesis, characterization, and catalytic activity of SO4/Zr1−xSnxO2. Appl. Catal. A, 253, P. 237–247 (2003).


Review

For citations:


Lermontov S.A., Malkova A.N., Yurkova L.L., Baranchikov A.Ye., Ivanov V.K. Sulfated nano-ceria as a catalyst of hex-1-ene oligomerization. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(5):690–695.

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)